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Abstract

Since open social platforms allow for a large
and continuous flow of unverified informa-
tion, rumors can emerge unexpectedly and
spread quickly. However, existing rumor de-
tection (RD) models often assume the same
training and testing distributions and can not
cope with the continuously changing social
network environment. This paper proposed
a Continual Prompt-Tuning RD (CPT-RD)
framework, which avoids catastrophic forget-
ting (CF) of upstream tasks during sequential
task learning and enables bidirectional knowl-
edge transfer between domain tasks. Specifi-
cally, we propose the following strategies: (a)
Our design explicitly decouples shared and
domain-specific knowledge, thus reducing the
interference among different domains during
optimization; (b) Several technologies aim
to transfer knowledge of upstream tasks to
deal with emergencies; (c) A task-conditioned
prompt-wise hypernetwork (TPHNet) is used
to consolidate past domains. In addition, CPT-
RD avoids CF without the necessity of a re-
hearsal buffer. Finally, CPT-RD is evaluated
on English and Chinese RD datasets and is ef-
fective and efficient compared to prior state-of-
the-art methods. 1

1 Introduction

Online platforms such as social media are facing
new and ever-evolving cyber threats at the infor-
mation level — rumor. A rumor is an unconfirmed
claim related to an object, event, or issue of pub-
lic concern that is spread when its integrity is un-
known (Guo et al., 2020). It is very necessary
to study automated RD, because rumors are ex-
tremely harmful to society and manual detection
is time-consuming and labor-intensive (Oshikawa
et al., 2018).

However, automated RD has significant chal-
lenges and still faces the following difficulties:
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Figure 1: Illustration of the RD model training proce-
dure in the traditional static (a) and continual dynamic
event transfer (b) setup.

First, rumors are highly event domain-specific
(Wang et al., 2018), each event domain may have
a different input text distribution and fraudulent in-
tent. Second, detecting rumors at their early stage
of spreading faces the problem of insufficient la-
beled samples (Zhou et al., 2020). Third, rumor
detectors operating on online social platforms of-
ten encounter continuous event domain changes.
This poses a significant challenge to existing RD
models.

Previous work (Wang et al., 2018; Bian et al.,
2020; Zhang et al., 2021; Lin et al., 2021; Ben-
David et al., 2021) usually assume the same distri-
bution of training and testing data, and have dif-
ficulty coping with changing social network en-
vironments. In Fig.1 (a), there are no updates to
the model regardless of how many unseen events
will appear in the future, which requires the un-
reasonable assumption that the model’s general-
ization capability is enough. In addition, as the
social network environment changes, the original
training set data will become outdated (Lee et al.,
2021), so that the model’s ability on more recent
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events will diminish. For example, the COVID-19
pandemic caused massive trouble for existing RD
models (Lu et al., 2021; Patwa et al., 2021b).

In social media, the ideal RD model must con-
tinuously detect event stream and react rapidly to
emergencies. To study this ability, we propose a
continual dynamic event transfer (CDET) setup (il-
lustrated in Fig.1 (b)), which makes the RD model
dynamically updates the parameters θ over a series
of sequential events and assume that each event
goes through three stages from burst to normaliza-
tion: zero-shot stage with no samples, few-shot
stage with a small number of samples, and full-
shot stage with large-scale labeled samples. This
is because rumors must be detected early to avoid
the social harm caused by their spread, but there
are only a few or no labeled samples in the early
stages of an event.

Existing RD models still face many challenges
in the CDET setup: (1) Catastrophic forgetting:
When a neural model is trained in a sequence of
tasks, the downstream tasks may catastrophically
interfere with the upstream tasks. (2) Knowledge
transfer and accumulation: Transfer the knowl-
edge learned from upstream tasks for rapid gen-
eralization, accumulating knowledge from down-
stream tasks to better cope with upstream tasks; (3)
Parameter explosion: Previous research (Wang
et al., 2021a; Ke et al., 2021a) often require dy-
namically expanding neural modules for each task,
which is undoubtedly aggravating for pre-trained
language models (PLM) with billions of parame-
ters, with limited memory; (4) Data privacy: Af-
ter learning a task, training data is usually dis-
carded due to user privacy concerns (Chen and
Liu, 2018). This requires models to share learned
parameters, rather than saving data to retrain the
model.

To address the above challenges, a novel frame-
work called Continual Prompt-tuning RD (CPT-
RD) has been proposed. Technically, CPT-RD
can be seen as a continuously migrated version
of P-tuning v2 (Liu et al., 2021b). From Fig.2,
we can clearly decouple domain-specific knowl-
edge (tuning parameter) and shared knowledge
(frozen parameter). This provides the basis for
achieving memory of task-specific parameters and
bidirectional domain knowledge transfer. Bidi-
rectional knowledge transfer includes: (1) For-
ward Knowledge Transfer: CPT-RD has vari-
ous prompt initialization strategies to adapt fast
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[SEP]
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Figure 2: Illustration of deep prompt tuning for RD.

to rumors of emergencies. (2) Backward Knowl-
edge Transfer: A task-conditioned prompt-wise
hypernetwork (TPHNet) learns latent distribution
of soft-prompts, encouraging CPT-RD to accumu-
late knowledge in sequential events while avoiding
data replay.

