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Abstract

Semantic parsing considers the task of map-
ping a natural language sentence into a target
formal representation, where various sophis-
ticated sequence-to-sequence (seq2seq) mod-
els have been applied with promising results.
Generally, these target representations follow
a syntax formalism that limits permitted forms.
However, it is neither easy nor flexible to ex-
plicitly integrate this syntax formalism into
a neural seq2seq model. In this paper, we
present a structure-aware self-attention lan-
guage model to capture structural information
of target representations and propose a knowl-
edge distillation based approach to incorporat-
ing the target language model into a seq2seq
model, where grammar rules or sketches are
not required in the training process. An abla-
tion study shows that the proposed language
model can notably improve the performance
of the baseline model. The experiments show
that our method achieves new state-of-the-art
performance among neural approaches on four
semantic parsing (ATIS, GEO) and Python
code generation (Django, CoNaLa) tasks.

1 Introduction

Semantic parsing aims to map a natural language
sentence into a machine executable formal repre-
sentation, which has been considered as one of the
prime challenges nowadays in natural language pro-
cessing (NLP). These target formal representations
can generally be divided into three categories (Ka-
math and Das, 2018), i.e., logical forms, like first
order sentences or λ-calculus expressions (Zettle-
moyer and Collins, 2005), programming language
statements, like Python code or SQL programs, and
graph-based forms, like labeled graphs in Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013). In this paper, we focus on semantic parsing
that yields logical forms.

∗The corresponding author.

Target logical forms often follow a syntax for-
malism that limits permitted formulas, which can
be used to filter the output and improve the perfor-
mance of semantic parsing. For example, in the pre-
neural era, CCG based approaches (Kwiatkowski
et al., 2013) achieved significant performance gains
by introducing a linguistically motivated gram-
mar induction scheme. Some neural semantic
parsers (Yin and Neubig, 2018; Sun et al., 2020)
first transduce the natural language utterance into
an Abstract Syntax Tree (AST), then serve it as
an intermediate meaning representation to incor-
porate with grammar rules for the target logical
form. Semantic parsing can also be considered as a
seq2seq transduction problem, where the decoder
can leverage structural features of target represen-
tations. In particular, hierarchical tree decoders
are applied in (Dong and Lapata, 2016; Alvarez-
Melis and Jaakkola, 2017; Sun et al., 2019) to take
into account the tree structure of the logical expres-
sion. Decoders constrained by a grammar model
are applied in (Xiao et al., 2016; Yin and Neu-
big, 2017; Krishnamurthy et al., 2017; Dong and
Lapata, 2018). The uncertainty-driving adaptive
decoding is used to guide the decoder in (Zhang
et al., 2019). Relatively sizeable monolingual cor-
pus of the target programming language is used
in (Norouzi et al., 2021) to improve performance.

Note that, manually specified grammar rules and
sketches for target logical forms are required in
most of these approaches, which limits their adapt-
abilities and scalabilities to a new semantic parsing
task with updated target logical forms. In this pa-
per, we consider using a structure-aware language
model to capture formal patterns for target repre-
sentations and incorporating the language model
into seq2seq models for semantic parsing.

We first train the structure-aware language model
on target logical forms to capture structural infor-
mation. Then, we incorporate the language model
to a seq2seq model for semantic parsing.
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Integrating a language model into a seq2seq
model has been considered in automatic speech
recognition (ASR) and neural machine translation
(NMT). In particular, shallow fusion and deep
fusion (Gulcehre et al., 2015) are two such ap-
proaches in NMT. Cold fusion (Sriram et al., 2018)
is tested on ASR tasks. Bai et al. (2019) proposes
a knowledge distillation based training approach
to transferring knowledge from a language model
to a seq2seq model for ASR. Here, we follow the
knowledge distillation structure to integrate the lan-
guage model to the baseline seq2seq model for
semantic parsing.

