
Proceedings of the 29th International Conference on Computational Linguistics, pages 3175–3186
October 12–17, 2022.

3175

Enhancing Contextual Word Representations
Using Embedding of Neighboring Entities in Knowledge Graphs

Ryoko Tokuhisa Keisuke Kawano Akihiro Nakamura Satoshi Koide
Toyota Central R&D Labs., Inc.

{tokuhisa, kawano, a-nakamura, koide}@mosk.tytlabs.co.jp

Abstract

Pre-trained language models (PLMs) such as
BERT and RoBERTa have dramatically im-
proved the performance of various natural lan-
guage processing tasks. Although these models
are trained on large amounts of raw text, they
have no explicit grounding in real-world enti-
ties. Knowledge graphs (KGs) are manually
annotated with factual knowledge and store the
relations between nodes corresponding to en-
tities as labeled edges. This paper proposes
a mechanism called KG-attention, which inte-
grates the structure of a KG into recent PLM
architectures. Unlike the existing PLM+KG
integration methods, KG-attention generalizes
the embeddings of neighboring entities using
the relation embeddings; accordingly, it can
handle relations between unconnected entities
in the KG. Experimental results demonstrated
that our method achieved significant improve-
ments in a relation classification task, an entity
typing task, and several language comprehen-
sion tasks.

1 Introduction

Pre-trained language models (PLMs) have signifi-
cantly improved the performance of various natural
language processing (NLP) tasks (Devlin et al.,
2019; Liu et al., 2019). Although these models are
trained on large amounts of raw text, they have no
explicit grounding in real-world entities. Figure 1
shows a causal reasoning task on which PLM fails.
The performance can be improved by represent-
ing factual knowledge as various relations between
entities, e.g., “engine is part of a car”, in the PLM.

Knowledge graphs (KGs) are manually anno-
tated with factual knowledge and store the relations
between the nodes corresponding to entities as la-
beled edges (e.g., HasA, IsA, and PartOf) (Miller,
1995; Bollacker et al., 2008; Speer et al., 2016).
Although the various relations recorded in KGs
can potentially improve the performance of PLMs,
KGs are graphs and structurally unsuitable for di-

Figure 1: Example of the outputs of Choice of Plausible
Alternatives (COPA), a well-known causal reasoning
task. “PLM” represents the causal reasoning model us-
ing BERTLARGE and “PLM+KG” represents the model
using BERTLARGE and Knowledge Graph (WordNet).
Solid and dotted lines indicate the relations between en-
tities connected in KG and entities not connected in KG,
respectively. The relation between unconnected entities
were estimated from KG embeddings in our proposed
method.

rect incorporation into PLMs. Some of the more
suitable forms of factual knowledge are pre-trained
KG embeddings (Bordes et al., 2013; Sun et al.,
2019; Nguyen, 2020; Chao et al., 2021). KG em-
beddings embed two entities registered in a KG
such that the corresponding embedding vectors are
at a specific relative position depending on the rela-
tion between the entities. The embedding vectors
corresponding to the entities are called KG entity
embeddings and the specific relative positions are
called relation embeddings. In addition to avoid-
ing the direct use of structural encoding of KGs,
KG embeddings can be generalized; that is, entities
having a specific relation to a query entity can be
estimated even when their relation is not actually
recorded in the KGs (Bordes et al., 2013). For ex-
ample, if there is no PartOf connection between
car and engine in the KG, the embedding of
engine can be estimated from the embedding of
car and the relation embedding of PartOf.

One remaining problem is the incorporation of
KG entity embeddings and relation embeddings

3176

into PLMs. Recently, several PLM and KG inte-
gration methods have been proposed (Zhang et al.,
2019; Yang et al., 2019; Lin et al., 2019; Wang
et al., 2019; Sun et al., 2020; Wang et al., 2021).
For example, Zhang et al. (2019) concatenated
embedding vectors obtained from PLM word em-
beddings and KG entity embeddings for down-
stream tasks. Wang et al. (2021) jointly trained
a masked language model (MLM) and a KG em-
bedding model to align factual knowledge and lan-
guage representation in the same semantic space.
Although KG entity embeddings have been utilized,
how the informative relation embeddings should be
incorporated into PLMs is not obvious. Actually,
the relation embeddings have been ignored, while
KG entity embeddings have been well utilized.

Herein, we propose Integrating PLMs and KGs
through Attention Mechanisms (ILKA), which han-
dles both the KG entity embeddings and the rela-
tion embeddings through our attention mechanism
(KG-attention). A key feature of KG-attention
is that it fully utilizes the generalization ability
of pre-trained KG embeddings, meaning that KG-
attention can handle relations between entities not
connected in the original KG.

Our contributions are summarized below.

• We propose ILKA with KG-attention that in-
corporates both the KG entity embeddings
and relation embeddings with the embedding
vectors obtained from PLMs in a consistent
manner.

• We experimentally demonstrate that ILKA
achieves improvements in a relation classi-
fication task, an entity typing task, and several
language comprehension tasks.

