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Abstract

As AI is more and more pervasive in every-
day life, humans have an increasing demand to
understand its behavior and decisions. Most re-
search on explainable AI builds on the premise
that there is one ideal explanation to be found.
In fact, however, everyday explanations are co-
constructed in a dialogue between the person
explaining (the explainer) and the specific per-
son being explained to (the explainee). In this
paper, we introduce a first corpus of dialogical
explanations to enable NLP research on how
humans explain as well as on how AI can learn
to imitate this process. The corpus consists
of 65 transcribed English dialogues from the
Wired video series 5 Levels, explaining 13 top-
ics to five explainees of different proficiency.
All 1550 dialogue turns have been manually
labeled by five independent professionals for
the topic discussed as well as for the dialogue
act and the explanation move performed. We
analyze linguistic patterns of explainers and
explainees, and we explore differences across
proficiency levels. BERT-based baseline results
indicate that sequence information helps pre-
dicting topics, acts, and moves effectively.

1 Introduction

Explaining is one of the most pervasive commu-
nicative processes in everyday life, aiming for mu-
tual understanding of the two sides involved. Par-
ents explain to children, doctors to patients, teach-
ers to students, seniors to juniors—or all the other
way round. In explaining dialogues, one side takes
the role of the explainer, the other the role of the
explainee. Explainers seek to enable explainees to
comprehend a given topic to a certain extent or to
perform some action related to it (Rohlfing et al.,
2021). This usually implies a series of dialogue
turns where both sides request and provide differ-
ent information about the topic. In line with the
quote from the movie “Forrest Gump” in the title,

∗ Both authors contributed equally to this paper.

Explaining dialogue on the main topic “blockchain”

Explainer (expert)  (child) Explainee

Do you know what we're gonna talk about today? It's called blockchain.

What's blockchain?

That's a really good question. It's actually a way that we can trade. Do you 
know what trade is?

Mmm-hmm, it's when you take turns doing something. It's when you give 
up most of what you want, right?

When you give up most of what you want? Well, sometimes that definitely 
happens for sure. What if I told you that this is the kind of technology that 
I work on that means you could trade with any kid all over the world?

Really?

If I could trade with any kid, I would trade, well, I would trade something 
I don't like so much.

That's probably a good idea, maybe somebody else likes it more than you 
do. So normally, when people trade, they have to go to the store, or they 
have to know the person so they can get what they asked for. With 
blockchain, you can make that exact same trade, but you don't need the 
store, and you don't even necessarily need to know the other person.

Yeah.

Really?

Really.
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Figure 1: A short explaining dialogue from the video
series 5 Levels, included in the corpus presented in Sec-
tion 3. Here, an expert explains blockchain to a child.

how an explaining dialogue looks like is strongly
affected by the specific explainer and explainee as
well as by their interaction.

Consider the dialogue in Figure 1, where a tech-
nology expert explains the basic idea of blockchain
to a 5-year old in a controlled setting. Beyond the
explanations of the main topic (turns 05 and 09),
the dialogue contains an explanation request (02),
a test of prior knowledge (03), explanations from
the explainee (04), and more. We observe that the
explainer’s explanations depend on the reaction of
the explainee and that their level of depth is most
likely adjusted to the explainee’s proficiency.

The importance of studying how to explain has
become apparent with the rise of research on ex-
plainable artificial intelligence, XAI (Barredo Arri-
eta et al., 2020). As AI finds its way into various
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aspects of work and private life, humans interacting
with respective systems, or being affected by them,
have an increasing demand to understand their be-
havior and decisions. This demand has also been
manifested in a right to explanation within the EU’s
General Data Protection Regulation (Goodman and
Flaxman, 2017). Prior work on XAI largely starts
from the premise that an ideal (monological) expla-
nation exists for any behavior or decision, possibly
dependent on the explainee at hand (Miller, 2019).
According to Rohlfing et al. (2021), however, real
explainability must account for the co-constructive
nature of explaining emerging from interaction.

In natural language processing, early work mod-
eled discourse structure of monological explana-
tions (Bourse and Saint-Dizier, 2012), and a num-
ber of recent approaches generate respective expla-
nations for XAI (Situ et al., 2021) and recommen-
dation (Li et al., 2021). In contrast, the language of
dialogical explanations is still understudied (details
in Section 2). We argue that a better understanding
of how humans explain in dialogues is needed, so
that XAI can learn to interact with humans.