We evaluate our approach on two semantic
parsing datasets, ATIS (Dahl et al., 1994) and
GEO (Zelle and Mooney, 1996) datasets, where
target logical forms are λ-calculus expressions
and two code generation tasks, Django(Oda et al.,
2015) and CoNaLa(Yin et al., 2018), where target
logical forms are Python code. We train the tar-
get language model based on target logical forms.
The experimental results show that our approach
achieves state-of-the-art performance among neural
network based approaches on ATIS, GEO, Django
and CoNaLa datasets.

In this paper, we show that the proposed lan-
guage model can be used to capture structural fea-
tures of target logical forms and the knowledge dis-
tillation structure can be used to transfer knowledge
to a seq2seq model for semantic parsing, where
manually specified grammar rules or sketches are
no longer required. Notice that, this approach can
be applied to various sophisticated seq2seq models,
which results a more flexible and scalable method
for neural semantic parsers to leverage structural
features of target representations. The main contri-
butions of the paper are summarized as follows:

• We propose a structure-aware self-attention
language model to capture structural informa-
tion of target logical forms.

• We propose a knowledge distillation structure
to transfer knowledge from target language
model to a seq2seq model, which suggests
a more flexible and scalable method for neu-
ral semantic parsers to leverage structural fea-
tures of target representations.

• We implement the approach on baseline
seq2seq models, which achieves new state-of-
the-art performance among neural semantic

parsers on ATIS, GEO, Django and CoNaLa
datasets.

2 Related Work

2.1 Neural Semantic Parsing

Neural semantic parsing has achieved promising
results in recent years. In particular, AST based
parsers (Yin and Neubig, 2018; Sun et al., 2020,
2019) first map a nature language sentence into
an abstract syntax tree (AST), then parse the AST
to the corresponding target logic form. On the
other hand, seq2seq based semantic parsers often
leverage structural features of natural language
sentences or target representations to improve
the performance. Specifically, a sequence-to-tree
(seq2tree) model (Dong and Lapata, 2016) updates
the decoder into a hierarchical LSTM tree, which
helps the model to utilize the hierarchical structure
of logical forms. A graph-to-sequence (graph2seq)
model (Xu et al., 2018) updates the encoder into a
graph encoder. Graph neural networks (GNNs) are
also used in semantic parsing (Shaw et al., 2019)
to incorporate information about relevant entities
and their relations during the parsing. A sequence-
to-action (seq2action) model (Chen et al., 2018)
considers semantic parsing as an end-to-end se-
mantic graph generation process. A coarse-to-fine
(coarse2fine) model (Dong and Lapata, 2018) de-
composes the decoding process into two stages.
The first stage predicates a rough sketch of the
meaning representation and the second stage fills
in missing details conditioning on the natural lan-
guage input and the sketch itself. The AdaNSP
model (Zhang et al., 2019) proposes an adaptive
decoding method to avoid intermediate represen-
tations in the parsing process, where the decoder
is guided by the model uncertainty. TAE (Norouzi
et al., 2021) exploit a relatively sizeable monolin-
gual corpus of the target programming language to
improve performance.

Notice that, manually specified grammar rules or
sketches are required in most of these neural seman-
tic parsing approaches to leverage structural fea-
tures of natural language sentences or target repre-
sentations. In this paper, we consider using the pro-
posed target language model to capture these for-
mal patterns and incorporating the language model
into seq2seq models for semantic parsing.
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2.2 Structural Language Models

In recent years, language models that capture
structural information in natural language have
been developed. (Shen et al., 2018) proposed a
PRPN(Parsing-Reading-Predict Networks) model,
which uses the syntactic structure information of
natural language to better perform language model-
ing. The model is divided into three parts: parsing
module, reading module and prediction module.
The parsing module uses the convolutional neural
network to predict the syntactic distance of two ad-
jacent words, and obtains the syntactic tree of the
sentence through the syntactic distance; the read-
ing module uses the syntactic tree obtained by the
parsing module to model the context; the predic-
tion module predicts the next word. The PRPN
model achieved good results at the time on both
unsupervised syntactic analysis tasks and language
model modeling.