2 Related Works

Pre-trained language models PLMs such as
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and AL-
BERT (Lan et al., 2020) have achieved great suc-
cess in many NLP tasks. As a result, pre-training
language models and fine-tuning them in down-
stream tasks has become a new standard in NLP.
However, PLMs do not explicitly learn the relations
between entities and may not properly identify fac-
tual knowledge (Peters et al., 2019; Wang et al.,
2021).

Knowledge graph embedding KGs such as
WordNet (Miller, 1995) and ConceptNet (Speer

Approximate formula
TransE (Bordes et al., 2013) v(t) ≈ v(h) + v(r)
TransR (Lin et al., 2015) vr(t) ≈ vr(h) + v(r)
RotatE (Sun et al., 2019) v(t) ≈ v(h) ◦ v(r)
PairRE (Chao et al., 2021) v(t) ≈ v(h)◦vH(r)⊘vT (r)

Table 1: List of approximate formulas of KG embed-
ding models. vr(·) is the embedding function specific
to the relation r. ◦ is the Hadamard product. ⊘ de-
notes the element-wise division. vH(r) and vT (r) are
embeddings of the relation r for head and tail entities,
respectively.

et al., 2016) have also become important resources
in many NLP tasks. In general, a KG is a col-
lection of relational facts often represented as a
triplet (h, r, t) ∈ V × R × V (e.g., (car, IsA,
vehicle)), where V is the vocabulary and R is
the set of relations. h is a head entity, r is a relation,
and t is a tail entity.

Several learning methods have been proposed
for embedding KGs into a continuous vector space
while preserving the relational structure (Nickel
et al., 2011; Bordes et al., 2013; Schlichtkrull et al.,
2018; Lin et al., 2015; Sun et al., 2019). In most
KG embedding models, the triplet (h, r, t) is em-
bedded to satisfy the following:

vKG(t) ≈ ϕh(vKG(h),vr(r)), (1)

where vKG : V 7→ RdKG is the embedding func-
tion, and vr(r) ∈ RdKG is the embedding vector
corresponding to the relation r. ϕh denotes the
relationship between the embedding vectors; for
example, ϕh(vKG(h),vr(r)) = vKG(h) + vr(r) in
TransE (Bordes et al., 2013). Table 1 gives the
approximation formulas of typical KG embedding
models.

One benefit of KG embedding is that enti-
ties with a specific relation to the query entity
can be retrieved even when the relation between
the entities is not connected in the KG (Bordes
et al., 2013). For example, in Figure 2, enti-
ties e connecting the “IsA” relation with car can
be estimated by extracting the entities satisfying
vKG(e) ≈ ϕh(vKG(car),vr(IsA)). vKG(e) en-
codes not only words having the “IsA” relation
with car in the KG (i.e., automobile, vehicle),
but also words not having the “IsA” relation with
car but having similar meanings to automobile
and vehicle (i.e., motorcar in Figure 2). In this
paper, the vector ϕh(vKG(w),vr(r)) is called the
KG-neighbor embeddings of entity w and the en-

3177

Figure 2: Example of car and its neighboring entities
in KG. The words in the solid circles (e.g., automobile,
city) have a relation defined in KG whereas the words in
the dotted circles (e.g., motorcar, road) indicate words
whose relation is not defined in KG.

tities corresponding to the KG-neighbor embed-
dings (i.e., e) are called KG-neighbors. Note
that KG-neighbors may be unconnected to entity
w in the original KG. For some KG embedding
methods such as TransE, we can also consider
KG-neighbor embeddings as ϕt(vKG(w),vr(r)),
where w corresponds to a tail entity. In Figure 2,
the KG-neighbor embeddings in the “PartOf” re-
lation with car (i.e., seats, ignition, engine) are
represented by ϕt(vKG(car),vr(PartOf)), such
as ϕt(vKG(car),vr(PartOf)) = vKG(car) −
vr(PartOf) in TransE. In the following, ϕ refers
to either ϕh or ϕt.

Integrating PLMs and KGs Several recent stud-
ies have integrated KGs with PLM. In some studies,
the KGs and PLM were combined to perform spe-
cific downstream tasks (Yu et al., 2018; Wang and
Jiang, 2019; Yasunaga et al., 2021). Yasunaga et al.
(2021) proposed an end-to-end question answering
(QA) model that leverages PLM and KG by scoring
the relevance of KG nodes conditional on a given
QA context. These downstream task-focused meth-
ods are effective and robust for the given task, but
they do not enhance PLM for general purposes.

In another approach, PLM and KG are integrated
at the model level (Zhang et al., 2019; Peters et al.,

2019; Yang et al., 2019; Lin et al., 2019; Wang
et al., 2019; Sun et al., 2020; Wang et al., 2021).
Zhang et al. (2019) concatenated PLM word em-
beddings and KG entity embeddings and Sun et al.
(2020) trained an MLM by concatenating the en-
tity sequences obtained from a KG and input word
sequences. However, these PLM+KG methods are
limited in that they do not effectively employ rela-
tion embeddings. A relation embedding encodes
the semantic direction of the predefined relations
in KGs and plays an important role in representing
neighboring entities in KG and generalizing rela-
tions between entities not included in the KG. The
existing methods either do not consider relation
embeddings (Zhang et al., 2019) or cannot handle
the relations between entities not connected in the
KG (Sun et al., 2020; Wang et al., 2021).

