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Abstract
Does BERT store surface knowledge in its bot-
tom layers, syntactic knowledge in its middle
layers, and semantic knowledge in its upper lay-
ers? In re-examining Jawahar et al. (2019) and
Tenney et al.’s (2019a) probes into the structure
of BERT, we have found that the pipeline-like
separation that they asserted lacks conclusive
empirical support. BERT’s structure is, how-
ever, linguistically founded, although perhaps
in a way that is more nuanced than can be ex-
plained by layers alone. We introduce a novel
probe, called GridLoc, through which we can
also take into account token positions, training
rounds, and random seeds. Using GridLoc, we
are able to detect other, stronger regularities
that suggest that pseudo-cognitive appeals to
layer depth may not be the preferable mode of
explanation for BERT’s inner workings.

1 Introduction

“Surface information at the bottom, syntactic in-
formation in the middle, semantic information at
the top” (Jawahar et al., 2019). This conclusion is
also drawn by Tenney et al. (2019a). While this
portrait of multiple layers of linguistic structure
has indeed been projected into pipline architectures
by some NLP systems before (e.g., Manning et al.,
2014), the projection of this understanding onto
the internal structure of BERT is now widely ac-
cepted both in the BERTology community (Tenney
et al., 2019a,b; Hewitt and Liang, 2019; Zhu et al.,
2022) and by researchers working on downstream
application tasks with BERT (Xiao et al., 2021).

At the same time, there is nevertheless scepti-
cism about the premises of probing itself. As He-
witt and Liang (2019) pondered: “when a probe
achieves high accuracy on a linguistic task using
a representation, can we conclude that the repre-
sentation encodes linguistic structure, or has the
probe just learned the task?” Furthermore, Pi-
mentel et al. (2020) “cast doubt on whether prob-
ing makes sense as a scientific endeavour,” because

from an information-theoretic perspective, BERT
cannot introduce new linguistic information by pro-
cessing the input sequence.

In our view, this debate does not need to hin-
der the endeavour of uncovering structure within
BERT. Regardless of stance, all parties agree with
the existence and importance of different levels of
information within BERT itself or its embeddings.
There is, however, room for improvement in the
investigative methods of both Jawahar et al. (2019)
and Tenney et al. (2019a) (J&T), which seem to
have been limited to observational confirmations
of what they sought to find.

Our own exploratory analysis has revealed that
BERT is indeed linguistically founded, although
not in a way that suggests a classical pipeline ar-
chitecture, other than what factors through our own
functional understanding of NLP’s terminology and
subtasks. In addition to examining BERT layers, as
J&T did, we have also examined BERT’s structure
through the lenses of the choice of random seed,
training iterations, and, most importantly, token
position. We also present several statistical tests of
J&T’s own conclusions.

We propose GridLoc,1 a self-attention-based
probing method that can probe across all of these
aforementioned dimensions. Using this novel prob-
ing approach and our statistical testing suite, a
much more comprehensive picture of the structure
of BERT arises. Specifically:
• BERT’s task-specific features appear in different

token positions in an idiosyncratic but consistent
pattern for each task;

• the attending task-specific features exhibit vari-
ance across different sentences, different training
durations, and different random seeds;

• probe results for tree depth, in particular, show
an anomalous distribution of linguistic evidence

1The implementation, data, plots and results of GridLoc are
available online: https://github.com/frankniujc/gridloc_probe
and https://doi.org/10.5683/SP3/PCZHN4.

https://github.com/frankniujc/gridloc_probe
https://doi.org/10.5683/SP3/PCZHN4
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when taking both layers and token position into
consideration.