(Shen et al., 2019) proposed the ON-LSTM (Or-
dered Neurons-LSTM) model, which gives LSTM
neuron level information to model the hierarchi-
cal structure information of sentences. The author
believes that the level of a word is related to its
span in a sentence. The higher the level, the larger
the span, so words with higher levels should be
retained longer and are not easily updated. So
the model proposes a new LSTM neuron: the or-
dered neuron, which enforces the order in which
the neurons are updated. All lower-order neurons
must be deleted before higher-order neurons can be
deleted or updated, thus controlling the update fre-
quency of neurons. The ON-LSTM model achieves
good performance on four different tasks, language
modeling, unsupervised parsing, target grammar
evaluation, and logical reasoning.

(Wang et al., 2019) proposed the Tree Trans-
former model, which improved the Transformer
to learn syntactic information in natural language.
The Tree Transformer adds an additional constraint
of "Constituent Attention" to the attention head
of the Transformer’s encoder to enhance attention
to natural language tree structures. The compo-
nent constraint module judges whether two adja-
cent words can form a phrase, and if so, assigns
more attention scores to these two words. Tree
Transformer is designed for natural language pars-
ing tasks and has achieved good results on unsu-
pervised parsing tasks. In addition to the syntac-
tic analysis task, the author also changed the Tree
Transofmer into a mask language model, and com-

pared it with BERT on the corpus WSJ. Since the
syntactic information can be learned in the Tree-
Transformer, the effect of the language model is
better than that of BERT.

(Li et al., 2021) proposed a StructuralLM model
to improve BERT to learn structural information
in documents. StructuralLM treats each cell in the
document as a semantic unit, and then makes the
model’s training goal to classify the cell location to
take full advantage of the cell and layout informa-
tion. The pre-trained StructuralLM model achieved
state-of-the-art results on three downstream tasks:
form understanding, document visual question an-
swering, and document image classification.

In this paper, we propose the structure-aware lan-
guage model that use structure-aware self-attention
to explicitly capture the structural information of
the target forms.

2.3 Integrating Language Model into
Seq2Seq Models

Integrating a language model into a seq2seq model
has been considered in multiple NLP tasks, like
automatic speech recognition (ASR) and neural
machine translation (NMT). In particular, shal-
low fusion and deep fusion (Gulcehre et al., 2015)
are proposed to integrate a language model into
a seq2seq model. Both methods first train a lan-
guage model and a translation model separately,
then use the language model in the inference step.
Specifically, shallow fusion performs a log-linear
interpolation between the decoder and the language
model to re-weight the translation model’s scores
during the beam search. Deep fusion concatenates
the language model and decoder’s hidden states
next to each other, then uses the the hidden states
to fine-tune the model. Cold fusion (Sriram et al.,
2018) is tested on AST tasks. Cold fusion uses
the logic outputs of the trained language model as
features to train the translation model. Simple fu-
sion (Stahlberg et al., 2018) uses the output of a
trained language model together with the output of
a translation model to train the translation model.
Component fusion (Shan et al., 2019) first trains
a source language model, later freezes the source
language model and trains the translation model,
then replaces the source language model with a
target language model in the inference process.

The LST (Learning Spelling from Teachers) ap-
proach (Bai et al., 2019) proposes a knowledge
distillation based training approach to transferring
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knowledge from a language model to a seq2seq
model for ASR. It first trains a recurrent neural
network based language model (RNNLM) on large
scale external text, then considers the RNNLM as
the teacher to generate soft labels of speech tran-
scriptions to train the decoder in the seq2seq model.

In this paper, we follow the knowledge distilla-
tion structure to transfer knowledge from target lan-
guage model to the decoder of a baseline seq2seq
model for semantic parsing. Different from LST, a
new Transformer-based structure-aware language
model is considered here, which can capture struc-
tural information of formal patterns for target rep-
resentations. We show that the approach achieves
new state-of-the-art performance on ATIS, GEO,
Django and CoNaLa datasets.

3 Preliminaries

3.1 A Seq2Seq Model for Semantic Parsing

The training procedure of a baseline seq2seq model
for semantic parsing is illustrated in Figure 1. The
parsing model maps natural language sentences
into target expression. The training procedure of
a basic seq2seq parsing model is illustrated in Fig-
ure 1.