3 Methodology

3.1 Main idea: KG-attention
When KG embedding is integrated into PLMs, the
performance can be improved by representing fac-
tual knowledge as various relations (e.g., IsA, HasA,
AtLocation). Below, we propose KG-attention that
consistently integrates the embedding of entities
and relations into an attention mechanism. The ben-
efits of KG-attention are twofold: (1) KG-attention
can explicitly assign attention between a query en-
tity and entities in the input sentence that are related
through KG embeddings; (2) KG-attention can han-
dle KG-neighbors even when the relation between
entities is not connected in the KG.

Figure 3 shows an application example of KG-
attention, which explores the attention between an
input sentence and KG-neighbors such as carIsA,
carHasA, and carAtLocation. For example, the atten-
tion between engine and carHasA represents the
knowledge “a car has an engine.” When integrat-
ing a KG embedding with a PLM, how to incor-
porate the relation represented by ϕ into a PLM
comprising a transformer is not always evident.
We solve this difficulty by carefully designing the
query, key, and value of the attention. Given an
input sequence w = [w(1), . . . , w(L)], where w de-
notes a subword and L denotes the length of the
sequence, KG-attention integrates ϕ into attention
mechanism as follows:

Q = {Q(i)}i∈{1,...,L}, (2)

K = V = {K(i,j)}i∈{1,...,L}, j∈{0,...,|R|} (3)

Q(i) = vKG(w
(i))⊕ vPLM(w(i)) (4)

3178

Figure 3: Example of KG-attention applied to sentence
classification. The input sentence is “Premise + Alter-
native 2” in Figure 1.

K(i,j) =

vKG(w

(i))⊕ vPLM(w(i)) if j = 0

ϕ(vKG(w
(i)),vr(r

(j)))⊕ vPLM(w(i))

if j ∈ {1, . . . , |R|}
(5)

where Q(i) and K(i,j) are dKG +dPLM dimensional
vectors, Q is a set of L vectors, and K(= V) is
a set of L × (|R| + 1) vectors. vKG(·) ∈ RdKG

is the KG entity embedding and vPLM(·) ∈ RdPLM

is the PLM embeddings. dKG and dPLM are the
dimensions of the KG and PLM embeddings, re-
spectively. ⊕ is the concatenation operation, and
r(j) represents the j-th relation.

Why and how does KG-attention treat seman-
tically related tokens defined in KGs? In general,
the attention mechanism seeks key tokens, which
are similar to query tokens. Accordingly, the KG-
attention aims to seek for key tokens that are lo-
cated at the KG-neighbors of the query token. For
example, K(i,j) (for w(i) = car) in Figure 3 is
constructed from KG-neighbor embeddings such
as carIsA, carHasA, and carAtLocation. These KG
embeddings are concatenated with the PLM em-
bedding of car and then used as the keys and values
of the attention. To obtain Q(i) (for w(i) = car),
we can simply compute and concatenate the KG
and PLM embeddings of car. As KG-neighbor em-
beddings are obtained from KG entity embeddings
of w and r(j) by the approximation function ϕ, they
can be regarded as the embeddings of a represen-
tative entity having relation r with an entity w. If
engine and the representative entity of carHasA are
similar, KG-attention can obtain the attention be-
tween them even if engine and car are unconnected

Relation Relation
PLM between entities between entities

Model +KG connected not connected
ERNIE ✓
KnowBERT ✓ ✓
CoLAKE ✓ ✓
KEPLER ✓ ✓
ILKA (ours) ✓ ✓ ✓

Table 2: Comparison of ILKA with existing methods.
“Relation between entities connected” indicates that the
model only handle the relation between entities con-
nected in the KG (e.g., automobile in Figure 2); “Rela-
tion between entities not connected” indicates that the
model handle relations between entities not connected
in KG (e.g., motorcar in Figure 2).

in the original KG. Thus, KG-attention achieves
flexible attention by exploiting generalized KG-
neighbor embeddings.

3.2 ILKA

This section describes our proposed model ILKA
incorporating KG-attention. As shown in Figure 4,
ILKA consists of the following three modules.

(1) PLM and KG Embeddings: The input sen-
tences are fed to the PLM and pre-trained KG em-
bedding model to obtain the PLM word embed-
dings and KG entity embeddings. The KG embed-
ding model additionally obtains the KG relation
embeddings of all relations defined in the KG.

(2) KG-attention: The KG-attention mechanism
integrates the PLM word embeddings, KG entity
embeddings, and KG relation embeddings.

(3) Classifier: Classification is performed by
a transformer encoder-based classifier with self-
attention. KG-attention, which consistently in-
corporates the relational information of the KG
and PLM embeddings, can be regarded as the first
layer of the transformer encoder-based classifica-
tion model.

Table 2 compares the features of our method
with those of four existing PLM+KG methods.
ILKA approximates KG-neighbor embeddings
based on KG relation embeddings and can consider
the attention between the input sentence and KG-
neighbors even if the relation between the entities
is not connected in the KG. Among the compared
methods, only ILKA achieves this functionality.

3179

Figure 4: Overview of ILKA, which comprises three steps: (1) Obtain the PLM and KG embeddings; (2) Apply
KG-attention to integrate the PLM word embeddings, KG entity embeddings, and KG relation embeddings; (3)
Perform classification using a transformer encoder-based model.