We collected RD datasets with 14 different do-
mains for both, English and Chinese. Through
empirical analysis, we find that CPT-RD essen-
tially avoids catastrophic forgetting. On the En-
glish dataset, the knowledge transfer indicators
FWT and BWT (Lopez-Paz and Ranzato, 2017)
achieve positive indicators of 23.9% and 0.9%, re-
spectively. Finally, the effectiveness of our im-
provement is demonstrated through ablation exper-
iments.

Our main contributions are: (1) We propose a
CDET setup in RD for evaluating rapid general-
ization and continual detection problems simul-
taneously. (2) To completely avoid the CF en-
countered in continual detection, we optimize and
store domain-specific soft-prompt for each event
domain and use it selectively. (3) We propose var-
ious forward knowledge transfer strategies to deal
with early emergency rumors and accumulate de-
tection experience through TPHNet for backward
knowledge transfer. (4) Our experiments on the
collected Chinese and English social media RD
datasets demonstrate the superior performance and
efficiency of our proposed method.

2 Related work

2.1 Rumors detection

Social media has gained much attention as a
source of research rumors, but existing RD meth-
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ods still perform poorly in the face of unknown
events and struggle to consistently respond to the
dynamic and changing social network environ-
ment (Zubiaga et al., 2018; Guo et al., 2020).
Wang et al. (2018) proposed an event adversar-
ial neural network (EANN) which extracts event-
invariant features by removing event-specific fea-
tures. Lu et al. (2021) consider unseen event RD
as a few-shot learning problem, and Wang et al.
(2021b) apply meta-learning to obtain the optimal
generalization initial parameters. Ben-David et al.
(2021) used prompt-tuning to consider RD as do-
main adaptation and committed to improving out-
of-distribution issues. The above methods can al-
leviate the problem of domain drift, but they are
all learned with offline static settings. Lee et al.
(2021) considered the continual detection capabil-
ity on online social media and applied rehearsal-
based replay techniques to resist CF. However, this
approach does not consider generalizing to the
unseen domain quickly and faces problems such
as inference efficiency and data privacy. Differ-
ent from the above methods, our proposed model
considers both fast generalization and knowledge
transfer for continual detection and is not based on
any data replay.

2.2 Prompt-based tuning

Recent research has found that converting down-
stream tasks to language modeling tasks via tex-
tual prompts is more effective to use PLM than typ-
ical fine-tuning (Liu et al., 2021a). Early prompt-
ing method, GPT-3 (Brown et al., 2020) and
PET/iPET (Schick and Schütze, 2020) for exam-
ple, uses hand-crafted prompt templates. However,
the performance of these methods relies heavily
on the selection of predefined prompt templates.
Hand-crafting prompts are very time-consuming,
and the performance may be sub-optimal. Shin
et al. (2020) propose AutoPrompt to search for bet-
ter prompts based on gradient descent approach.
Instead of searching for discrete template words,
Li and Liang (2021) propose prefix-tuning, where
tokens with trainable continuous embeddings are
placed at the beginning of the text to perform gen-
erate tasks. P-tuning v2 (Liu et al., 2021b) also
uses soft-prompt to achieve promising natural lan-
guage understanding and knowledge probing tasks.
Different from the above methods, they studied
single-step adaptation, and we are interested in
prompt transfer in CL environment.

2.3 Continual learning with fast
generalization

Mitigating CF is usually a priority in CL or life-
long learning research proposals (Hadsell et al.,
2020). Recently, the demands on CL have in-
creased further, not only to combat CF but also
to generalize quickly in unseen tasks. Integra-
tion with meta-learning is a promising approach,
concerned with balancing stability (preservation
of past knowledge) and plasticity (rapid absorp-
tion of current knowledge). MER (Riemer et al.,
2018) achieves gradient alignment by constraining
the direction of the gradient angle between differ-
ent task samples. Subsequently, OML (Javed and
White, 2019) and La-MAML (Gupta et al., 2020)
optimize and supplemente the training speed and
effect of MER, respectively. Meta-MbPA (Wang
et al., 2020) combine the above meta-learning,
rehearsal-based replay of CL and BERT. Wang
et al. (2021a) uses global and local memory net-
works to capture different classes of cross-task pro-
totype representations, adds a new frozen classifi-
cation module for each task, and requires BERT
to update slowly. Ke et al. (2021b) and Jin et al.
(2021) freezes part of the backbone model against
CF. They introduce an additional adapter layer
(Houlsby et al., 2019) to learn task-specific knowl-
edge, avoiding inefficient data replay and reducing
parameter tuning and growth rates. Different from
the above methods, CPT-RD is based on PT. Al-
though it is similar to adapter in terms of parame-
ter tuning, PT is more effective in parameters, and
CPT-RD has a more intuitive means of knowledge
transfer and avoids data replay.

3 Methodology

In this section, we first present the task defini-
tion and execution process of CPT-RD in CDET,
then elaborate prompt encoding method and bidi-
rectional knowledge transfer strategy.

3.1 Task definition and description

Suppose RD model M1:k−1 has performed learn-
ing on a sequence of tasks from 1 to k − 1, de-
noted as T1:k−1 = {T1, . . . , Tk−1}. Each task
is a domain-specific rumor binary classification
problem (non-rumor or rumor), and the inputs are
claim and comments texts. The goal of the RD
model is to use the knowledge gained from up-
stream {T1:k−1} tasks to help learn a better de-
tector M1:k for the k-th task Tk while avoiding
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Figure 3: Illustration of the execution of CPT-RD in a single task in CDET.

forgetting knowledge learned from past tasks. We
use the terms domain and task interchangeably be-
cause each task is from a different domain.