First, a natural language sentence is pre-
processed into a sequence of word indexes x =
{x1, . . . , xm} and the labeled logical form is pre-
processed into a sequence of word indexes y∗ =
{y∗1, . . . , y∗n}. Then, the encoder network pro-
duces the sequence x = {x1, . . . , xm} into a high
level contextual representation h = {h1, . . . , hm}.
Later, the decoder network generates the target out-
put y = {y1, . . . , yn} from h.

𝒚𝟏
∗ , 𝒚𝟐

∗ , … , 𝒚𝒏
∗

Encoder Decoder

LPAR 
𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎

𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏

Figure 1: A basic seq2seq model for semantic parsing.

At time step t, current token yt is generated by
the following equation:

PPAR(yt) = p(yt | y<t,x), (1)

where y<t = y1 . . . yt−1, x represents the input
word indexes.

The training criterion is cross entropy:

LLM = −
N∑
i=1

|V |∑
k=1

1 {yt = k} logPLM (yt = k)

(2)
where PPAR is computed from Equation1, T is the
length of the target sequence, |V | is the size of the
vocabulary, 1 is the indicator function.

3.2 Self-Attention

The multi-head self-attention module is a key com-
ponent in Transformer (Vaswani et al., 2017). In
particular, transformer’s sub-layers employ h atten-
tion heads to perform self-attention. The results
from each attention heads are concatenated and
transformed to form the output of the sub-layer.

Given a sequence x = (x1, . . . , xn) as input,
each attention head uses scaled dot-product atten-
tion to compute a new sequence z = (z1, . . . , zn)
of the same length, i.e.,

zi =

n∑
j=1

αij

(
xjW

V
)
, (3)

where W V is a matrix of parameters and αij are
normalized by a softmax function, i.e.,

αij =
exp (eij)∑n
k=1 exp (eik)

, (4)

where eij is computed using a compatibility func-
tion that compares two input elements, i.e.,

eij =

(
xiW

Q
) (
xjW

K
)>

√
dz

, (5)

where WQ,WK are parameters to be learned.

4 Method

In this section, we specify details of our method,
i.e., using a knowledge distillation based structure
to transfer knowledge from a structure-aware tar-
get language model to a seq2seq model. We first
introduce the architecture of the new model. Then,
we describe the proposed target language model.
At last, we provide details of the method in the
training process.

4.1 Model Overview

An overview of the new model’s architecture is
shown in Figure 2. Note that, the new model is
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generated from the basic seq2seq model in Fig-
ure 1 by introducing a knowledge distillation struc-
ture where the pretrained structure-aware language
model serves as the teacher to guide the parsing
model.

In specific, the structure-aware language model
is pre-trained on target logical forms. The language
model contains a structure-aware self-attention
transformer encoder to explicitly capture the struc-
tural information. It is used to provide soft labels as
prior knowledge to "teach" the parsing model in the
training process, where the Kullback-Leibler diver-
gence between estimated probabilities is intended
to be minimized.

Notice that, there is no specific requirement for
the seq2seq model in the architecture. Then, be-
sides the basic seq2seq model, this knowledge dis-
tillation structure can be applied to other sophisti-
cated seq2seq models to leverage structural features
of target representations.

4.2 Target Language Model
Here we specify details of the proposed target lan-
guage model, i.e., structure-aware self-attention
language model. Architecture of the language
model is shown in Figure 3.

Since the target logical forms can all be seen as
bracket trees, they’re tree-structured. Self attention
in Transformer learns how much attention to put
on words in a sequence, but it ignores the syntactic
information of trees. The siblings of tree nodes
may have long distance in a sequence position,
but they’re related closely. Therefore, we propose
structure-aware self-attention to encode the depth
information of sibling nodes into self-attention to
capture this information.

Motivated by (Shaw et al., 2018), we extend
the self-attention architecture to explicitly encode
the relation between an element pair (xi, xj) by
modifying Equation (5) to

eij =
xiW

Q
(
xjW

K + aKij

)>
√
dz

. (6)

Different from (Shaw et al., 2018), we redefine the
relation representations aij .