In this paper, we present a first corpus for com-
putational research on how to explain in dialogues
(Section 3). The corpus has been created as part of
a big interdisplinary research project dealing with
the construction of explainability.1 It consists of 65
transcribed dialogical explanations from the Amer-
ican video series 5 Levels freely published by the
Wired magazine.2 Five dialogues each refer to one
of 13 science-related topics (e.g., “blockchain” or
“machine learning”). They have the same explainer
(an expert on the topic), but differ in the explainee’s
proficiency (from child to colleague).

To enable XAI to mimic human explainers, it
has to learn what turn to make at any point in a dia-
logue. In discussion with humanities researchers,
we model a turn for this purpose by the relation of
its topic to the main topic (e.g., subtopic or related
topic), its dialogue act (e.g., check question or in-
forming statement), and its explanation move (e.g.,
testing prior knowledge or providing an explana-
tion). We segmented the dialogues into a total of
1550 turns, and we let five independent profession-
als annotate each turn for these three dimensions.

In Section 4, we analyze linguistic patterns of
explaining dialogues in the annotated corpus. We
find clear signals for the explainer’s alignment to

1Constructing Explainability, https://trr318.upb.de/en
25 Levels, https://www.wired.com/video/series/5-levels

the explainee’s proficiency, such as the avoidance
of deviating to related topics towards children. The
roles of explainer and explainee are reflected in the
varying use of dialogue acts and explanation moves,
possibly stressed by the given setting.

To obtain baselines for the prediction of the three
annotated dimensions, we evaluate three variants
of BERT (Devlin et al., 2019) in 13-topic cross-
validation on the corpus (Section 5). Our results
reveal that modeling sequential dialogue interac-
tion helps predicting a turn’s topic, act, and move
effectively. Improvements seem still possible, call-
ing for more sophisticated approaches as well as for
more explaining dialogue data in the future.3

In summary, the contributions of our paper are:

1. A manually annotated corpus for studying
how humans explain in dialogical settings

2. Empirical insights into how experts explain to
explainees of different proficiency levels

3. Baselines for predicting the topic, dialogue
act, and explanation move of dialogue turns

2 Related Work

Explainable AI (XAI) largely focuses on the in-
terpretability of learned models from the perspec-
tive of scientific completeness (Gilpin et al., 2018).
Even though recent works tackle cognitive aspects,
such as the trade-off between completeness and
compactness (Confalonieri et al., 2019), Miller
(2019) pointed out that this perspective is far away
from the understanding of everyday explanations in
the social sciences. Garfinkel (2009) argues that the
key is to sort out what the explainer should actually
explain, and Barredo Arrieta et al. (2020) stressed
the importance of who is the explainee for XAI.
Rohlfing et al. (2021) built on these works, but rea-
soned that explanations can only be successful in
general, if they are co-constructed in interaction
between explainer and explainee. The rationale is
that explainees vary in their motives and needs, and
they face different challenges (Finke et al., 2022).
The corpus we present serves as a basis for study-
ing the linguistic aspects of the explainer-explainee
interaction computationally.

Natural language language processing (NLP) has
notably dealt with the related genre of instructional
texts, modeling their structure (Fontan and Saint-
Dizier, 2008), extracting knowledge (Zhang et al.,

3The corpus and the experiment code are freely available
here: https://github.com/webis-de/COLING-22
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2012), comprehending some meaning (Yagcioglu
et al., 2018), or generating them (Fried et al., 2018).
However, instructional text has a clear procedural
style with distinctive surface features (Vander Lin-
den, 1992), unlike explanations in general. For tuto-
rial applications, Jordan et al. (2006) extracted con-
cepts from explanation sentences, whereas Jansen
et al. (2016) studied the knowledge needed for sci-
entific explanations, and Son et al. (2018) identi-
fied causal explanations in social media. Towards a
computational understanding of explaining, Bourse
and Saint-Dizier (2012) modeled explanation struc-
ture with discourse relations (Mann and Thompson,
1988). In XAI and recommendation contexts, the
generation of respective explanations is explored
increasingly (Situ et al., 2021; Li et al., 2021).

However, our main goal is not to understand
how to generate an explanation, but to model how
people interact in an explanation process. For an-
notation, we thus rely on the widely accepted con-
cept of dialogue acts (Stolcke et al., 2000; Bunt
et al., 2010). Similar has been done for delibera-
tive dialogues by Al Khatib et al. (2018). In ad-
dition, we model the moves that explainers and
explainees make in their interaction, adapting the
idea of rhetorical moves, in terms of communica-
tive functions of text segments used to support
the communicative objective of a full text (Swales,
1990). Wachsmuth and Stein (2017) proposed task-
specific moves for monological arguments, but we
are not aware of any work on moves for explana-
tions, nor for dialogical settings.