2 Attributing the CNLP to BERT

That there is or was a classical or traditional NLP
pipeline is a rather naïve view to take of the his-
tory of natural language processing. While there
were discussions of independent stages of token-
level, syntactic and semantic processing already
in the earliest work on machine translation, the
pioneers who first engaged with these stages of
analysis were of the considered opinion that care-
ful restraint had to be exercised at every level of
analysis so that as much of the inherent ambigu-
ity of linguistic input could be carried forward as
possible, in the interests of both efficiency and ac-
curacy (Sparck Jones, 2000). It was not until the
late 1970s and early 1980s that an excessive re-
liance on classical logic by the NLP technologists
of the grammatico-logical movement, together with
contemporaneous psycholinguistics and cognitive
science research pointing to a modularity of linguis-
tic structure in human sentence processing (Garrett,
1975, 1980; Fodor, 1983), led to a pipeline-based
view that, almost immediately, was apologized for
as a convenient abstraction, “incremental” (Levelt,
1989), “highly flexible” and “even opportunistic”
(Marslen-Wilson and Tyler, 1987) (see Jackend-
off (2000) for a more detailed discussion). While
the smoother numerical allocations across tasks
in BERTology work, and the distributional graphs
drawn by Tenney et al. (2019a) in particular, may
at first seem to be commensurate with or even sug-
gest these more nuanced views of a language pro-
cessing pipeline, the haze of smoke surrounding
the visualization of probing evidence makes it ex-
tremely difficult to draw precise conclusions from
these figures, as we will argue below. Nevertheless,
probe methods in general (Adi et al., 2017; Hupkes
and Zuidema, 2018; Conneau et al., 2018; Jawahar
et al., 2019; Pimentel et al., 2020) are to be credited
as one of the few means that we have of approach-
ing the seemingly impossible task of interpreting
the neural feature representations within BERT.

Generally, a probe can be performance-based or
attention-based.

2.1 Performance-based Probing

A performance-based probe uses an auxiliary task
to test for evidence of a particular type of knowl-
edge, by training a supervised classifier with only

Figure 1: Layer performance probing result of Jawa-
har et al. (2019), as presented in their Table 2. For
clearer visualisation, we transformed this table into a
heat map. Each column corresponds to a task, with
the best-performing layer in that column containing the
performance as a percentage, and the remaining cells
displaying their deviation from the best performer in raw
percentage points. Surface tasks perform better near the
top; syntactic tasks and semantic tasks perform better
near the bottom, but their performance patterns are not
distinguishable by layer.

BERT’s embeddings as input. Good performance
of the classifier is interpreted as evidence of rele-
vant linguistic knowledge being present.

Jawahar et al.’s (2019) analysis is a typical appli-
cation of performance-based probing. They used
SentEval (Conneau et al., 2018; Conneau and Kiela,
2018) which contains 10 probing tasks at 3 linguis-
tic levels:
• surface tasks: sentence length (SL) and word

content (WC);
• syntactic tasks: bigram shift (BS), tree depth

(TD) and top constituent (TC);
• and semantic tasks: tense, subject number (SN),

object number (ON), semantic odd man out
(SOMO) and coordination inversion (CI).2

Figure 1 shows the performance of Jawahar
et al.’s (2019) probing tasks for each layer. Jawa-
har et al.’s (2019) visual examination of the results
prompted the conclusion that began our introduc-
tion. But the observation that semantic information
is at the top is puzzling. Except for the SOMO
task, all 4 semantic tasks reach peak performance
between layers 6 and 9, and all 3 syntactic tasks at-
tain their peak performance within the same range.
The similarities between syntactic and semantic

2One of our reviewers expressed concerns about why “se-
mantics” and “syntax” were even appropriate labels. Sub-
ject/object number and tense, for example, are arguably syn-
tactic/morphological. We agree.
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tasks are more apparent with our visualisation of
the relative performance differences in Figure 1:
the large, dark area in the lower right quadrant is
due to an indistinguishability of layers across syn-
tactic and semantic task types.

Reappraisal of Jawahar et al. (2019) Some sta-
tistical tests may be more illuminating, such as
Kendall’s (1938) τ analysis of rank correlation be-
tween Jawahar et al.’s (2019) probe performance
and a putatively discrete pipeline (surface: 1, syn-
tactic: 2, and semantic: 3). There are two ways to
convert Jawahar et al.’s (2019) results into ordinal
layer numbers: using a task’s top-performing layer
number, in which a single number may be selected
by multiple tasks (this seems to be what Jawahar
et al. (2019) were informally doing), or forcing
each task into a distinct layer so that the combined
accuracy (the product of all accuracies) of the en-
tire pipeline is maximized. To find this maximal
layer assignment, we used SciPy’s linear sum as-
signment to find the maximum sum of logarithms
of performance. Both possible layer assignments
are shown in Table 1.

The last two columns of Table 1 show the τ
scores. Both layer assignment methods exhibit
moderate correlations, but a post hoc exclusion of
the surface tasks reveals only a weak correlation
at the syntactic and semantic levels. These results
corroborate our observation that, of the three, only
the surface tasks are distinguishable.