Figure 5: Procedure for obtaining the word embeddings shown in Figure 4 (1). The blue and red shading highlight
the PLM word embeddings and KG entity embeddings, respectively.

3.3 Implementation
PLM word embeddings (shaded blue in Fig-
ure 5): Transformer-based PLMs often require
a tokenization step to solve the out-of-vocabulary
problem. For example, the sentence “The engine
overheated” can be divided into the subword se-
quence “The engine over ##heat ##ed.” PLMs
give the word embeddings of each subword unit.
We use existing PLMs for PLM word embeddings.

KG entity embeddings (shaded red in Figure 5):
Unlike PLMs, KG entities are registered as word or
phrase units. To obtain KG entity embeddings, the
tokenized sentences are preprocessed as follows:

(1) After reverting the subwords to the original
words, the original word is duplicated n times,
where n is the number of subwords (e.g.,
[over, ##heat, ##ed] → [overheated, over-
heated, overheated]).

(2) The conjugated words are returned to their
original form (e.g., broke → break, over-
heated → overheat). Uppercase letters are
made lowercase (e.g., The → the).

In typical KGs, words with multiple meanings
are registered as different entities. ILKA morpho-
logically analyzes the input sentence to find the
part-of-speech (POS), and then selects an entity
with the same POS among the registered entities1.
Among various registered entities, this process al-
lows the selection of words with similar usage to
those in the input sentences. If no embedding vec-
tor is obtained from the KG embedding model, then
a zero vector is used. A zero vector is also allocated
to special tokens such as [CLS], [SEP], and [PAD].

KG-attention Here we describe three implemen-
tations of KG-attention on TransE as an example.

1) ILKA-head: TransE embeds the head and
tail entities as vKG(t) ≈ vKG(h)+vr(r). Our KG-
attention is designed to integrate the head → tail
relation with the PLM embeddings as follows:

K
(i,j)
head = (vKG(w

(i)) + vr(r
(j)))⊕ vPLM(w(i)).

(6)
1If multiple entities have the same POS as the input word,

the first entity is used. In contrast, if no entity has the same
POS as the input word, an entity with a different POS is used.

3180

2) ILKA-tail: A similar integration of the tail
→ head relation with the PLM embeddings is given
as

K
(i,j)
tail =(vKG(w

(i))− vr(r
(j)))⊕ vPLM(w(i)).

(7)

3) ILKA-both: The two relations above can
be combined by concatenating the head and tail
vectors from vKG(w

(i)):

K
(i,j)
both =

{
K

(i,j)
head if j ∈ {1, . . . , |R|}

K
(i,j−|R|)
tail if j ∈ {|R|+ 1, . . . , 2|R|}.

(8)

Note that K(i,0) = vKG(w
(i)) ⊕ vPLM(w(i))

for all implementations and Khead,Ktail ∈
RL(|R|+1)×(dKG+dPLM), while Kboth ∈
RL(2|R|+1)×(dKG+dPLM).

Transformer encoder-based classifier For the
classifier, we employed the transformer encoder
model proposed by Vaswani et al. (2017), which
comprises a stack of N = 6 identical layers.
Each layer has two sub-layers: a multi-head self-
attention mechanism and a position-wise fully con-
nected feed-forward network.

4 Experiments

4.1 Benchmark Methods
The ILKA model was competed against two
PLM-only methods: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019)), and four PLM+KG
methods: ERNIE (Zhang et al., 2019), Know-
BERT (Peters et al., 2019), CoLAKE (Sun et al.,
2020) and KEPLER (Wang et al., 2021).

4.2 Experimental Settings
The KG-attention was implemented in Py-
Torch (Paszke et al., 2019). As the KG embedding
model, we employed the TransE model trained on
WordNet and Wikipedia. The KG was based on
WordNet (WN18 (Bordes et al., 2014) containing
18 relations) or Wikipedia (DBpedia50k (Shi and
Weninger, 2018) containing 351 relations). De-
tails can be found in Appendix A. We implemented
TransE using PyKEEN (Ali et al., 2021) and trained
it for 1,000 epochs. Following Bordes et al. (2013),
the dimension of the KG embeddings was set to
dKG = 50 (see Appendix B for details). The PLM
was implemented in two settings: BERTBASE for
comparison with the BERT-based models ERNIE

and KnowBERT and RoBERTaBASE for compar-
ison with the RoBERTa-based models CoLAKE
and KEPLER. The PLM implementations were
obtained from HuggingFace Transformers (Wolf
et al., 2020). For the classifier, we employed a
transformer encoder with six self-attention layers.
The batch sizes were set to 32 and 4 for the models
with WN18 and DBPedia50k, respectively, and
the maximum sequence length of the token was
128. All experiments were conducted on a 24GB
NVIDIA® TITAN RTX™ GPU.

4.3 Tasks

ILKA was evaluated on three tasks: relation clas-
sification, entity typing, and language comprehen-
sion.

Relation Classification Relation classification
determines the type of relation between two entities
in a text. We employed TACRED as the relation
classification task2. TACRED contains more than
106k sentences with typed subject and object spans
and relation labels across 41 relations along with a
no-relation label. The hyperparameters and other
experimental settings were set following KEPLER.