Hence, we start by compiling data in this paper.
Existing related corpora contain tutorial feedback
for explanation questions (Dzikovska et al., 2012),
answers to non-factoid questions (Dulceanu et al.,
2018), and pairs of questions and responses from
community question answering platforms (Nakov
et al., 2017). Finally, the corpus of Fan et al. (2019)
includes 270k threads from the Reddit forum Ex-
plain like I’m Five where participants explain a
concept asked for in simple ways. While all these
allow for in-depth analyses of linguistic aspects
of explanations, none of them include explaining
dialogues with multiple turns on each side. This is
the gap we fill with the corpus that we introduce.

3 Data

This section introduces the corpus that we created
to enable computational research on dialogical ex-
planation processes of humans. We discuss our

design choices with respect to the source and anno-
tation, and we present detailed corpus statistics.

3.1 Explaining Dialogues on Five Levels
As source data, we decided to rely on explaining
dialogues from a controlled setting in which two
people explicitly meet to talk about a topic to be
explained. While we thereby may miss some inter-
action behavior found in real-word explanation pro-
cesses, we expect that such a setting best exhibits
explaning dialogue features in their pure form.

In particular, we acquired the source dialogues
in our corpus from 5 Levels, an American online
video series published by the Wired magazine. In
each video of the series, one explainer explains a
science-related or technology-related topic to five
different explainees. The explainer is always an
expert on the topic, whereas the explainees increase
in terms of (assumed) proficiency on the topic:

1. a child,
2. a teenager,
3. an undergrad college sudent,
4. a grad student, and
5. a colleague in terms of another expert.

Every video starts with a few introductory words
by the expert, before one dialogue follows the
other.4 Transcriptions are already provided in the
videos’ captions. So far, the first season of the se-
ries is available with a total of 17 videos. Table 1
lists all explained topics (main topics henceforth)
in these videos, along with explainer information.

At the time of starting the annotation process
discussed below, only 14 of the 17 videos had been
accessible, and one of these had partly corrupted
subtitles. We thus restricted the annotated corpus
to the remaining 13 videos, summing up to 65 di-
alogues that correspond to a video length of 5.35
hours. Later, we added all dialogues from the other
four videos in unannotated form to the corpus.

Before annotation, we manually segmented each
dialogue into its single turns, such that consecu-
tive turns in a dialogue alternate between explainer
and explainee. Overall, the 65 dialogues consist
of 1550 turns (23.8 turns per dialogue on average),
790 from explainers and 760 from explainees. The
turns span 51,344 words (33.1 words per turn). On

4It is noteworthy that the videos seem to have been cut a
little, likely for the sake of a concise presentation. We assume
that this mainly removed breaks between dialogue turns only.
While it limits studying non-verbal interaction in explaining,
the effect for textual analyses of the dialogues should be low.
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# Topic Explainer Expertise

1 Harmony Jacob Collier Musician
2 Blockchain Bettina Warburg Political scientist
3 Virtual reality John Carmack Oculus CTO
4 Connectome Bobby Kasthuri Neuroscientist
5 Black holes Varoujan Gorjian NASA astronomer
6 Lasers Donna Strickland Professor
7 Sleep Aric A. Prather Sleep scientist
8 Dimensions Sean Carroll Theoret. physicist
9 Gravity Janna Levin Astrophysicist
10 Computer hacking Samy Kamkar Security researcher
11 Nanotechnology George Tulevski Nanotec. researcher
12 Origami Robert J. Lang Physicist
13 Machine learning Hilary Mason Hidden Door CEO

14 CRISPR Neville Sanjana Biologist
15 Memory Daphna Shohamy Neuroscientist
16 Zero-knowl. proof Amit Sahai Computer scientist
17 Black holes Janna Levin Astrophysicist

Table 1: All 17 main topics explained in the 5 Levels
dialogues, along with the explainers and their expertise.
The 65 dialogues of the 13 topics listed in black are an-
notated in our corpus; the rest is provided unannotated.

average, an explainer’s turn is double as long as an
explainee’s turn (43.7 vs. 22.1 words). While the
general data size is not huge, we provide evidence
in Sections 4 and 5 that it suffices to find com-
mon patterns of explanation processes. Limitations
emerging from the size are discussed in Section 6.5

3.2 Annotations of Explanatory Interactions
The corpus is meant to provide a starting point for
XAI systems that mimic the explainer’s role within
dialogical explanation processes. Our annotation
scheme supports this purpose and is the result of ex-
tensive discussions in our interdisciplinary project
with a big team of computer scientists, linguists,
psychologists, and cognitive scientists. Where pos-
sible, we followed the literature, but the lack of
research on human interaction in explaining (see
Section 2) made us extend the state of the art in
different respects.