2.2 Attention-based Probing

Attention has somewhat controversially been inter-
preted as an explanation of a model’s reasoning
(Clark et al., 2019). Typically, an attention mecha-
nism assigns a scalar weight to each input source.
Hence, the attention mechanism will enhance the
important features’ effect during training, and so
the magnitude of attention weights is often inter-
preted as an importance score. Clark et al. (2019)
and Vig (2019) directly studied the attention mecha-
nism of BERT. Since BERT’s attention mechanism
does not cross layer boundaries, however, a new
probe with an auxiliary attention mechanism is re-
quired.

Tenney et al. (2019a) used this attention-based
probe to determine which layer contains more
task information. Tenney et al. (2019a) exploit a
scalar “attention” weight sτ = softmax(aτ ) for
each layer. The probe classifier is trained us-
ing a weighted sum of embeddings (defined as

hi,τ = γτ
∑L

ℓ=0 s
(ℓ)
τ H

(ℓ)
i ) as input, where H

(ℓ)
i is

the ℓ-th layer of the i-th token’s BERT embedding.
The value of the attention weights is optimised
during the training process, and therefore, the mag-
nitude of the attention weight is understood as a
measure of the amount of task-specific knowledge
in the corresponding BERT layer.

These scalar weighted embeddings are then
leveraged into an improved performance probe that
uses cumulative scoring. Jawahar et al.’s (2019)
probe classifier has access only to a single layer.
Tenney et al. (2019a) argue that, since task-specific
knowledge can spread out across multiple layers,
probing a single layer cannot reveal the full picture.
Therefore, they propose to train L probes, each
having access to the scalar weighted embeddings
from layer 1 to layer ℓ. The ℓ-th probe therefore has
access to strictly one more layer’s worth of infor-
mation compared to the (ℓ− 1)-th probe. They can
then measure the amount of information each layer
introduces by calculating the difference between
two adjacent probes: ∆(ℓ)

τ = Score(ℓ)τ −Score(ℓ−1)
τ .

They deploy their two tests on the 8 span probing
tasks of Tenney et al. (2019b), and aggregate each
task’s per-layer scalar mixing weights results into
a centre of gravity score (E[ℓ] =

∑L
ℓ=0 ℓ · s

(ℓ)
τ ),

and the cumulative scoring results into an expected
layer score (E∆[ℓ] =

∑L
ℓ=1 ℓ ·∆

(ℓ)
τ /

∑L
ℓ=1∆

(ℓ)
τ ).

Reappraisal of Tenney et al. (2019a) Again,
by visually observing these scores, they conclude
that “the tasks [are] encoded in a natural progres-
sion: POS tags processed earliest, followed by con-
stituents, dependencies, semantic roles, and coref-
erence.” Again, we prefer quantitative tests: while
the Pearson’s correlation between the centre of
gravity and the pipeline ordering of the tasks is
weak (r = 0.319, p = 0.44), the correlation be-
tween expected layer and the pipeline ordering is
very strong (r = 0.933, p = 0.0005). On the other
hand, the correlation between the Kullback-Leibler
divergence of the difference scores from a uniform
distribution and the pipeline ordering is also very
strong (r = −0.869, p = 0.005).

2.3 Discussion
There are numerous scales along which tasks can
be ordered: deep vs. shallow, semantic vs. surface,
difficult vs. easy, and over- vs. underdispersed, to
name a few. The thesis of Tenney et al. (2019a) is
that the first two proceed in lockstep. The last two
are highly correlated (r = −0.879, p = 0.004).
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Task SL WC TD TC BS Tense SN ON SOMO CI τ τ syn sem
Top 3 4 6 7 9 9 6 7 12 9 0.596 0.269

Distinct 3 4 6 8 11 5 9 7 12 10 0.455 0.049

Table 1: Optimal task layer assignment and Kendall’s τ between the layer assignment and the pipeline (surface,
syntactic and semantic information). The “τ syn sem” column reports Kendall’s τ over only the syntactic task and
semantic tasks.

POS Const Deps Ent SRL Coref SPR Relns
0.659 0.413 0.493 0.377 0.333 0.428 0.370 0.261

Table 2: Kendall τ values of sequences of difference
scores, by task, with depth.