Entity Typing Entity typing is the task of classi-
fying a given entity into a pre-defined type. This
task was evaluated using OpenEntity (Choi et al.,
2018)3. Comparisons with ERNIE, KnowBERT,
CoLAKE, and KEPLER were performed on nine
general entity types under the same experimental
settings.

Language Comprehension We adopted the
General Language Understanding Evaluation
(GLUE) (Wang et al., 2018) and Choice of Plausi-
ble Alternatives (COPA) (Roemmele et al., 2011)
as language comprehension tasks. GLUE is a col-
lection of diverse natural language comprehension
tasks used in various PLM papers (Devlin et al.,
2019; Liu et al., 2019). Existing PLM+KG meth-
ods have evaluated the GLUE task to determine
whether their methods degenerate the performance
on common NLP tasks (Zhang et al., 2019; Wang
et al., 2021) (see Appendix C for details). We used
the implementation and evaluation script imple-
mented by the HuggingFace Transformers library

2TACRED is available from LDC. https://catalog.
ldc.upenn.edu/LDC2018T24

3OpenEntity data can be obtained from ERNIE’s githab
page. https://github.com/thunlp/ERNIE

https://catalog.ldc.upenn.edu/LDC2018T24
https://catalog.ldc.upenn.edu/LDC2018T24
https://github.com/thunlp/ERNIE

3181

Base-model Model P R F1

BERT

BERT 67.2 64.8 66.0
ERNIE 70.0 66.1 68.0
KnowBERT 73.5 64.1 68.5
ILKA-head 72.6 68.9 70.7

RoBERTa
RoBERTa 70.8 69.6 70.2
KEPLER 71.5 72.5 72.0
ILKA-head 73.9 71.9 72.9

Table 3: Micro precision, recall and F1 scores on TA-
CRED (%). The KnowBERT results shown in Table 3
were reevaluated in Wang et al. (2021).

for GLUE 4. To investigate whether our method
is effective for complex language comprehension
tasks using COPA, a causal inference task that re-
quires world knowledge. In COPA, the models
were given a premise and two alternatives and were
required to choose the alternative with a higher
causal relation to the premise. Figure 1 is an exam-
ple of COPA.

In the GLUE and COPA tasks, we selected the
best fine-tuning learning rate (among 5e-5, 4e-5,
3e-5, and 2e-5) on the Dev set for the BERT setting
according to the BERT experiments and (among
3e-5, 2e-5, and 1e-5) for the RoBERTa setting ac-
cording to the RoBERTa experiments. Our classifi-
cation was essentially that of BERT’s framework of
“[CLS] sentenceA [SEP] sentenceB [SEP],” where
[CLS] is a special token for classification purposes.

4.4 Results

Relation Classification Table 3 shows the result
of TACRED. As in Wang et al. (2021), we show
the KnowBERT result without entity type inputs
for a fair evaluation. ILKA-head represents our
model with WN18. ILKA-head achieved higher F1
scores than the existing studies using PLM and KG
(BERT-based and RoBERTa-based models). The
results suggest that the relation classification was
accurately solved by both the KG embedding of
the input sentence and the generalized embedding
of neighboring entities.

Entity Typing Table 4 shows the experimen-
tal results of OpenEntity. ILKA-head based on
RoBERTa achieved higher F1 scores than the ex-
isting models using PLM and KG. In the BERT-
base model, ERNIE and ILKA-head obtained the
highest F1 and Recall scores, respectively. In the
RoBERTa-base model, ILKA-head had the high-

4https://github.com/huggingface/
transformers/blob/master/examples/
pytorch/text-classification/run_glue.py

Base-model Model P R F1

BERT

BERT 76.4 71.0 73.6
ERNIE 78.4 72.9 75.6
KnowBERT 77.9 71.2 74.4
ILKA-head 75.5 74.4 75.0

RoBERTa

RoBERTa 75.1 73.4 74.3
CoLAKE 77.0 75.7 76.4
KEPLER 77.8 74.6 76.2
ILKA-head 75.3 78.1 76.7

Table 4: Micro precision, recall and F1 scores on Ope-
nEntity (%). The results of BERT and RoBERTa were
reported by Wang et al. (2021). Other benchmark results
were taken from the respective papers.

est F1 score. As our method obtained the highest
Recall in both BERT-base and RoBERTa-base, we
inferred that using the KG-neighbors provides a
consistently high coverage of various relations.

Language Comprehension The experimen-
tal results of GLUE are shown in Table 5.
ILKA-headBERT outperformed BERT-original and
ERNIE in the following tasks: MNLI-mm,
QQP, CoLA, STS-B, MRPC, and RTE. More-
over, ILKA-headRoBERTa outperformed RoBERTa-
original, CoLAKE, and KEPLER in the following
tasks: MNLI-m/mm, CoLA, and MRPC. On aver-
age, our model with a RoBERTa performed compa-
rably to the RoBERTa-original model. The result
suggests that integrating PLM and KG exerts no
significant negative impact.