In particular, we focus on turn-level category
labels that capture the basic behavior of explain-
ers and explainees in explaining dialogues. Our
scheme models the three dimensions of dialogue
turns that we agreed on to be needed for a compu-
tational understanding of the behavior:

• the relation of a turn’s topic to the main topic,
• the dialogue act performed in the turn, and
• the explanation move made through the turn.
5We also extracted the time code (start and end millisec-

onds) of each segment from the videos, for which one caption
is shown. This may serve multimodal studies in the future.

We discuss the labels considered for each of the
three annotation dimensions in the following. Since
all labels apply to both explainer and explainee in
principle, we refer to a speaker and a listener below.

Topic Even though the dialogues we target have
one defined main topic to be explained, what is
explained in specific turns may vary due to the dy-
namics of explaining interaction (Garfinkel, 2009).
Since we seek to learn how to explain in general
rather than any specificities of the concrete 13 main
topics in the corpus, we abstract from the latter,
modeling only the relation of the topic discussed
in a turn to the dialogue’s main topic. In particular,
a turn’s topic may be annotated as follows:

t1 Main topic. The main topic to be explained;

t2 Subtopic. A specific aspect of the main topic;

t3 Related topic. Another topic that is related to
the main topic;

t4 No/Other topic. No topic, or another topic
that is unrelated to the main topic.

Dialogue Act To model the communicative func-
tions of turns in dialogues, we follow the literature
(Bunt et al., 2010), starting from the latest version
of the ISO standard taxonomy of dialogue acts.6 In
explaining, specific dialogue acts are in the focus,
though. In collaboration with the interdisciplinary
team, we selected a subset of 10 acts that capture
communication on a level of detail that is specific
enough to distinguish key differences, but abstract
enough to allow finding recurring patterns:

d1 Check question. Asking a check question;

d2 What/How question. Asking a what question
or a how question of any kind;

d3 Other question. Asking any other question;

d4 Confirming answer. Answering a question
with confirmation;

d5 Disconfirming answer. Answering a question
with disconfirmation;

d6 Other answer. Giving any other answer;

d7 Agreeing statement. Conveying agreement on
the last utterance of the listener;

d8 Disagreeing statement. Conveying disagree-
ment accordingly;

d9 Informing statement. Providing information
with respect to the topic stated in the turn;

d10 Other. Performing any other dialogue act.
6DIT++ Taxonomy of Dialogue Acts, https://dit.uvt.nl
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Explanation Move Finally, we aim to under-
stand the explanation-specific moves that explain-
ers and explainees make to work together towards a
successful explanation process. Due to the lack of
models of explaining dialogues (see Section 2, we
started from recent theory of explaining (Rohlfing
et al., 2021). Based on a first inspection of a cor-
pus sample, we established a set of 10 explanation
moves that a speaker may make in the process, at a
granularity similar to the dialogue acts:7

e1 Test understanding. Checking whether the
listener understood what was being explained;

e2 Test prior knowledge. Checking the listener’s
prior knowledge of the turn’s topic;

e3 Provide explanation. Explaining any concept
or a topic to the listener;

e4 Request explanation. Requesting any explana-
tion from the listener;

e5 Signal understanding. Informing the listener
that their last utterance was understood;

e6 Signal non-understanding. Informing the lis-
tener that the utterance was not understood;

e7 Providing feedback. Responding qualitatively
to an utterance by correcting errors or similar;

e8 Providing assessment. Assessing the listener
by rephrasing their utterance or giving a hint;

e9 Providing extra info. Giving additional infor-
mation to foster a complete understanding;

e10 Other. Making any other explanation move.

We note the hierarchical nature of the scheme
with respect to dialogue acts and explanations; for
example, d1–d3 could be merged as well as e1–e2.
While some acts and moves are much more likely
to be made by an explainer or an explainee, we did
not restrict this to avoid biasing the annotators.8

3.3 Crowd-based Annotation Process
The restriction of the annotations to a manageable
number of turn-level labels was also made to make
the annotation process simple enough to carry it out
with independent people. In particular, we hired
five freelancers, working as content editors and

7We decided to leave a distinction of different explaining
types (such as causal or analogy-based explanations) to future
work, as it does not match the level of detail in our scheme.

8For dialogue acts d3, d6, and d10 as well as explanation
move e10, the annotators had to name the label in free text.
We provide these as part of the corpus, we give individual
examples of other moves and acts in Section 4.

annotators on the professional crowdworking plat-
form Upwork. All were native speakers of English
with a 90%+ job success rate on the platform. We
clarified the task individually with each of them.