The essential problem with Tenney et al.’s (2019a)
claims is that their final three, most semantic tasks,
are not localizable at all. Because of this, “expected
layer,” which is really more of a layer torque, is
uninterpretable, and not convincingly relatable to
layer depth. Even in less dispersed tasks, weighing
difference scores by layer number is a statistical
fallacy, because layer numbers are ordinal data.
Instead, we could look at the positions of the n
layers with the highest difference scores, in which
n is arbitrary, or analyse the entire sequence of
difference scores as a sequence.

Because those scores are not provided in their pa-
per other than in relative terms through unlabelled
histograms, what the present authors can do is ar-
range the ranks of difference scores (1 is highest)
by layer (lowest is first) and compute a Kendall’s
coefficient with respect to the ordered sequence
1, . . . , 24 (BERT-large has 24 layers). “Deep” tasks
should receive low scores. These coefficients are
shown in Table 2. While the Pearson correlation
of the pipeline ordering with these scores is strong
(r = −0.793, p = 0.02), it is not as strong as with
the KL divergence of the underlying difference
score distributions from uniformity. The claim that
BERT mimicks the NLP pipeline is therefore, at
best, inconclusive. The empirical data are equally
consistent with the counterclaim that BERT is pos-
sessed of stripes of surface, syntactic and semantic
information that are distributed in parallel through-
out its layers, with the semantic information being
more evenly dispersed.

The difference score of every probing task in
Tenney et al. (2019a) peaks in the first four layers,
incidentally, and, in 6 of the 8 tasks, peaks in the
first layer.

Performance is Not a Practical Indicator of
Knowledge Performance-based probes are ill-
suited to investigating the structure of BERT, be-

Figure 2: Excerpts of Tenney et al.’s (2019a) layer-wise
metrics (Figure 2). Solid (blue) are mixing weights sτ ;
outlined (purple) are difference scores ∆τ .

cause performance is inherently unstable. Taking
the tense task from Jawahar et al.’s (2019) result
(Figure 1) as an example; the largest delta between
layer 6 (definitely a middle layer) and layer 11 (def-
initely a top layer) is only 0.3%.

Because Tenney et al.’s (2019a) difference
scores are learned, they are not the actual inter-
layer deltas of F1 performance. Here, however,
each probe has access to exactly one more layer
of BERT’s contextual representation, and therefore
higher layer probes should have access to no less
information than lower layer probes. Thus, if probe
performance is a good indicator of linguistic knowl-
edge, no higher layer probes should perform worse
than lower layer probes. And yet performance
drops are prevalent and substantial (Figure 2). Ten-
ney et al. (2019a) suggest that the added new layer
introduces distracting features causing the probe
classifier to overfit. This means that performance
results reflect a combination of knowledge and the
probe classifier’s ability to generalise — this may
be true, but these two variables are hard to separate.
Furthermore, neural architectures are stochastic,
and so the effect of randomness in performance
must also be considered. This is why statistical
analysis of observations is crucial to the integrity
of the conclusions.

The debate on how to interpret performance in
probing is still on-going. Hewitt and Liang (2019)
pondered: “when a probe achieves high accuracy
on a linguistic task using a representation, can we
conclude that the representation encodes linguistic
structure, . . . has the probe just learned the task?”
There are two alternative interpretations of perfor-
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Figure 3: GridLoc model architecture (§3). The BERT-encoded representation of an input sentence first goes
through a self-attention pooling process (Lee et al., 2017): an RNN model takes each layer’s BERT embeddings
H(ℓ) as input and specifically generates an attention weight Atoken,(ℓ) for that layer. Then the attended representation
Ĥ goes through another self-attention pooling process, and generates a layer attention weight Alayer. We finally train
an MLP classifier that takes the combined representation H̃ as input, and generates a prediction for the probing task.
By observing the two attention weights, Atoken and Alayer, we can understand which part of BERT’s representation
the model assigns importance to.

mance: ease of extraction (Hewitt and Liang, 2019),
and mutual information (Pimentel et al., 2020; Pi-
mentel and Cotterell, 2021).

Our reappraisal of Jawahar et al. (2019) and Ten-
ney et al.’s (2019a) results shows that performance
is neither intuitively interpretable nor an accurate
reflection of knowledge, if performance can be re-
garded as a reflection at all. It is also a measure
entangled with the quality of the probe classifier
and randomness.