Table 6 presents the COPA results. ILKA out-
performed the original BERT and RoBERTa in all
settings. Causal reasoning is one of the tasks requir-
ing world knowledge. ILKA worked effectively
even for the large-scale PLM, suggesting that KG-
attention provides an inference ability that cannot
be matched by word co-occurrence alone.

5 Analysis

5.1 Ablation Study
Model Variants Table 7 presents the results of an
ablation study for ILKARoBERTa on the TACRED
and OpenEntity tasks. In the “ILKAw/o-KGneighbors”
model, only the KG entity embeddings are pro-
vided in the input sentence (the KG-neighbor em-
beddings are omitted). This model is similar to
ERNIE but has a slightly different network struc-
ture. “ILKA-head”, “ILKA-tail”, and “ILKA-both”
represent different implementations of ILKA as de-
scribed in subsection 3.3.

ILKA-head and ILKA-tail obtained higher F1
scores “ILKAw/o-KGneighbors”, suggesting that when

https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py

3182

Base- MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE
model Model 392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k

BERT
BERT (Devlin et al., 2019) 84.6/83.6 71.2 90.5 93.5 52.1 85.8 88.9 66.4
ERNIE (Zhang et al., 2019) 84.0/83.2 71.2 91.3 93.5 52.3 83.2 88.2 68.8
ILKA-headBERT (OURS) 83.8/84.4 87.7 90.7 92.2 62.6 89.3 91.1 69.0

RoBERTa

RoBERTa (Liu et al., 2019) 87.5/87.3 91.9 92.8 94.8 63.6 91.2 90.2 78.7
CoLAKE (Sun et al., 2020) 87.4/87.2 92.0 92.4 94.6 63.4 90.8 90.9 77.9
KEPLER (Wang et al., 2021) 87.2/86.5 91.7 92.4 94.5 63.6 91.2 89.3 85.2
ILKA-headRoBERTa (OURS) 87.7/87.6 88.1 92.6 94.5 64.4 91.1 92.0 75.8

Table 5: Test results of GLUE. The number below each task denotes the number of training examples. The results of
the benchmark methods were taken from the respective references. KEPLER represents the result of KEPLER-wiki,
the most accurate model for GLUE in (Wang et al., 2021). The F1 scores are reported for QQP and MRPC,
Spearman correlations are reported for STS-B, and the accuracy scores are reported for the other tasks.

Model Accuracy

BERTBASE
BERTBASE 68.8 ± 1.3
ILKA-headBERTBASE 69.9 ± 1.1

BERTLARGE
BERTLARGE 76.5 ± 2.7
ILKA-headBERTLARGE 77.7 ± 1.2

RoBERTaBASE
RoBERTaBASE 73.7 ± 1.3
ILKA-headRoBERTaBASE 74.9 ± 2.1

RoBERTaLARGE
RoBERTaLARGE 87.7 ± 0.9
ILKA-headRoBERTaLARGE 88.6 ± 1.6

Table 6: Test results on COPA. The results
of BERTLARGE and RoBERTaLARGE were reported
by Kavumba et al. (2019).

TACRED OpenEntity
Model P R F1 P R F1
ILKAw/o-KGneighbors 73.7 70.8 72.2 77.8 71.0 74.3
ILKA-head 73.9 71.9 72.9 75.3 78.1 76.7
ILKA-tail 75.4 72.9 74.1 76.4 79.9 78.1
ILKA-both 76.4 70.7 73.5 74.0 73.2 73.6

Table 7: Results of the ablation study on TACRED and
OpenEntity using the proposed ILKARoBERTa.

both the KG-neighbor and KG entity embeddings
are employed, the model becomes more effective.
ILKA-both, which simply concatenates the KG-
neighbor embeddings of the head and tail entities,
was less accurate than ILKA-head and ILKA-tail.

Knowledge Graph Variants Table 8 shows
the experimental results for different KGs.
ILKA-headWordNet outperformed ILKA-headWiki,
possibly because the large number of relations in
ILKA-headWiki leads to a sparser embedding space.
Nevertheless, ILKA-headWiki is still comparable to
benchmark methods shown in Table 3 and Table 4.

5.2 Training Runtime Comparison
Most of the existing PLM+KG methods jointly
learn contextualized representations of both lan-
guage and KG with the MLM objective. In general,
learning a model from scratch by this method is ex-

TACRED OpenEntity
Model P R F1 P R F1
ILKA-headWordNet 73.9 71.9 72.9 75.3 78.1 76.7
ILKA-headWiki 74.5 69.5 71.9 75.1 77.8 76.4

Table 8: Results of the Knowledge Graph Variants
on TACRED and OpenEntity using the proposed
ILKARoBERTa.

cessively time-consuming. For example, CoLAKE
training on 8 32G NVIDIA V100 GPUs required 38
hours (Sun et al., 2020). Our method reduced the
training time because it requires only fine-tuning.
Specifically, the training runtimes of ILKARoBERTa
with fine-tuning in three epochs on CoLA, STS-B,
MRPC, and RTE were approximately 10 mins (see
Appendix D for details). Despite its short learning
time, our method was more accurate than the exist-
ing PLM+KG methods.