Often, each task consists of three stages: zero-
shot stage, few-shot stage, and full-shot (large-
scale labeled training) stage, which corresponds
to the development process of rumors from ger-
mination to normalization as described in Sec.1.
As shown in Fig.3, in the zero-shot and few-shot
stages, CPT-RD applies various forward knowl-
edge transfer strategies proposed in Sec.3.3 to
query the soft-prompt as the prompt initialization
of the current task. Note that the soft-prompt of the
current task is randomly initialized if the source
prompt library (SPL) is empty. In the full-shot
phase of the current task, CPT-RD starts training
with a randomly initialized soft-prompt instead of
using the soft-prompt in SPL because, in exper-
iments, we found that the former works better.
CPT-RD obtains knowledge accumulation in full-
shot annotated samples through TPHNet. The op-
timized soft-prompt specific to the current task is
stored in the SPL at the end of full-shot training.

3.2 Prompt encoding

Prompt tuning (PT) formalizes RD as a masked
language modeling problem using a pre-trained
language model (PLM). In Fig.2, given the k-th
task input, the pretrained embedding layer e of
PLM converts the claim and comments text into
token embeddings Xk = e(claim) ∈ Rm×d and

Ck = e(comments) ∈ Rn×d, m,n is the token
length, and d is the hidden dimension of PLM.
We prepend l randomly initialized soft-prompt to-
kens Pk = {P 1

k , P
2
k , . . . P

l
k} ∈ Rl×d before them,

where P i
k ∈ Rd is an embedding vector. Then, we

add a [MASK] token, which is used to predict the
label words y ∈ Y . The input embedding of PLM
is:

x = Pk, [MASK],Xk, [SEP],Ck, (1)

and only Pk is learnable. Hence the tuned parame-
ters in PT are extremely fewer than full-parameter
fine-tuning, which is friendly for model deploy-
ment.

One key ingredient of PT is the verbalizer: a
mapping from the class label to a word token in
the PLM vocabulary. PLM gives the probability
of each word v in the vocabulary being filled in
[MASK] token p([MASK] = v|x). To map the proba-
bilities of words into the probabilities of labels, we
define the verbalizer as ver, which form the label
word set V , to the label space Y , i.e., ver : V 7→ Y .
We use Vy to denote the subset of V that is mapped
into a specific label y, ∪y∈YVy = V . Then the
probability of label y, i.e., p(y|x), is calculated as:

p(y|x)=fver (p([MASK]=v|x)|v ∈ Vy) , (2)

where fver is a function transforming the probabil-
ity of label words into the probability of the label.
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The training objective is:

LPk
= −

∑
xi,yi∈DTk

log(p(yi|xi)), (3)

where DTk is defined as the training data for task
Tk.

PT only inserts soft-prompt into the input em-
bedding sequence of PLM. We follow the deep
prompt tuning of P-tuning v2, adding the prompts
of different layers as prefix tokens to the input se-
quence independently of other layers to increase
tunable task-specific parameters and improve sta-
bility. In experiment Sec.4.3, CPT-RD evaluates
the above two soft-prompt placement methods re-
spectively.

3.3 Forward knowledge transfer

Due to the lack of samples or even no training sam-
ples (zero-shot and few-shot) in the early stage of
rumor events, it is necessary to forward transfer
the knowledge from upstream tasks for fast de-
tection. An intuitive way of knowledge transfer
is to reuse knowledge gained from previous tasks,
which often improves and accelerates learning for
future tasks.

Therefore, SPL is responsible for storing up-
stream soft-prompts {Pj}j<k and task embed-
dings {zj}j<k, where Pj is obtained after train-
ing on DTk in the full-shot stage, zj =

1
|DTk |

∑|DTk |
i=1 fe(X

i
k,C

i
k), fe is an encoder model,

i.e. BERT. Based on SPL, three types of prompt
initialization are proposed.

CLInit: Use the previous task’s soft-prompt
Pk−1 to initialize the current task’s soft prompt
Pk. SimInit: Select Pk from {Pj}j<k with the
highest similarity to the current task representation
zk ∈ Rd for initialization. Note that zk is calcu-
lated based on the training data of task Tk, which
does not need to be labeled. Straightforwardly, we
compute euclidean distances E and cosine similar-
ities C for task embedding pairs in the two groups
and use the averaged results as the final similarity
metrics:

E(zk, zj) =
1

1 + ‖zk − zj‖
,

C(zk, zj) =
zk · zj

‖zk‖‖zj‖
.

(4)

When CPT-RD faces the upstream task domain
samples again, it directly reuses the soft-prompt

of the corresponding task, thus completely avoid-
ing the occurrence of CF, but CLInit and SimInit
are single-source transfer strategies.

Single-source reuse initialization strategy can
completely avoid CF, but only a single task is con-
sidered in the forward knowledge transfer. Intu-
itively, knowledge available for transfer should be
present in all upstream tasks. MeanInit: Calcu-
late the average of {Pu

j }j<k to obtain Pk. In deep
prompt tuning, each layer of soft-prompt is cor-
respondingly averaged. MeanInit considers multi-
source transfer, but none of the above strategies
can accumulate to transfer backward knowledge.
We empirically compare these three strategies in
Sec.4.3.