We assume that the depth information is less
useful when it is too deep. We define the maximum
s as a constant k:

aKij = wK
clip(s(i,j),k)

clip(x, k) = min(x, k)
(7)

where s(i, j) is defined as follows:

s(i, j) =

{
dep(i), father(i) = father(j),
0, otherwise,

(8)
where dep(i) is the depth of node i in a tree,
father(i) means the father of node i.

Figure 4 shows an example we chose in GEO
dataset for demonstration.

We replace the original self-attention architec-
ture of transformer encoder with our structure-
aware self-attention. The encoder is bidirectional,
so we add the subsequent mask (originally applied
in the transformer decoder) to it to specify it as a
language model. The subsequent mask creates a
lower triangular matrix where the elements above
the diagonal will be modified to zero and the ele-
ments below the diagonal will be set to whatever
the input tensor is. Therefore, the prediction for
position i will depend only on the known outputs
at positions less than i.

The generation of the language model is deter-
mined by:

PLM(yt) = p(yt | y<t). (9)

In our experiments, the language model is
trained based on λ-calculus expressions and python
codes appeared in the training sets of the ATIS,
GEO, Django and CoNaLa datasets respectively.
The training objective of the language model is to
minimize the cross-entropy with target expressions:

LLM = −
N∑
i=1

|V |∑
k=1

1 {yt = k} logPLM (yt = k)

(10)
where N is the length of the target sequence, LLM

denote the training objective functions for the lan-
guage model, PLM is computed by Equation (9)
respectively.

Given a sequence of preprocessed logic form
indexes y∗ = {y∗0, . . . , y∗n−1} obtained from a la-
beled logical form (y∗0 is the start symbol, y∗n is the
end symbol), the language model produce likeli-
hoods of the target distribution as soft labels, i.e.,
it generates yS = {yS1 , . . . , ySn}.

4.3 Training

In the training process, we need to combine the loss
from the seq2seq model, LPAR, and the loss from
knowledge distillation, LKD.
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Figure 2: An overview of the proposed model’s architecture.

Embedding

Structure-aware
Self-attention

Feed-
forward

linear

Positional
Encoding

+

inputs

Outputs

Figure 3: An overview of structure-aware language
model’s architecture.

In specific, to make the seq2seq model learn
the knowledge from the language model, we put
target sequences into the language model to get
estimated probabilities, then we minimize the
Kullback-Leibler (KL) divergence between output
of the language model and output of the decoder.
The loss from knowledge distillation is:

LKD = −
T∑
i=t

|V |∑
k=1

KL
(
PPAR(yt = k), PLM(yt = k)

)
(11)

where PLM denotes the output of the language
model computed by by Equation (9) and the func-
tion KL computes the KL divergence.

At last, the loss for the entire model is the com-
bination:

L = ηLPAR + (1− η)LKD (12)

where η is a coefficient between 0 and 1.

5 Experiments

In order to evaluate the performance of our pro-
posed model, we conduct the experiments detailed
below.

5.1 Language Modeling

In this section, we evaluate our structure-aware lan-
guage model on language modeling. We evaluate
the performance on language modeling by measur-
ing the perplexity(PPL) of target sentences. We
use 31425 lambda statements and 51877 python
statements collected from the github website as the
language model dataset, and follows the ratio of
8:1:1 to devide the training set, validation set and
the test set. It should be noted that the lambda
statements and python statements in all test sets in
the semantic parsing datasets are removed from the
training dataset to prevent any impact.

We reproduce and test open-source structural lan-
guage models in recent years, and compare them
with proposed structure-aware language model, us-
ing perplexity as an evaluation indicator. In order
to explore the contribution of the structure-aware
self-attention module in the language model to the
model, we also conduct an ablation experiment that
removes the structure-aware self-attention.