We provided guidelines based on the definitions
above, along with general explanations and some
examples. Using Label Studio,9 we developed a
task-specific user interface where each dialogue
was shown as a sequence of turns and one label of
each dimension could be assigned to a turn (if mul-
tiple labels seemed appropriate, the best fitting one).
Each annotator labeled all 1550 turns. We paid $
1115 for an overall load of 85 hours, that is, $ 13.12
per hour on average (with minor differences for an-
notators due to bonuses and varying durations).

Agreement In terms of the conservative measure
Fleiss’ κ, the inter-annotator agreement among all
five was 0.35 for the topic, 0.49 for dialogue acts,
and 0.43 for explanation moves. While these values
indicate moderate agreement only, they are in line
with related subjective labeling tasks of short texts
such as news sentences (Al Khatib et al., 2016)
and social media arguments (Habernal et al., 2018).
Moreover, we exploited the multiple labels we have
per turn to consolidate reliable annotations, as de-
scribed in the following.

Output Annotations For consolidation, we rely
on MACE (Hovy et al., 2013), a widely used tech-
nique for grading the reliability of crowdworkers
based on their agreement with others. The MACE
competence scores of the annotators suggest that all
did a reasonable job in general, lying in the ranges
0.30–0.76 (topic), 0.58–0.82 (dialogue acts), and
0.45–0.85 (explanation moves) respectively. We
applied MACE’ functionality to derive one aggre-
gate output label for each dimension from the five
annotations weighted by competence scores.

3.4 The Wired Explaining Dialogue Corpus

Table 2 presents detailed general statistics of the
three annotation dimensions. More insights into
the distribution of annotations across proficiency
levels follow in Section 4.

With respect to topic (t1–t4), about half of all
turns explicitly discuss the main topic (27.7%), a
subtopic (5.7%), or a related topic (16.8%). Ex-
plainees much more often mention none of these
(62.8% vs. 37.3%), underlining the leading role of
the explainer in dialogue setting.

9Label Studio, https://labelstud.io
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Explainer Explainee Total

Label # % # % # %

t1 Main topic 301 38.1 129 17.0 430 27.7
t2 Subtopic 52 6.6 36 4.7 88 5.7
t3 Related topic 142 18.0 118 15.5 260 16.8
t4 Other/No topic 295 37.3 477 62.8 772 49.8

d1 Check question 183 23.2 62 8.2 245 15.8
d2 What/How question 77 9.7 38 5.0 115 7.4
d3 Other question 3 0.4 10 1.3 13 0.8
d4 Confirming answer 14 1.8 40 5.3 54 3.5
d5 Disconfirm. answer 3 0.4 21 2.8 24 1.5
d6 Other answer 2 0.3 23 3.0 25 1.6
d7 Agreeing statement 75 9.5 190 25.0 265 17.1
d8 Disagree. statement 2 0.3 10 1.3 12 0.8
d9 Informing statement 391 49.5 305 40.1 696 44.9
d10Other 40 5.1 61 8.0 101 6.5

e1 Test understanding 56 7.1 0 0.0 56 3.6
e2 Test prior knowledge111 14.1 1 0.1 112 7.2
e3 Provide explanation 409 51.8 270 35.5 679 43.8
e4 Request explanation 47 5.9 95 12.5 142 9.2
e5 Signal understanding 37 4.7 104 13.7 141 9.1
e6 Signal non-underst. 1 0.1 16 2.1 17 1.1
e7 Provide feedback 61 7.7 224 29.5 285 18.4
e8 Provide assessment 10 1.3 1 0.1 11 0.7
e9 Provide extra info 26 3.3 22 2.9 48 3.1
e10Other 32 4.1 27 3.6 59 3.8

Σ 790 100.0 760 100.0 1550 100.0

Table 2: Corpus distribution of annotated topics (t1–t4),
dialogue acts (d1–d10), and explanation moves (e1–e10)
separately for explainer and explainee turns and in total.
Per type, the highest value in a column is marked bold.

For dialogue acts (d1–d10), we see that, quite
intuitively, informing statements (44.9%) are dom-
inant in explaining dialogues on both sides (ex-
plainer 49.5%, explainee 40.1%). However, also
agreeing statements (17.1%) as well as check ques-
tions (15.8%) play an important role. The low fre-
quency of other questions (0.8%) and other (6.5%)
suggests that the selected set of dialogue acts cover
well what happens in the given kind of dialogues,
even though our annotators identifid sum acts, such
as disagreeing statements (0.8%), rarely only.10

Similar holds for the explanation moves (e1–e10):
only 3.8% of all 1550 turns belong to other.11 As
expected, the core of explaining is to provide ex-
planations (43.8%), also explainees do so in 270
turns (35.5%). Besides, they often provide feed-
back (29.5%). Explainers rather test prior knowl-
edge (14.1%) and test understanding often (7.1%),
but also provide feedback sometimes (7.7%).