3.4 TPHNet for backward knowledge
transfer

Although storing the training-optimized Pk after
labeled train on task Tk can avoid forgetting, it
ignores the backward knowledge transfer of the
tasks. Hypernetwork is usually used to consol-
idate the knowledge of sequence tasks and has
a certain ability of backward knowledge transfer
(von Oswald et al., 2019; KJ and N Balasubrama-
nian, 2020; Jin et al., 2021). It is a network that
explores the meta-parameter space of another net-
work. Similar to Hypernetwork, instead of model-
ing the final classification result, task-conditioned
prompt-wise hypernetwork (TPHNet) learns a la-
tent distribution space of soft-prompt with task-
specific priors, aiming to accumulate knowledge
in sequential and use it for all future tasks.

Specifically, when the CPT-RD completed the
learning of task Tk−1, and before the full-shot
phase of Tk starts, the current task embedding zk
and the soft-prompt set {Pj}j<k already exist in
SPL as described in Sec.3.3. Here, the task repre-
sentation zk for task Tk is optimized jointly while
learning the task. Taking the PT case as an ex-
ample, adding soft-prompt to the embedding layer,
deep prompt tuning only needs to modify the gen-
eration dimension of soft-prompt. TPHNet g gen-
erates a soft-prompt Pk through an auto-encoder,
using zk as input:

g(zk) = W2(tanh(W1zk + b1)) + b2, (5)

where W1 ∈ Rd′×d, b1 ∈ Rd′ ,W2 ∈ R(l×d)×d′

and b2 ∈ Rl×d′ are trainable parameters, d′ = 64
is the middle dimension.

Then, in each step of learning T i
k , we randomly

sample a prior task soft-prompt Pj(j < k) to regu-
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larize the TPHNet learning. It penalizes the ℓ2 dis-
tance between the soft-prompt generated at the cur-
rent step Pi

k = g(zik) and the pre-computed one,
i.e., ||Pi

k−Pj ||22. Therefore, we avoid the TPHNet
changes its output for a prior task too much during
the sequential task learning, so that the knowledge
accumulation is better guaranteed for the learned
model. The following overall loss function:

LTk = ˆLPk
+

β

k − 1

k−1∑
i=1

||Pi
k −Pj ||22, (6)

where ˆLPk
is the cross entropy like Eq.3. Accord-

ing to this equation, optimizing the overall loss
will update the patameters of the TPHNet g, task
embedding zk and prompt-based PLM. β = 0.01
is a hyperparameter that controls the strength of
the regularizer. After training, if Pk obtains bet-
ter (or the same) performance than Pj on Tj , we
update Pj to Pk.

4 Experiments

To evaluate the proposed CPT-RD, we closely fol-
low the settings proposed in prior works (Lopez-
Paz and Ranzato, 2017; Jin et al., 2021), and con-
duct comprehensive experiments. In particular, we
mainly consider whether CPT-RD effectively ad-
dresses the four challenges mentioned in Sec.1.
We carefully compare CPT-RD with state-of-the-
art methods of different categories under proper
experiment settings. Moreover, we conduct ex-
tensive ablation studies to provide a deeper under-
standing of our method.

4.1 Datasets and evaluation metrics
We collected 14 domain events for each dataset,
Chinese and English. Each piece of data con-
tains a claim, comments, and label (non-rumor
or rumor). We split the data for each event into
train/validation/test datasets with a split ratio of
30%/35%/35%. The details about the statistics are
shown in Table 6, and the PHEME and Weibo (Lu
et al., 2021) datasets are well divided by event
domain. We also added the COVID-19 dataset
(Patwa et al., 2021a) for the English dataset, which
comes from the competition2. In addition, for
datasets without split of events, including Twit-
ter15 and Twitter16 (Ma et al., 2018), we use
Tweeter-LDA (Diao et al., 2012), an LDA vari-
ant widely used for short and noisy tweets, to de-
termine topic clusters as well as important words

2https://competitions.codalab.org/competitions/26655.

with their weights. We removed the label of unver-
ified rumors in Twitter15 and Twitter16, retained
the rumors and non-rumor, and divided them into
five-event domains. The similarity between the
datasets we calculated using TF-IDF is shown
in Fig.5. To prepare the model inputs for both
datasets, first, we replace the URLs with the spe-
cial token [unused10]". Then, we also replace
the usernames with the special token [unused11]".
These two datasets will be released on GitHub
along with our experimental code.

To evaluate the performance of RD using F1
score as a metric, Rj,i is defined as the F1 score
on the test set of task Ti after training on task Tj .
We follow the two indicators, FWT and BWT, pro-
posed by Lopez-Paz and Ranzato (2017) to eval-
uate the knowledge transfer ability of CPT-RD in
the process of continual learning. We evaluate the
average F1 performance for all tasks after full-shot
training on the final task TN :

Avg.F1 =
1

N

N∑
i=1

RT,i. (7)

where N is the number of tasks. According to
Lopez-Paz and Ranzato (2017), two metrics are
defined to measure the effect of forward and back-
ward transfers:

BWT =
1

N − 1

N−1∑
i=1

RN,i −Ri,i, (8)

FWT =
1

N − 1

N∑
i=2

Ri−1,i −R0,i. (9)

FWT is the average zero-shot performance on a
new task and evaluating the model’s generalization
ability. BWT assesses the impact of learning on
the subsequent task has on the previous task. A
negative BWT indicates that the model has forgot-
ten some previously acquired knowledge.