Table 1 shows the result of our structure-aware
language model and other stuctural language mod-
els on language modeling. Compared with other
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lambda $0 e
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from $0 ci0 to $0 ci1

(a)

lambda $0 e and from $0 ci0 to $0 ci1

1 1 1 2 3 3 3 3 3 3

(b)

lambda $0 e and from $0 ci0 to $0 ci1

lambda 1 1 1 0 0 0 0 0 0 0

$0 1 1 1 0 0 0 0 0 0 0

e 1 1 1 0 0 0 0 0 0 0

and 0 0 0 2 0 0 0 0 0 0

from 0 0 0 0 3 3 3 0 0 0

$0 0 0 0 0 3 3 3 0 0 0

ci0 0 0 0 0 3 3 3 0 0 0

to 0 0 0 0 0 0 0 3 3 3

$0 0 0 0 0 0 0 0 3 3 3

ci1 0 0 0 0 0 0 0 3 3 3

(c)

Figure 4: (a): An example of the tree structure of a
logical form. (b): depth of (a). (c): the structure of (a),
which is the input of the structure-aware self-attention.

Model lambda python
ON-LSTM (Shen et al., 2019) 67.9 72.4
Tree Transformer (Wang et al., 2019) 58.3 68.5
Ours
SLM 46.3 52.8
-structure-aware 60.1 70.9

Table 1: Results of SLM on language modeling.

stuctural language models, our structure-aware lan-
guage model proposed explicitly obtain the tree
structure of target sentences, and explicitly encode
the tree structure in the self-attention structure,
so that the language model can make full use of
the structure information of target sentences, and
achieve lower perplexity performance.

5.2 Semantic Parsing
In this section, we evaluate our approach on ATIS,
GEO, Django and CoNaLa datasets and compare it
with other approaches. We also conduct an ablation
study to explore the effectiveness of the proposed
structure-aware language model.

We first specify details of our implementation
including the datasets, the hyperparameters, hard-

ware, and software for training and testing net-
works. Then we present the experimental results,
which show that our model achieves new state-of-
the-art performance among various neural semantic
parsers on all four datasets.

5.3 Datasets

We evaluate our approach on four semantic parsing
and code generation benchmarks:

ATIS contains natural language questions of a
flight dataset paired with a lambda calculus query.
We follow the standard train-dev-test split of the
datasets in (Zettlemoyer and Collins, 2007), which
is 4434/491/448.

GEO contains natural language questions about
US geography paired with Prolog database queries.
We use the corresponding λ-calculus expressions
with the same meaning as in (Kwiatkowski et al.,
2011). We follow the standard train-dev-test split
of the datasets in (Zettlemoyer and Collins, 2005),
which is 600/0/280.

Django contains lines of Python source code
extracted from the Django framework paried with
an NL description. We follow the standard train-
dev-test split of the datasets in (Oda et al., 2015) ,
which is 16000/1000/1805.

CoNaLa contains mannully annotated NL ques-
tions paired with python solution on STACKOVER-
FLOW. We follow the standard train-dev-test split
of the datasets in (Yin et al., 2018), which is
2379/0/500.

Model ATIS GEO
ZC07(Zettlemoyer and Collins, 2007) 84.6 86.1
FUBL(Kwiatkowski et al., 2011) 82.8 88.6
KCAZ13(Kwiatkowski et al., 2013) - 89.0
Neural network models
Seq2Seq(Dong and Lapata, 2016) 84.2 84.6
Seq2Tree(Dong and Lapata, 2016) 84.6 87.1
JL16(Jia and Liang, 2016) 83.3 89.3
TranX(Yin and Neubig, 2018) 86.2 88.2
Coarse2fine(Dong and Lapata, 2018) 87.7 88.2
Seq2Act(Chen et al., 2018) 87.7 88.2
Graph2Seq(Xu et al., 2018) 85.5 88.9
AdaNSP (Zhang et al., 2019) 88.6 88.9
GNN(Shaw et al., 2019) 87.1 89.3
TreeGen(Sun et al., 2020) 89.1 89.6
PASCAL(Xie et al., 2021) 90.2 90.7
Ours
Baseline 88.6 88.9
+ SLM KD fusion 90.4 91.1
- structure-aware 88.8 89.3

Table 2: Results on ATIS and GEO datasets.
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Model Django
TranX(Yin and Neubig, 2018) 73.7
Coarse2fine(Dong and Lapata, 2018) 74.1
TranX2 (Yin and Neubig, 2019) 77.3±0.4
TranX2+BERT 79.7±0.42
Reranker (Yin and Neubig, 2019) 80.2±0.4
TAE (Norouzi et al., 2021) 81.03±0.14
Ours
Baseline 81.03
+ SLM KD fusion 81.83
- structure-aware 81.16

Table 3: Results on Django dataset.