10Notable examples of other dialogue acts the annotators
observed include greetings (e.g., “Hi, are you Bella?”), casual
chat (“What do you do?”), and gratitude (“Thank you.”).

11Here, other cases include inquiry (“Hi, are you Bella”)
and introduction (“Bella, I’m George, nice to meet you.”).
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Figure 2: Distribution of topic, discourse act, and expla-
nation act annotations in the corpus, depending on the
proficiency of the explainee (from Child to Colleague).

4 Analysis

One main goal of the presented corpus is to learn
how humans explain in dialogical settings. This
section analyzes commonalities and differences re-
garding meta-information available in the corpus.

4.1 Explaining across Proficiency Levels

First, we explore to what extent explaining differs
depending on the proficiency of the explainee. Fig-
ure 2 shows the distributions of the three annotated
dimensions separately for the five given explainee
levels. For dialogue acts and explanation moves,
we distinguish only the most frequent labels and
merge all others into a class rest.

With respect to topic, we see that particularly
the discussion of related topics grows notably with
the explainee’s proficiency, from 8.4% of all anno-
tations for children to 30.9% for colleagues. Con-
versely, the main topic is mentioned less in dia-
logues with more proficient explainees; the same
holds for no/other topic. Subtopics are considered
mainly with grads (11.5%) and undergrads (9.0%),
possibly related to the way they learn.
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Topic Sequences Explainer Explainee Total

(Main, Rel, Main) 24.6% 7.7% 15.4%
(Main, Rel, Main, Rel, Main) – – 7.7%
(Main) 12.3% 18.5% 6.2%
(Rel, Main, Rel, Main, Rel, Main) – – 4.6%
(Main, Rel) 3.1% 10.8% 4.6%
(Rel, Main, Rel, Main) 3.1% – 3.1%
(Main, Sub, Main) – – 3.1%
(Main, Sub, Main, Rel, Main) 4.6% 3.1% 3.1%

Table 3: Relative frequencies of all recurring sequences
of main, sub, and related topic in the corpus’ dialogues
and in the explainers and explainees’ parts alone.

For dialogue acts, the key difference lies between
the proportion of informing statements and the num-
ber of questions asked (d1 and d2). Whereas the
former monotonously goes up from 34.0% (child)
to 52.9% (colleague), particularly the use of check
questions is correlated inversely with proficiency,
used mainly to test prior knowledge and to check
understanding. A similar behavior can be observed
for explanation moves. There, providing feedback
shrinks from 25.6% to 9.5%, while providing expla-
nations mostly grows, with peak at grads (52.9%).
In contrast, how often people request explanations
remains stable across proficiency levels.

4.2 Interactions of Topics, Moves, and Acts

Interactions of the annotated dimensions happen
between the turns and within a turn. We analyze
one example of each here, and, due the limited data
size, we look at topics separately from dialogue act
and explanation moves.

Inspired by the flow model of Wachsmuth and
Stein (2017), Table 3 shows all eight sequences of
topics that occur more than once among the 65 dia-
logues. Each sequence shows the ordering of top-
ics being discussed, irrespective of how often each
topic is mentioned in a row. Most dialogues start
and end with the main topic, often in alternation
with related topics, such as (Main, Rel, Main) in
15.4% of all cases (sometimes also with subtopics).
The ordering of what explainers talk about is sim-
ilar, whereas explainees often focus on the main
topic only (18.5%).

Table 4 lists the top-10 pairs of acts and moves.
Informing statements that provide explanations are
most common across both explainers (45.9%) and
explainees (31.3%). Agreeing statements (d7) and
check questions (d1) cooccur with multiple moves,
and especially providing feedback happens via dif-
ferent dialogue acts. As expected in the given set-

Labels Act/Move Pair Explainer Explainee Total

d9/e3 Informing/Explanation 45.9% 31.3% 38.8%
d7/e7 Agreeing/Feedback 3.9% 14.2% 9.0%
d7/e5 Agreeing/Understanding 3.5% 9.1% 6.3%
d1/e2 Check/Prior 10.5% – 5.4%
d1/e4 Check/Request 2.7% 6.8% 4.7%
d2/e4 What/Request 3.0% 4.5% 3.7%
d10/e10 Other/Other 2.8% 2.6% 2.7%
d1/e1 Check/Understanding 5.1% – 2.6%
d4/e7 Confirming/Feedback 1.4% 3.7% 2.5%
d9/e7 Informing/Feedback 0.5% 4.2% 2.3%

Table 4: Relative frequencies of the ten most frequent
pairs of dialogue act and explanation move in the corpus
and the differences for explainers and explainees.