In addition, to evaluate the models performance
early in the birth of the rumor, we also recorded the
average few-shot performance of each new task
during the continual cumulative training, which is
a cumulative value:

fs.F1 =
1

N

N∑
i=1

Rfs
i,i , (10)

where Rfs
i,i denotes the F1 performance of training

on the few-shot training set of the i-th task and
testing on the test set of the i-th task.

https://competitions.codalab.org/competitions/26655
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PHEME + Twitter15&16 + Covid19 Weibo

Method Avg.F1 FWT BWT fs.F1(val) Avg.F1 FWT BWT fs.F1(val) +Params Tune Params

Fine-tuning† 54.6 (± 1.2) 7.0 -24.3 67.5 45.6 (±3.1) 18.3 -23.2 75.6 0 100%
EANN† 57.9 (± 1.5) 8.1 -20.3 68.3 49.4 (±2.1) 18.5 -20.9 77.1 1.8% 100%
Adapter⋆ 66.7(± 2.5) 13.7 -14.2 74.6 58.0 (±2.3) 24.4 -17.5 83.9 2.1% 2.1%
ParallelAdapter⋆ 61.5 (± 2.2) 2.8 -4.7 68.7 55.8 (±2.5) 8.5 -7.1 75.3 2.3% 2.3%
prompt-tuning (CLS)⋆ 60.0 (± 1.5) 7.4 -15.7 75.9 67.8 (±1.8) 18.3 -5.1 84.1 0.03% 0.03%
p-tuning v2 (CLS)⋆ 62.9 (± 2.1) 5.1 -9.3 73.0 67.6 (±1.6) 24.4 -3.0 80.4 0.6% 0.6%
prompt-tuning (VER)⋆ 65.0 (± 1.5) 7.1 -10.2 75.7 70.5 (±1.8) 18.7 -7.5 82.8 0.03% 0.03%
p-tuning v2 (VER)⋆ 69.7 (± 1.1) 13.9 -11.0 76.3 71.8 (±1.6) 29.5 -6.8 82.6 0.6% 0.6%

Prompt-tuning based (PT-based)

CPT-RD (CLInit)⋆ 65.1 (± 0.8) 15.0 0 75.5 70.0 (±0.7) 18.3 0 79.0 0.03% 0.03%
CPT-RD (SimInit)⋆ 66.3(± 0.9) 15.8 0 76.7 71.6(±1.6) 19.8 0 83.6 0.03% 0.03%
CPT-RD (MeanInit)⋆ 64.5(± 1.2) 14.8 0 75.6 70.3(±1.5) 18.5 0 80.9 0.03% 0.03%
CPT-RD (SimInit+TPHNet)⋆ 66.7(± 1.3) 15.3 0.2 76.0 71.9(±1.2) 20.0 0.5 84.0 0.1% 0.1%

P-tuning v2 based (PTv2-based)

CPT-RD (CLInit)⋆ 68.2 (± 1.0) 19.8 0 76.1 73.1(±0.7) 30.7 0 83.2 0.6% 0.6%
CPT-RD (SimInit)⋆ 72.2(± 1.1) 23.3 0 79.1 75.0(±1.2) 31.2 0 84.9 0.6% 0.6%
CPT-RD (MeanInit)⋆ 70.6(± 1.5) 20.5 0 75.5 73.5(±1.3) 28.7 0 83.0 0.6% 0.6%
CPT-RD (SimInit+TPHNet)⋆ 75.0(± 1.3) 23.5 0.9 79.3 76.5(±1.6) 31.4 1.1 85.7 1% 1%

Table 1: Results evaluated on test datasets for all tasks in PHEME + Twitter15&16 + Covid19 and Weibo.
The following averaged over 5 random task orders (Table 7) are reported, where (⋆) and (†) indicate frozen lan-
guage model parameters and fine-tuning, (+Params) and (Tune Params) are additional parameters and the tunable
parameters for each task. CLS and VER denote the output predictions with CLS token classifier and Verbalizer
head, respectively. The fs.F1 is the result on the validation dataset, and the k-shot is 16.
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Figure 4: The few-shot performance of each model on the dataset PHEME + Twitter15&16 + Covid19.

4.2 Compare models

In the experiments, BERT-base is used as the
PLM weights, and CPT-RD will be compared
with the following advanced models: Fine-tuning:
Fine-tune the model on new task data continually.
EANN: Wang et al. (2018) uses adversarial net-
works to extract event invariant features for gener-
alization when new events arrive. For comparison,
EANN is modified to use BERT as the encoder and
only text data. Adapter: Freeze the pre-trained
model and train a residual Adapter(Houlsby et al.,
2019). ParallelAdapter: A variant by trans-
ferring the parallel insertion of prefix tuning
into adapters (He et al., 2021). prompt-tuning
(CLS/VER): which only tunes soft-prompts with
a frozen language model (Lester et al., 2021),
prompt for transformer’s first layer. p-tuning v2
(CLS/VER): Using multilayer soft-prompts (deep

prompt tuning), where CLS/VER denotes the pre-
dicted output with [CLS] token and Linear clas-
sification layer and verbalizer MLMhead, respec-
tively. MTL p-tuning v2 (CLS/VER): P-tuning
v2 in a multi-task manner instead of CL. Train a
single prompt using all tasks data concurrently.