Model CoNaLa
TranX(Yin and Neubig, 2018) 24.3
Reranker (Yin and Neubig, 2019) 30.11±0.6
EK (Xu et al., 2020) 27.20
EK+100k (Xu et al., 2020) 28.14
EK+100K+API (Xu et al., 2020) 32.26
TAE (Norouzi et al., 2021) 32.57±0.3
Ours
Baseline 32.57
+ SLM KD fusion 33.10
- structure-aware 32.62

Table 4: Results on CoNaLa dataset.

5.4 Implementation Details

We use AdaNSP(Zhang et al., 2019), a competi-
tive seq2seq semantic parsing model built on Al-
lenNLP(Wallace et al., 2019), as our base model for
two semantic parsing tasks. The model uses adap-
tive decoding method that guide the decoder by
model uncertainty and automatically uses deeper
computations when necessary. The AdaNSP model
is not the state-of-the-art model now, but it is based
on seq2seq architecture and open-sourced so it is
easy to implement our method. We adapt the same
hypeparameters as in (Zhang et al., 2019). We use
TAE (Norouzi et al., 2021), a seq2seq code genera-
tion model as our base model for two code genera-
tion tasks. The model exploit a relatively sizeable
monolingual corpus of the target programming lan-
guage to a transformer-based seq2seq model and
reach a superior performance.

We trained our model with the hyperparameters
listed in Table 5, which was chosen based on the
performance of the model on the validation set
for ATIS, Django and on the randomly selected
training set for GEO, CoNaLa, where the validation
set is not provided. For structures of the language
model, we set the number of layers 3, positional
feed forward dimensions 512, and attention heads
8.We trained the parsing model with the original
settings of the baseline system. We trained the
language model for 100 epoches respectively, and

Hyperparameter Value
learning rate 0.0005
batch size 256
dropout 0.1
η 0.8
k 10

Table 5: Hyperparameters.

the entire model for 200 epoches on an Nvidia
GeForce RTX 3090 GPU, which takes around 5
hours.

5.5 Evaluation

We use logical form accuracy as the evaluation
metric for ATIS and GEO datasets, which is com-
puted with pared trees of the predictions and gold
logical forms. The order of the children can be
changed within conjunction nodes. We use STree
parser code from (Dong and Lapata, 2018) to parse
the target lambda expressions and predictions into
bracket trees and compare them. We use exact
match accuracy as the evaluation metric for Django
dataset and corpus-level BLEU for CoNaLa.

5.6 Results

We compare our method with state-of-the-art se-
mantic parsers on ATIS, GEO, Django and CoNaLa
datasets. Table 2- 4 show the results of our model
and existing semantic parsers on four datasets. Our
model achieves the state-of-the-art performance on
four datasets.

We also performed an ablation study by remov-
ing the proposed structure-aware self-attention. In
specific, we use an original transformer encoder as
the language model and integrate it into the parsing
model by knowledge distillation. The results show
that the model using the structure-aware language
model outperforms the one using only original lan-
guage model.

6 Conclusion

In this paper, we present a structure-aware self-
attention language model to capture structural in-
formation of target representations and propose a
knowledge distillation based approach to incorpo-
rating the target language model into a seq2seq
model. We show that using knowledge distil-
lation from a target language model provides a
flexible and scalable way for neural semantic
parsers to leverage structural features of target rep-
resentations. Our method achieves strong results
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and doesn’t need any manually designed rules or
sketches.

For future direction, we are interested in explor-
ing other datasets to verify the model’s ability for
structural data. We will also attempt to integrate
grammar rules to this model to have a better perfor-
mance on semantic parsing tasks.
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