Better Control over Attention-based Probing
Attention-based probing is less subject to the afore-
mentioned issues. Firstly, since attention is not the
optimisation target, it does not suffer the problem
of overfitting. Secondly, although not completely
exempt from controversy, attention has generally
proven to be a good indicator of feature-importance
(Serrano and Smith, 2019; Wiegreffe and Pinter,
2019). Therefore, we can adopt the view of probing
results as a reflection of the existence of linguis-
tic, task-specific features. More importantly, since
the attention mechanism is purposefully introduced
into the probing procedure, we can have a greater
degree of freedom and better control over what is
probed and where.

Tenney et al. (2019a) used a single shared set
of attention weights for every input sentence. This
practice cannot capture BERT’s variance across
sentences (as we will show in §5). But this is not

inherent to any limitation of probing techniques in
general — the self-attention pooling mechanism
(Lee et al., 2017) trains a separate attention network
that can assign different attention weights based on
the input. Lee et al.’s (2017) self-attention pool-
ing method was originally used by Tenney et al.
(2019b) to generate a single span representation
over an arbitrarily long span of tokens. The method
can also yield a different attention weight for every
input sentence. Furthermore, self-attention pooling
provides an attention weight distribution over token
positions. The similarities between token position
attention and layer attention in fact could allow one
to analyse the distribution of task knowledge across
token positions.

3 GridLoc

To leverage all of these degrees of freedom, we
present here a novel probing method called Grid-
Loc. Figure 3 presents an overview of the probing
process. Given an input sentence S = [t1, . . . , tT ],
BERT produces an L-layer embedding for each
token Ht = [H

(1)
t , . . . ,H

(L)
t ]. GridLoc can pro-

duce a more complete picture of where task specific
knowledge resides, by breaking down the probe’s
attention weight across both token positions and
layers, as well as across random seeds and training
iterations.
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Surface Syntactic

SL WC TD TC BS

Semantic

SN ON Tense CI SOMO

Figure 4: GridLoc average layer attention weight distribution for every SentEval task. For each task, the plot shows
the average layer attention weight of all of the test set sentences during the top-performing epoch (by validation set)
with random seed 0. We observed a moderate τ = 0.503 with the entire pipeline (surface + syntactic + semantic),
but a mere τ = 0.134 with only the syntactic and semantic tasks. GridLoc confirms our earlier observation: surface
tasks attend to lower layers, but syntactic and semantic tasks are inseparable.

(a) Layer attention weights of the same probe of the first three Bigram Shift test-split sentences. The layer attention weight
distributions differ widely.

Seed: 0, Epoch: 7. Seed: 1, Epoch: 8.

(b) Distribution of the layer with the highest attention score over the Bigram Shift test-set
sentences for two probing runs with different random seeds. Both probes are generated at their
top performing (by validation) epochs. Distributions can exhibit substantial variance (left:
σ = 2.16, right: σ = 0.78). For the run with seed 0 (left), there is also a spike in sentences at
the 12th layer that is not observed in the run with seed 1 (right).

Task σ
SL 1.468
WC 0.786
BS 1.95
TD 0.584
TC 1.025

Tense 2.359
SN 1.188
ON 0.903

SOMO 1.589
CI 0.953

(c) Standard deviation of the
distribution of the layer with
the highest attention score of
every SentEval probing task.

Figure 5: Variance of probing results among sentences.

epoch: 1 5 10 15 20 25 30

Figure 6: An example (SOMO with random seed 0) of the average attention weight distribution change over training
iterations.
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Token Position To understand the task-specific
feature distribution across token for each layer, we
exploit the aforementioned self-attention pooling
(Lee et al., 2017) method to learn a token attention:

Atoken,(ℓ) = softmax(wtoken · RNN(H(ℓ)))

specific to each layer of embeddings H(ℓ) =

[H
(ℓ)
t1

, . . . ,H
(ℓ)
tT

]. Then, we can obtain an attended
hidden representation:

Ĥ = Atoken ·H

Layer Then, we learn a sentence-specific layer
attention:

Alayer = softmax(wlayer · Ĥ(ℓ))

from the attended contextual embedding of the en-
tire sequence. Finally, we can train the probe classi-
fier on the fully attended representation of the input
sequence:

H̃ = Alayer · Ĥ

by attending to both the tokens and the layers.