4.3 Main results

The higher the FWT score, the better the model
works for the unseen domain. A negative BWT
indicates that the model produces forgetting, and
if it is positive, it can accumulate knowledge.

Compare model performance. In Table 1, un-
surprisingly, the Fine-tuning model has a severely
CF, the BWT value of -24.3 under the CL set-
ting. The level of catastrophic forgetting in EANN
(Wang et al., 2018) is somewhat reduced com-
pared to Fine-tuning but is still severe. Prompt-
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Task ID Task Fine-tuning p-tuning v2(VER) CPT-RD(CLInit) CPT-RD(SimInit) CPT-RD(MeanInit) CPT-RD(SimInit+TPHNet)

1 Charlie Hebdo 22.1 64.1 75.3 77.1 75.3 78.0
2 TwitterEvent4 65.1 88.0 72.1 65.2 70.6 74.4
3 Ferguson 24.7 62.4 70.3 72.7 67.5 72.8
4 Germanwings-crash 50.6 63.4 65.9 60.6 64.7 61.3
5 Ottawa Shooting 52.7 74.3 70.5 72.2 74.6 78.3
6 Prince Toronto 98.7 71.4 98.1 95.6 93.7 94.3
7 Putin missing 53.0 55.3 53.0 66.0 53.5 72.1
8 TwitterEvent1 77.1 77.1 77.1 77.8 70.7 74.5
9 Sydney Siege 42.8 72.5 74.2 65.7 75.8 74.9
10 TwitterEvent5 71.4 67.5 69.8 70.5 71.7 73.5
11 Gurlitt 43.7 48.3 42.2 62.3 52.5 62.5
12 Covid19 47.6 86.7 87.9 84.3 85.3 88.3
13 TwitterEvent2 57.8 69.0 60.5 70.8 65.2 72.4
14 TwitterEvent3 56.9 74.9 37.9 70.9 67.3 71.3

Avg. 54.6 69.7 68.2 72.2 70.6 75.0

Table 2: The F1 score evaluated on the final model after all 14 tasks are visited in the test set. We use Avg. to
represent the average F1 of all tasks for each method. The gray numbers indicates that CPT-RD (p-tuning v2 based)
does not perform as well as normal p-tuning v2 in a single task.

tuning and p-tuning v2 are somewhat related to
the adapter method in the form of parameter tun-
ing (He et al., 2021), but their performance in CL
differs. The prompt-based model is better than the
adapter in both datasets. From Tabel 4 in Sec.4.5,
consistent with Liu et al. (2021b), CLS token
classification is better than the verbalizer when p-
tuning v2 is under multi-task learning mode. The
performance of multi-task learning is usually con-
sidered the upper limit of the CL model. However,
verbalizer’s FWT and final F1 scores in the CL set-
ting were better than CLS but more prone to CF.
Since SPL lets the model not generate CF, we next
develop CPT-RD using prompt-tuning (PT) and p-
tuningv2 (PTv2) baseline with verbalizer.

CPT-RD performance. We have developed
CPT-RD based on PT and PTv2 respectively. We
can find that since CPT-RD has SPL, the BWT val-
ues are all greater than or equal to 0, which in-
dicates that this fundamentally eliminates the CF.
The more stable performance among the three for-
ward transfer strategies is SimInit. CLInit is the
most unstable, probably because the soft-prompt
from the previous task is not necessarily benefi-
cial to the learning of the next task and is prone
to cumulative negative effects on subsequent tasks
in CL. It can be observed by Tabel 2 that the F1
score of CLInit on the last two tasks of the last se-
quence task is significantly lower than other strate-
gies, 60.5 and 37.9 respectively. MeanInit with
multi-source prompt does not work as expected
and is only slightly better than CLInit. Finally,
we added TPHNet to SimInit to achieve backward
knowledge transfer, but the performance on PT is
not stable enough, probably because PT has fewer
tunable parameters. Furthermore, TPHNet incor-
porates additional tunable parameters but still has

parameter-efficient that is much lower than Fine-
tuning.

Final model performance. The final model
performance is the model’s performance after
learning the last task in the sequence. In Table 2,
although CPT-RD solves CF, in the ideal case, the
final model performance should outperform PTv2.
We can find that the final performance of CLinit is
inferior to PTv2 in 7 tasks, simInit and meanInit in
6, and SimInit+TPG in 5, which further indicates
that TPHNet achieves a certain degree of back-
ward knowledge transfer. Among them, we can
find that in CLinit, the last task is as low as 37.9,
indicating that directly reusing the soft-prompt of
the previous task may have a more significant im-
pact on the subsequent tasks.

Data privacy and Parameter explosion. From
Sec.3.4, we propose TPHNet in the context of hy-
pernetwork, which avoids rehearsal-based data re-
play and thus preserves data privacy. For a more
comprehensive evaluation of our method, we re-
place TPHNet with a rehearsal-based technique,
more details in Sec.4.4. From Table 3, it can be
found that TPHNet can achieve comparable per-
formance to the rehearsal-based method.