Our method needs more training time than pure
PLMs because it requires POS tagging first and
then entity lookup. In our experimental environ-
ment (24GB NVIDIA® TITAN RTX™ GPU),
RoBERTa’s fine-tuning runtime is 3.9 and 2.8 min
for CoLA and STS-B, respectively. In contrast,
ILKA-head takes about 11.5 and 7.8 min for CoLA
and STS-B, respectively (details in Appendix D),
so it takes about three times longer for fine-tuning.
For inference, we observed the same tendency. We
believe that the increase in learning time does not
pose a significant practical problem.

5.3 Discussion

Our proposed method improves the F1 scores for
the relation classification task (TACRED) and the
entity typing task (OpenEntity), as shown in Tables
3 and 4. However, it is also true that the improve-
ment is insignificant. An analysis of the number
of KG entities in a sentence shows that only a few

3183

entities appear in an input sentence. Specifically,
the average number of entities in a sentence is 6.5
subwords (5% for a maximum token length of 128),
and the rest are empty. This could have hampered
learning efficiency.

6 Conclusion

We proposed the KG-attention mechanism and de-
veloped the ILKA model to integrate KGs into
PLMs in a consistent manner. Unlike the exist-
ing PLM+KG integration methods, KG-attention
generalizes the embeddings of neighboring entities
using the relation embeddings, and selects a pro-
portion of these embeddings through the attention
mechanism. Accordingly, it can handle relations
between unconnected entities in the KG. In the re-
lation classification and entity typing experiments,
ILKA yielded higher Recall and F1 scores than con-
ventional PLM+KG methods. In the GLUE task,
factual knowledge produced no negative effect on
language comprehension by ILKA. In addition, the
higher scores for COPA than for the PLM alone
suggest that our method adequately processes com-
plex language comprehension tasks.

Our proposed method has one limitation: when
the number of relations is large, the dimension
of the attention enlarges accordingly. To avoid
this size explosion, we could employ the weighted
sums of relation embeddings as keys and queries
instead of arranging all relation embeddings in the
direction of attention.

Ethical Concerns

This study used the existing datasets WN18 (Bor-
des et al., 2013), DBpedia50k (Shi and Weninger,
2018), TACRED (Zhang et al., 2017), OpenEn-
tity (Choi et al., 2018), GLUE (Wang et al., 2018),
and COPA (Roemmele et al., 2011), which are not
expected to present any ethical concerns.

References
Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-

rent Vermue, Sahand Sharifzadeh, Volker Tresp, and
Jens Lehmann. 2021. PyKEEN 1.0: A Python Li-
brary for Training and Evaluating Knowledge Graph
Embeddings. Journal of Machine Learning Research,
22(82):1–6.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A collabo-
ratively created graph database for structuring human

knowledge. In Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of
Data, page 1247–1250. Association for Computing
Machinery.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2014. A semantic matching energy
function for learning with multi-relational data. Ma-
chine Learning, 94(2):233–259.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates,
Inc.

Linlin Chao, Jianshan He, Taifeng Wang, and Wei Chu.
2021. PairRE: Knowledge graph embeddings via
paired relation vectors. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4360–4369, Online. Association
for Computational Linguistics.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 87–96, Melbourne, Australia. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Pride Kavumba, Naoya Inoue, Benjamin Heinzerling,
Keshav Singh, Paul Reisert, and Kentaro Inui. 2019.
When choosing plausible alternatives, clever hans can
be clever. In Proceedings of the First Workshop on
Commonsense Inference in Natural Language Pro-
cessing, pages 33–42, Hong Kong, China. Associa-
tion for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. KagNet: Knowledge-aware graph net-
works for commonsense reasoning. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2829–2839, Hong Kong,
China. Association for Computational Linguistics.

http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://link.springer.com/article/10.1007/s10994-013-5363-6
https://link.springer.com/article/10.1007/s10994-013-5363-6
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.336
https://doi.org/10.18653/v1/2021.acl-long.336
https://doi.org/10.18653/v1/P18-1009
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-6004
https://doi.org/10.18653/v1/D19-6004
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282

3184

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI’15, page 2181–2187.
AAAI Press.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Dat Quoc Nguyen. 2020. A survey of embedding
models of entities and relationships for knowledge
graph completion. In Proceedings of the Graph-
based Methods for Natural Language Processing
(TextGraphs), pages 1–14, Barcelona, Spain (Online).
Association for Computational Linguistics.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th International Conference on International
Conference on Machine Learning, ICML’11, page
809–816.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 43–54, Hong Kong, China. Association for
Computational Linguistics.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of Plausible Alter-

natives: An Evaluation of Commonsense Causal Rea-
soning. In AAAI Spring Symposium on Logical For-
malizations of Commonsense Reasoning, Stanford
University.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593–607. Springer.

Baoxu Shi and Tim Weninger. 2018. Open-world knowl-
edge graph completion. In AAAI.

Robert Speer, Joshua Chin, and Catherine Havasi. 2016.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In AAAI Conference on Artificial
Intelligence.