Randomness and Training To understand the
variance of the probe result relative to the random
seed, we repeat each of our experiments with 20
seeds (0 ∼ 19). We also maintain a record of 30
epochs of training for each probe.

4 Experimental Setup

We used all 10 tasks in SentEval (Conneau and
Kiela, 2018) as described in §2.1. To be consistent
with J&T’s results, we conducted our experiment
using the uncased BERT-base model and Jawahar
et al.’s (2019) hyperparameters.3

5 Experimental Results

5.1 Layers Alone do Not Recapitulate the
Pipeline

With our new probe, we calculate the average layer
attention weight for each task and report in Fig-
ure 4 an example for every task. The average layer
attention weight is calculated by summing up ev-
ery test sentence’s layer attention weight, and then
normalising by the size of the test set. The average
task layer attention weight is a good global indica-
tor of the spread of task-specific features in BERT.
Our results agree with our observations based upon

3https://github.com/ganeshjawahar/interpret_bert

Figure 7: Token-position attention-weight plots for the
first 3 sentences of the SentEval test set on all SentEval
tasks (from top left to bottom right: SL, WC, Tense, SN,
ON, BS, TC, SOMO and CI). The attention weights are
displayed as a 2-dimensional heat map; each column
corresponds to a token and each row corresponds to a
BERT layer. Brighter colours represent larger attention
weights. For most sentences, the token-position atten-
tion at every layer attends to the same token, hence the
bright vertical line.

POS Count Top Layer
PUNCT 23402 7.18
NOUN 19077 7.33
VERB 18277 5.03
PRON 16120 6.68
ADP 11129 3.19

(a) Average best-attending
layer of the 5 most common
POSs. Maximum and mini-
mum are highlighted in bold.

POS 1 POS 2 |PB r|
PUNCT ADP 0.483
ADJ ADP 0.462
ADP DET 0.460
NOUN ADP 0.438
PRON ADP 0.399

(b) Best 5 absolute point-
biserial correlations between
the best attending layers of to-
kens with different POSs. p-
values are less than 10−323.

Table 3: The tree depth probe attends to tokens with
different POS at different layers.

Jawahar et al. (2019): although surface task fea-
tures are dense in lower layers, and both syntactic
and semantic task features are spread out between
mid to upper layers; the inseparable syntactic and
semantic tasks show that BERT layers alone do not
recapitulate the putative pipeline.

This observation is corroborated by a Kendall’s
τ test between every run (20 random seeds × 30
epochs) of each task’s top performing layer and
the 1–3 pipeline-based ranking described in §2.1.4

Since now we have 600 data points for each task,
our correlation test result is more robust. Again,
we observed a moderate τ = 0.503 with the en-
tire pipeline (surface + syntactic + semantic), but
a mere τ = 0.134 with only the syntactic and se-
mantic tasks.

5.2 Variance through Sentences, Randomness
and Training Time

Nevertheless, average attention weight is a global
measure that withholds important nuances regard-
ing the variance of the probe along several dimen-
sions. As shown in Figure 5a, layer attention as-

4The unique ranking test is discarded as it cannot gener-
alise to our situation with multiple runs.

https://github.com/ganeshjawahar/interpret_bert
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(SL) The probe classifier attends to the [CLS] token,
as it is often regarded as the “embedding of the sen-
tence,” and length is a global feature of the sentence.

(WC) The probe classifier attends to the target word.
In this particular example, every token-position weight
attends to the target token “clay.”

(Tense) The probe classifier attends to the verb or
its tense-morphology-bearing “wordpiece” (Wu et al.,
2016), such as ##ed or ##es.

(SN) The probe classifier attends to the subject noun
or its number-morphology-bearing “wordpiece.”

(ON) Similar to SN, the classifier attends to the ob-
ject noun of the sentence or its number-morphology-
bearing “wordpiece.”

(BS) The probe classifier attends to the words that are
being inverted. In this case, the two inverted words
are “corners” and “the.” If an original sentence is en-
countered, the classifier will place heavier weights on
places where inversions are noticeable, such as prepo-
sitions, determiners and punctuation.

(TC) Top constituents attend to the first one or two
words in the sentence, as tags with one presentential
modifier followed by NP VP are commonplace. E.g.,
in this case, the sequence is labelled as RB_NP_VP_.