Besides, it can be seen from Sec.3.3 that CPT-
RD avoids parameter explosion by using SPL to
store soft-prompt (without dynamic model expan-
sion). And the storage space occupied by SPL is
negligible. In Table 2, the tuning parameter of the
Adapter-based model is 2.1-2.3%, which is more
parameter-efficient than the 100% of the Fine-
tuning model. However, CPT-RD adds only 0.03-
1% tunable parameters based on more parameter-
efficient PT and can achieve better performance.

Few-shot performance. There is a lack of sam-
ples in the early burst stages, so few-shot perfor-
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mance is critical for RD models. The final model
is the model obtained after learning the last task.
From Fig.4 (a), it can be found that Fine-tuning
has a very unstable few-shot performance in CL.
PTv2 still shows better few-shot capability than
Fine-tuning in CL, which indicates that the PT-
based model is more suitable for domain gener-
alization. In Fig.4 (b), the average fs.F1 of CPT-
RD (SimInit+TPHNet) is higher than that of PTv2,
indicating that continuously accumulated knowl-
edge can be better used for few-shot.

4.4 CPT-RD with rehearsal buffer

To verify the gap between TPHNet and rehearsal-
based technology, we randomly sample 50 pieces
of data from each domain training set in mem-
ory, and jointly trained on the future domain
dataset. It can be observed from Table 3 that
the rehearsal-based technology reflects the certain
ability to backward knowledge transfer by accu-
mulating data in past domain tasks. From Table
1, the BWT value of TPHNet is 0.9, which shows
that our method is close to rehearsal-based tech-
nology, but our advantage is that the memory oc-
cupies small, and there is no data privacy problem.

Buffer size Methods (PTv2-based) Avg. F1 FWT BWT

0/domain

p-tuning v2 (VER) 69.7 13.9 -11.0
CPT-RD (CLInit) 68.2 19.8 0
CPT-RD (MeanInit) 70.6 20.5 0
CPT-RD (SimInit) 72.2 23.3 0

50/domain

p-tuning v2 (VER) 71.2 14.1 1.5
CPT-RD (CLInit) 72.1 20.1 1.1
CPT-RD (MeanInit) 71.7 19.4 0.8
CPT-RD (SimInit) 75.3 23.8 1.2

Table 3: The performance of CPT-RD (PTv2-based) on
the PHEME + Twitter15&16 + Covid19 (En-
glish) dataset using rehearsal-based technology.

4.5 Multi-task learning performance

The performance of multi-task learning methods
is often defined as an upper bound on the perfor-
mance of continual learning. Multi-task learning
avoids CF by visiting data from different domain
tasks at different times. In Table 4, we experi-
mented with the model’s performance in the multi-
task learning mode under the Chinese and English
datasets. Consistent with the experimental conclu-
sion of Liu et al. (2021b), p-tuning v2 using CLS
token classification outperforms the verbalizer un-
der multi-task learning. However, the verbalizer
outperforms CLS in FWT and final F1 score in the
CL setting, but is more prone to CF.

Methods Avg. F1 +Params Tune Params

PHEME + Twitter15&16 + Covid19

MTL p-tuning v2 (CLS) 80.3 (± 0.8) 0.6% 0.6%
MTL p-tuning v2 (VER) 77.9 (± 0.8) 0.6% 0.6%

Weibo

MTL p-tuning v2 (CLS) 85.3 (± 0.8) 0.6% 0.6%
MTL p-tuning v2 (VER) 83.8 (± 0.8) 0.6% 0.6%

Table 4: The performance of the baseline model p-
tuning v2 in the multi-task learning mode.

model Avg.F1 FWT BWT

CPT-RD 75.0 23.5 0.9
w/o TPHNet 72.2 23.3 0
w/o SimInit 71.3 14.2 0.9
w/o SimInit+TPHNet 69.7 13.9 -11.0

Table 5: Ablation study on the effectiveness of the CPT-
RD (SimInit+TPHNet) PTv2-based on the test set in
the PHEME + Twitter15&16 + Covid19.

4.6 Ablation study

To understand the effectiveness of the different
techniques proposed, we conducted an ablation
study. From Table 1, we know that CPT-RD is
more stable in PTv2-based than PT-based, which
indicates that the model can benefit from more
tunable parameters. Conventional PT do not use
forward transfer strategy and TPHNet with lower
FWT values. In PTv2-based, the overall perfor-
mance is highest when SimInit and TPHNet are
used together. In Table 5, removing either of TPH-
Net or SimInit will result in a decrease in overall
performance. This shows the validity of our im-
provements, which would degrade to p-tuning v2
if SimInit and TPHNet were both removed.

5 Conclusion

We explore how to continually detect a social
network environment with frequent unseen do-
mains in RD. The novel framework Continual
Prompt-tuning RD (CPT-RD) is proposed, which
includes various knowledge transfer techniques.
In the face of emergency domains, CPT-RD
can use soft-prompt initialization strategies to
achieve fast generalization. There is also a task-
conditioned prompt-wise generator network (TPH-
Net) in terms of continual accumulation of detec-
tion knowledge. Future works include extending
usage of CPT-RD to task agnostic scenarios and
designing more diverse knowledge transfer strate-
gies.
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A Appendix

A.1 Event correlation

After filtering the stopping words, we use TF-IDF
to calculate the event relevance of each task do-
main, as shown in Fig.5.