Explainer Explainee

Word Frequency Ratio Word Frequency Ratio

here 0.16% 4.20 yes 0.21% 5.12
around 0.12% 4.03 mean 0.14% 4.20
space 0.24% 3.32 stuff 0.11% 3.11
light 0.18% 2.96 oh 0.16% 2.75
earth 0.10% 2.65 yeah 0.65% 2.70
us 0.15% 2.39 many 0.12% 2.39
want 0.14% 2.28 interesting 0.12% 2.11
going 0.22% 2.19 well 0.21% 1.94
point 0.11% 2.11 like 1.10% 1.85
thing 0.18% 1.93 no 0.18% 1.83

Table 5: The top-10 words used specifically by explain-
ers and explainees, respectively, along with the relative
frequency (minimum 0.1%) and specificity ratio (e.g.,
explainees say “yes” 5.12 times as often as explainers).

ting, explainees never check for prior knowledge
or understanding (d1/e2, d1/e1). Instead, they agree
by providing feedback or signaling understanding
(d7/e7, d7/e5) much more often than explainers.

4.3 Language of Explainers and Explainees

Finally, we investigate basic differences in the lan-
guage of the two sides: We determine the words
that are often used by explainers (at least 0.1% of
all words) and rarely by explainees, or vice versa.

Table 5 presents the 10 most specific words on
each side. Aside from some topic-specific words
(e.g., “light”), the explainer’s list includes typical
words used in meta-language, as in this explanation
to a teenager: “I want to know if you agree, sleep
is the coolest thing you’ve ever heard of.” On the
explainee’s side, we find multiple reactive words,
such as “oh” and “interesting”, but also indicators
of vagueness, as in this colleague’s response to an
explanation of hacking: “So all kind of older logic
and stuff like that. So, I mean, it’s sort of based on,
like, you’re presented the little MUX chip.”
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5 Experiments

The second goal of the corpus is to serve the cre-
ation of XAI systems that mimic human explainers.
As an initial endeavor, this section reports on base-
line experiments on the computational prediction
of topics, dialogue acts, and explanation moves.

5.1 Experimental Setup

We evaluate three models based on BERT (Devlin
et al., 2019), along with a simple majority baseline,
for predicting each dialogue turn dimension in 13-
fold cross-topic validation: For each main topic, we
trained one model on the other 12 topics and tested
it against the labels of the respective dimension. We
average the resulting F1-scores over all 13 folds.12

Figure 3 illustrates the three BERT variants.

BERT-basic The first model simply adds a clas-
sification head to BERT. It takes as input the dia-
logue’s main topic and the turn’s text, xi (separated
by [SEP]), as well as the label yi to predict (topic
ti, dialogue act di, or explanation move ei). We
trained the model for five epochs, optimizing its F1-
score on the turns of two main topics. We balanced
the training set using oversampling to prevent the
model from only predicting the majority label.

BERT-sequence Turns made in explaining dia-
logues depend on previous turns, for example, a
conclusion on the main topic may be preceded by a
related topic (see Table 3). In the second model, we
exploit such dependencies with turn-level sequence
labeling: Given the sequence (x1, . . . , xn) of all
turns in a dialogue, the input to predicting a label
yi of xi is the turn’s history (x1, . . . , xi−1) along
with all previously predicted labels (y1, . . . , yi−1)
of the same dimension. For each turn, we encode
the history in a CLS embedding with BERT. Then,
we pass all labels and CLS embeddings through a
CRF layer to model the label’s dependencies.

BERT-multitask Finally, the interaction of topic
ti, act di, and move ei in a turn may be relevant. For
example, an informing statement likely provides
an explanation (see Table 4). Our third model thus
learns to classify all three dimensions jointly in a
multitask fashion, based on multitask-NLP.13 We
trained one multitask model each with one of the
three dimensions as main task and the others as

12All models start from the bert-based-uncased, and
are trained with a learning rate of 2e−5 and a batch size of 4.

13Multitask NLP, https://multi-task-nlp.readthedocs.io
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Figure 3: Sketch of the three evaluated models, here for
predicting a turn’s explanation move, ei: (a) BERT-basic
labels a turn in isolation. (b) BERT-sequence takes the la-
bels of previous turns into account. (c) BERT-multitask
classifies all three turn dimensions simultaneously.