(SOMO) The probe classifier attends to the verb or
noun (here, the verb “confused”) that is replaced. Upon
encountering an unaltered sentence, the classifier will
attend to common verbs and nouns that are likely to be
replaced.

(CI) The probe classifier attends to the coordinating
conjunction (CC). CC is crucial in determining whether
the sentence has inverted coordination since different
CCs serve different purposes when connecting two
parts of a sentence.

Figure 8: Example token-position attention plots and their pattern analyses. Similar to Figure 7, the attention weight
is displayed in a 2-dimensional heat map, with larger weights associated with brighter colours. The tokens of the
example sentence are displayed along the x axis. The number on each cell is the attention weight as a percentage.
Since attention weight is normalised by softmax at each layer, numbers in every row should sum up to 100.

Figure 9: Tree Depth token-position attention weights. The token-position attention tends to focus on tokens with
different parts-of-speech at different layers. For instance, prepositions such as to, of, on and at have higher attention
weights at lower layers, and punctuation has higher attention weights at higher layers.
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signs drastically different weights to different input
sentences. This observed variance is not idiosyn-
cratic. Figure 5b aggregates counts of the layer
with the highest attention score over the test set
sentences. The difference between seed 0 and seed
1 also emphasises that probe results are not immune
to random initialization effects. This high variance
is also not unique to Bigram Shift. Table 5c shows
the overall standard deviation of every SentEval
task. In all but two tasks, the standard is one full
layer or more. Figure 6 shows how average at-
tention weight can change during training. In this
particular run, the distribution does not stabilize
until about epoch 15. This again demonstrates the
importance of utilising the self-attention pooling
mechanism, which enables us to capture these vari-
ations.

5.3 Consistently Idiosyncratic Token Positions

Contrary to the variance we observed by layer, our
token-position attention results are more stable —
tree depth is the only exception, and we will dis-
cuss it shortly. As indicated in Figure 7, almost
every sentence’s token-position attention focuses
on the same token in every layer. The choice of that
token position is not arbitrary — there are linguis-
tic reasons for them. Figure 8 shows one example
for every task along with our analysis.

5.4 Tree Depth: an Insightful Anomaly

The token-position attention-weight result of the
tree-depth task is the only exception to the bright
vertical line pattern. Here, the probe attends to mul-
tiple tokens at different layers (Figure 9). The atten-
tion patterns are not arbitrary, however. As shown
in Table 3a, tokens with different parts-of-speech5

(POS) receive the most attention from the probe at
different layers. Among the tokens, nouns attend to
the highest layers at 7.33 (middle) and prepositions
attend to the lowest layers at 3.19 (low). To verify
the significance of the mapping between POS and
layer attention, we conducted point-biserial corre-
lation tests (Table 3b). We observed a moderate
correlation between several pairs of POS, confirm-
ing that the probe can discriminate between them
in this manner.

Although how any of this might relate to tree
depth is unclear, this finding is still important in
two ways. First, the Damoclean sword that the
probe classifier is merely able to generalise the

5Generated by the Stanza (Qi et al., 2020) package.

probing corpus (Hewitt and Liang, 2019; Pimentel
et al., 2020) has been removed from over the claim
that BERT is in possession of linguistic knowledge.
POS information is certainly not self-evident in a
corpus labelled with tree depth. Here we have a
probe on one auxiliary linguistic task attesting to
another linguistic phenomenon.

Second, the distribution of linguistic features de-
fies J&T’s proposed distribution of knowledge in
BERT. What we see here is not different levels of
linguistic knowledge from the pipeline occupying
different layers of BERT, but rather different infor-
mation from the same pipeline level (i.e., distinct
POS labels) occupying different layers of BERT.
This insight would not have been available without
a probe that takes both the token position dimen-
sion and the layer dimension into account.

6 Conclusion

Did BERT rediscover an NLP pipeline? Not in a
naïve, architectural sense. GridLoc reveals a struc-
ture in BERT that is more intricate than a flowchart
of a pipeline could accurately portray, and yet it
does seem to be linguistically founded. We find that
probing results regarding BERT layers are unsta-
ble, diverging across sentence input, random seeds
and the early iterations of training. The distribu-
tion of linguistically motivated task features along
token positions, on the other hand, is relatively
more stable. Moreover, GridLoc’s results on tree
depth provide preliminary evidence of POSs being
used to conduct novel but linguistically general-
izable inference concerning a derivative syntactic
phenomenon.
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