Datasets tasks non-rumor rumor total

Gurlitt 77 61 138
Putin missing 112 126 238
Prince Toronto 4 229 233

PHEME Germanwings-crash 231 238 469
Ferguson 859 284 1143
Charlie Hebdo 1621 458 2079
Ottawa Shooting 420 470 890
Sydney Siege 699 522 1221
TwitterEvent 1 63 156 219
TwitterEvent 2 89 164 253

Twitter15&16 TwitterEvent 3 153 198 351
TwitterEvent 4 146 200 346
TwitterEvent 5 128 436 564

Covid19 Covid19 3060 3360 6420

total 7662 6902 14564
MH370 133 262 395
Olympics 173 81 254
Urban managers 94 149 243
Cola 215 419 634
Child trafficking 94 172 266
Waste oil 133 57 190

Weibo Accident 100 82 182
Earthquake 117 58 175
Typhoon 107 64 171
Rabies 101 42 143
College entrance exams 147 590 737
Lockdown the city 86 24 110
Zhong Nanshan 55 21 76
Wuhan 167 69 236

total 1722 2048 3770

Table 6: Statistics of PHEME + Twitter15&16 +
Covid19 (English) and Weibo (Chinese) datasets.

A.2 Implementation details

We tune hyperparameters on the PHEME +
Twitter15&16 + Covid19 and Weibo val-
idation sets. We tune learning rates by enumer-
ating over [3e-3, 5e-3, 7e-3], and finally use a
learning rate of 7e-3 for all CPT-RD approaches
where a learning rate of 1e-4 for TPHNet. The
learning rate of the fine-tuning approaches is 5e-
5, and the learning rate of the adapter approaches
is 1e-4. Regarding the PT and PTv2, includ-
ing the MTL approach, we use a learning rate
of 5e-3. We use a batch size of 16 across ex-
periments. We train the model for at most 100
epochs for each training task with a patience of
4 epochs without validation performance improve-
ment. Before training on a new task, we revert
the model to the checkpoint with the best vali-
dation performance in the previous task. In the
few-shot learning stage, we use the same learn-
ing rate and train the model for 500 steps (k ∈
{16, 8, 4}), assuming no validation sets to per-
form early stopping. The length of the input se-
quence on data set PHEME + Twitter15&16

+ Covid19 is 300, and Weibo is 128. We
also experimented with the length of different soft-
prompt tokens, such as {20, 40, 60, 80}, and found
that the performance of 40/60 is relatively sta-
ble, so 40 is uniformly used as the length of soft-
prompt in the experiment.
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Task Order Tasks

PHEME + Twitter15&16 + Covid19
Order1 Charlie Hebdo, TwitterEvent4, Ferguson, Germanwings-crash, Ottawa Shooting, Prince Toronto, Putin missing,

TwitterEvent1, Sydney Siege, TwitterEvent5, Gurlitt, Covid19, TwitterEvent2, TwitterEvent3
Order2 Sydney Siege, ferguson,TwitterEvent1, Gurlitt, Ottawa Shooting, TwitterEvent3, Prince Toronto, TwitterEvent4,

Putin missing, Charlie Hebdo, TwitterEvent5, Germanwings-crash, TwitterEvent2, Covid19
Order3 TwitterEvent3, Charlie Hebdo, TwitterEvent2, Ferguson, TwitterEvent1, TwitterEvent5, TwitterEvent4, Putin missing,

Ottawa Shooting, Prince Toronto,Gurlitt, Germanwings-crash, sydneysiege, Covid19
Order4 TwitterEvent1, Germanwings-crash, TwitterEvent4, Ferguson, Gurlitt, Sydney Siege, TwitterEvent3, Charlie Hebdo,

Ottawa Shooting, Prince Toronto,TwitterEvent2, TwitterEvent5, Putin missing, Covid19
Order5 Covid19, Germanwings-crash, Prince Toronto, TwitterEvent3, TwitterEvent5, Sydney Siege, Ferguson, Ottawa Shooting,

Charlie Hebdo,TwitterEvent4, TwitterEvent2, Gurlitt, Putin missing, TwitterEvent1

Weibo
Order1 Typhoon, Olympic, MH370, Earthquake, Rabies, College entrance exams, Cola, Urban managers, Child trafficking, Acci-

dent, Waste oil, Zhong Nanshan, Wuhan, Lockdown the city
Order2 Olympic, Child trafficking, Rabies, Accident, Earthquake, Cola, College entrance exams,Typhoon, Urban managers, Waste

oil, MH370, Zhong Nanshan, Wuhan, Lockdown the city
Order3 Zhong Nanshan, Wuhan, Lockdown the city, Cola, Accident, Urban managers, Waste oil, Earthquake, Olympic, Child

trafficking,Typhoon, Rabies, College entrance exams, MH370
Order4 Cola, Accident, Olympic, Waste oil, Typhoon, Zhong Nanshan, Wuhan, Lockdown the city, College entrance exams, Urban

managers, Rabies, Child trafficking, MH370, Earthquake
Order5 Zhong Nanshan, Wuhan, Lockdown the city, MH370, Urban managers, Child trafficking, Typhoon, Earthquake, Olympic,

Cola, Accident, Rabies, Waste oil, College entrance exams

Table 7: Order of continual learning tasks in PHEME + Twitter15&16 + Covid19 and Weibo datasets.
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Figure 5: Domain Task Relevance Heat Map.
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