Main Sub- Related No/Oth. Macro
Approach T. (t1) T. (t2) T. (t3) T. (t4) F1-Score

BERT-basic 0.58 0.11 0.44 0.89 0.51
BERT-sequence 0.61 0.13 0.44 0.89 0.52
BERT-multitask 0.43 0.04 0.36 0.81 0.41

Majority baseline 0.00 0.00 0.00 0.66 0.17

Table 6: Topic prediction results: The F1-scores of the
evaluated BERT models for each considered relation
to the main topic, t1–t4, as well as the macro-averaged
F1-score. The best value in each column is marked bold.

auxiliary tasks, oversampling with respect to the
main task. To this end, we employ a shared BERT
encoder and three classification heads, one for each
task. The final loss is the weighted average of the
three classification losses, with weight 0.5 for the
main task and 0.25 for both others. We trained the
models for 10 epochs allowing them to converge.

5.2 Results

Tables 6–8 show the individual and the macro F1-
scores for all three dimensions.

BERT-sequence performs best across all three
labeling tasks, highlighting the impact of modeling
the sequential interaction in dialogues. It achieves
a macro F1-score of 0.52 for topics, 0.47 for dia-
logue acts, and 0.43 for explanation moves. How-
ever, likely due to data sparsity, some labels remain
hard to predict, such as Subtopic (t2), disagreement
statements (d8), and provide assessment (e8).

BERT-basic beats BERT-sequence on a few la-
bels, such as signal non-understanding (e8), but
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Check What/H. Other Confirm. Disconf. Other Agree. Disagr. Inform. Other Macro
Approach Q. (d1) Q. (d2) Q. (d3) A. (d4) A. (d5) A. (d6) St. (d7) St. (d8) St. (d9) (d10) F1-Score

BERT-basic 0.76 0.73 0.00 0.33 0.67 0.00 0.51 0.00 0.87 0.57 0.44
BERT-sequence 0.76 0.72 0.00 0.35 0.67 0.00 **0.69 0.00 0.87 0.61 0.47
BERT-multitask 0.54 0.49 0.00 0.29 0.59 0.00 0.53 0.09 0.84 0.44 0.38

Majority baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.06

Table 7: Dialogue act prediction results: The F1-scores of the evaluated BERT models for each considered dialogue
act, d1–d10, as well as the macro-averaged F1-score. The best value in each column is marked bold.

Test Test Provide Request Signal Signal Provide Provide Provide Other Macro
Approach U. (e1) P.K. (e2) Ex. (e3) Ex. (e4) U. (e5) N.U. (e6) Fe. (e7) As. (e8) E.I. (e9) (e10) F1-Score

BERT-basic 0.27 0.64 0.84 0.60 0.29 0.34 0.51 0.00 0.11 0.50 0.41
BERT-sequence 0.27 0.64 0.84 0.64 0.33 0.21 **0.60 0.15 0.08 0.56 0.43
BERT-multitask 0.21 0.54 0.80 0.40 0.16 0.32 0.53 0.00 0.08 0.35 0.34

Majority baseline 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

Table 8: Explanation move prediction results: The F1-scores of the evaluated BERT models for each considered
explanation move, e1–e10, as well as the macro-averaged F1-score. The best value in each column is marked bold.

cannot compete overall. BERT-multitask performs
worst among the three models. We attribute this to
the data imbalance: While oversampling helps with
respect to the main task, it does not benefit the label
distribution of the auxiliary tasks. Also, optimiz-
ing the loss weights of the three tasks may further
aid multitask learning, but such an engineering of
prediction models is not the focus of this work.

6 Conclusion

How humans explain in dialogical settings is still
understudied. This paper has presented a first cor-
pus for computational research on controlled ex-
plaining dialogues, manually annotated for topics,
dialogue acts, and explanation moves. Our analysis
has revealed intuitive differences in the language of
explainers and explainees and their dependence on
the explainee’s proficiency. Moreover, baseline ex-
periments suggest that a prediction of the annotated
dimensions is feasible and benefits from modeling
interactions. With these results, we lay the ground
towards more human-centered XAI. We expect that
respective systems need to learn to how to explain
depending on the explainee’s reactions, and how to
proactively lead an explaining dialogue to achieve
understanding on the explainee’s side.

A limitation of the corpus lies in the restricted
corpus size caused by the availability of source data,
preventing deeper statistical analyses and likely ren-
dering a direct training of dialogue systems on the
corpus hard. Also, it remains to be explored what
findings generalize beyond the controlled setting of
the given dialogues. Future work should thus target

both the scale and the heterogeneity of explaining
data, in order to provide the pervasive communica-
tive process of explaining the attention it deserves.
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