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo,
Yaru Hu, Xuanjing Huang, and Zheng Zhang. 2020.
CoLAKE: Contextualized language and knowledge
embedding. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
3660–3670, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding by
relational rotation in complex space. In International
Conference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Chao Wang and Hui Jiang. 2019. Explicit utilization of
general knowledge in machine reading comprehen-
sion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
2263–2272, Florence, Italy. Association for Compu-
tational Linguistics.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and
Tat-Seng Chua. 2019. Kgat: Knowledge graph atten-
tion network for recommendation. In Proceedings
of the 25th ACM SIGKDD International Conference
on Knowledge Discovery Data Mining, KDD ’19,
page 950–958, New York, NY, USA. Association for
Computing Machinery.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Trans.
Assoc. Comput. Linguistics, 9:176–194.

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.18653/v1/2020.textgraphs-1.1
https://doi.org/10.18653/v1/2020.textgraphs-1.1
https://doi.org/10.18653/v1/2020.textgraphs-1.1
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
http://ict.usc.edu/pubs/Choice%20of%20Plausible%20Alternatives-%20An%20Evaluation%20of%20Commonsense%20Causal%20Reasoning.pdf
http://ict.usc.edu/pubs/Choice%20of%20Plausible%20Alternatives-%20An%20Evaluation%20of%20Commonsense%20Causal%20Reasoning.pdf
http://ict.usc.edu/pubs/Choice%20of%20Plausible%20Alternatives-%20An%20Evaluation%20of%20Commonsense%20Causal%20Reasoning.pdf
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
http://arxiv.org/abs/1612.03975
http://arxiv.org/abs/1612.03975
https://doi.org/10.18653/v1/2020.coling-main.327
https://doi.org/10.18653/v1/2020.coling-main.327
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/P19-1219
https://doi.org/10.18653/v1/P19-1219
https://doi.org/10.18653/v1/P19-1219
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3292500.3330989
https://transacl.org/ojs/index.php/tacl/article/view/2447
https://transacl.org/ojs/index.php/tacl/article/view/2447

3185

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

An Yang, Quan Wang, Jing Liu, Kai Liu, Yajuan Lyu,
Hua Wu, Qiaoqiao She, and Sujian Li. 2019. Enhanc-
ing pre-trained language representations with rich
knowledge for machine reading comprehension. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2346–
2357, Florence, Italy. Association for Computational
Linguistics.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
Reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 535–546, Online.
Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
35–45, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
1441–1451, Florence, Italy. Association for Compu-
tational Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P19-1226
https://doi.org/10.18653/v1/P19-1226
https://doi.org/10.18653/v1/P19-1226
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D17-1004
https://doi.org/10.18653/v1/D17-1004
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139

3186

A Details of WN18 and DBpedia50k

Table 9 present the scale of WN18 and DBPe-
dia50k and Table 10 presents the types of relations
in WN18.

WN18 DBPedia50k

#(ENTITIES) 40,943 49,900
#(RELATIONS) 18 351
#(Triples in Train) 141,442 32,388
#(Triples in Valid) 5,000 399
#(Triples in Test) 5,000 10,969

Table 9: Scales of WN18 and DBPedia50k.

_hyponym,_hypernym,_part_of,
_derivationally_related_form,
_has_part,_similar_to,_also_see
_member_meronym,_member_holonym,
_member_of_domain_topic,
_synset_domain_topic_of,
_instance_hyponym,_instance_hypernym,
_member_of_domain_region,_verb_group,
_synset_domain_region_of,
_member_of_domain_usage,
_synset_domain_usage_of

Table 10: Types of relations in WN18.

B Training TransE using PyKEEN

PyKEEN is a Python package designed for training
and evaluating KG embedding models. It simply
describes the training of the knowledge embedding
model in the form of a pipeline. Figure 6 shows the
code for training the knowledge embedding model.
A KG embedding model can be trained by speci-
fying the training conditions in PyKEEN (e.g., the
model, dataset name, and number of dimensions).

C GLUE task

The GLUE is the common language comprehen-
sion task in NLP. It consists of nine tasks: two
single-sentence tasks (SST-2, CoLA), three sen-
tence similarity tasks (MRPC, STS-B, QQP), and
four natural language inference (NLI) tasks (MNLI,
QNLI, RTE, WNLI). Following Zhang et al. (2019),
we evaluated ILKA for eight tasks excluding WNLI.
WNLI was excluded from the evaluation data be-
cause none of the benchmark methods were evalu-
ated against it. The reasons are described in (Devlin
et al., 2019).

Code 1 Training TransE in PyKEEN
1: modeldir = "dirname"
2: model = pipeline(
3: model=’TranE’,
4: dataset=’wn18’,
5: model_kwargs=dict(
6: embedding_dim=50,
7:),
8: training_kwargs=dict(
9: num_epochs=1000,

10: batch_size=128,
11: checkpoint_name=’checkpoint.pt’,
12: checkpoint_frequency=50,
13: checkpoint_directory=dirname,
14:),
15:)

Figure 6: Code for training the knowledge embedding
model in PyKEEN. This model uses WN18 with TransE.

D Training Runtime

Figure 7 shows the training runtimes of
ILKARoBERTa over three epochs of fine tun-
ing in the CoLA, STS-B, MRPS, and RTE
of the GLUE task. Plotted are the averages of
five training runs under each condition. The
fine-tuning time of ILKARoBERTa on these tasks
was approximately 10 minutes.

Figure 7: Training runtime for fine-tuning (epochs = 3).

