
Proceedings of the 29th International Conference on Computational Linguistics, pages 2633–2638
October 12–17, 2022.

2633

Unregulated Chinese-to-English Data Expansion Does NOT Work for
Neural Event Detection

Zhongqiu Li, Yu Hong∗, Jie Wang, Shiming He, Jianmin Yao, Guodong Zhou
School of Computer Science and Technology, Soochow University, China

{leosanqiu, tianxianer, jawn233, smhelpai}@gmail.com
{jyao, gdzhou}@suda.edu.cn

Abstract

We leverage cross-language data expansion and
retraining to enhance neural Event Detection
(abbr., ED) on English ACE corpus. Machine
translation is utilized for expanding English
training set of ED from that of Chinese. How-
ever, experimental results illustrate that such
strategy actually results in performance degra-
dation. The survey of translations suggests that
the mistakenly-aligned triggers in the expanded
data negatively influences the retraining pro-
cess. We refer this phenomenon to “trigger
falsification”. To overcome the issue, we apply
heuristic rules for regulating the expanded data,
fixing the distracting samples that contain the
falsified triggers. The supplementary experi-
ments show that the rule-based regulation is
beneficial, yielding the improvement of about
1.6% F1-score for ED. We additionally prove
that, instead of transfer learning from the trans-
lated ED data, the straight data combination by
random pouring surprisingly performs better.

1 Introduction

We tackle ED, a task of recognizing trigger words
(triggers for short) that signal different types of
events (Ahn, 2006). For example, the trigger “meet-
ing” in (1) signals the CONTACT-MEET event.

(1) “We have the transcript of the meeting.”
Trigger: meeting
Type: CONTACT-MEET

The current study of ED, in general, utilizes neu-
ral classification models for determining the event
types in the word-by-word manner, including the
predefined ACE1 event types and Non-trigger
type. Correspondingly, supervised learning is ap-
plied to pursue the semantic-level distributed rep-
resentations of words, so as to provide perceptible
evidence for decoding event types.

∗Corresponding author.
1https://catalog.ldc.upenn.edu/LDC2006T06

他 还 将 前往【Transport】 沙特阿拉伯
(He) (also) (will) (travel to) (Saudi Arabia)

He will also travel【Transport】to【Transport】Saudi Arabia

Alignment Transmission

Chinese ED instance

Translation

Figure 1: A case study of trigger designation and class-
label transmission which is bridged by word alignment.

Expanding the training data is able to enhance
the ED-oriented neural classification models. It is
because there are a larger amount of knowledge and
diverse pragmatic phenomena can be introduced
into the supervised learning process, as claimed
in different tasks of natural language processing.
We childishly embrace this method, conducting
expansion by translating Chinese ED corpus and
pouring translations into the English training set,
where word alignment (Sabet et al., 2020) is used
for designating triggers in the translations.

What is beyond our expectation is that, however,
cross-language data expansion actually results in
performance degradation. We survey the transla-
tions which were used for expansion, and observe
that a large number of low-quality instances were
involved. The survey also suggests that the falsified
triggers in such instances probably misled neural
models during supervised learning. We provide an
example in Figure 1 where Chinese event mention
is taken from the publicly-shared ACE corpus of
Chinese ED, and word alignment is carried out for
trigger designation in English translation, as well
as transmission of class label information. It can be
found that the trigger “to” is mistakenly designated
and labeled for event class (viz., TRANSPORT) due
to inexact alignment, and undoubtedly it will cause
severe misleading (in terms of the high occurrence
frequency of “to” in English).

To overcome the issue, we explore a variety of
easily-accessible rules to purify the translated ED
instances (Section 2). Using the purified instances
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Figure 2: P and R-scores obtained by the baseline and
EDE♣, where RoBERTa-base is used.

as external data, we conduct retraining and transfer
learning to strengthen the baseline ED models, in-
cluding the ones which are grounded on basic and
large RoBERTa (Liu et al., 2019), respectively (Sec-
tion 3). Experimental results (Section 4) show that
1) the rule-based regulation helps to avoid perfor-
mance degradation and yields substantial improve-
ments, and 2) conventional expansion by combin-
ing datasets is beneficial while, on the contrary,
transfer learning is less useful. We overview the
related work in Section 5 before concluding this
paper (Section 6).

2 Rule-based Purification Against Trigger
Falsification

We apply Google translation toolkit2 for translating
Chinese event mentions into English, and use SimA-
lign (Sabet et al., 2020) to pursue the alignment
between triggers in Chinese mentions and words in
the corresponding translations. The aligned words
are designated as triggers of translations and as-
signed with the manually-labeled event types in
Chinese corpus.

Word alignment unavoidably falsify triggers in
the translations. Therefore, we explore five heuris-
tic rules to regulate the falsified triggers.

Unbinding prepositions It has been exhibited
in Figure 1 that some prepositions (e.g., “to”) are
mistakenly designated as triggers due to inexact
alignment, i.e., a Chinese trigger is aligned to the
constituent that contains both verb and preposition.
The number of prepositions that serve as triggers
in translations is up to 326, occupying 8% of all
the designated triggers. In the cases, we unbind
verbs from prepositions, and designate the latter as
Non-trigger words.

2https://translate.google.com

Unbinding participles In some cases, a single
Chinese trigger is aligned to the present or past-
participle phrase, where the participle that stands
for an attributive is redundant for signaling a certain
event type and, more seriously, it is common and
generally leads a variety of word senses. For exam-
ple, the past-participle “opened” in (2) is redundant.
There are 38 participles found to be mistakenly des-
ignated as triggers, occupying about 1% of all the
designated triggers. We repeal the designation.

(2) 坦克向两辆正常行驶的民用车辆开火
Translation: Tanks opened fire on two normal
civilian vehicles
Chinese trigger: 开火; Type: ATTACK
Alignment: 开火=“opened fire”

Binary-choice exclusion Occasionally, a single
English word is aligned with a pair of Chinese
words, including not only a Non-trigger word
but trigger. For example, both the Non-trigger
word “提出” (i.e., “bring”) and trigger “上诉”
(“lawsuit”) are aligned to the English word “ap-
pealing” in (3). In the cases, we exclude the
Non-trigger type, but instead merely assign
the concrete event type (such as SUE in (3)) to the
aligned English word. There are 58 binary-choice
cases occurred in the translations, occupying 1.4%
of all the designated triggers.

(3) 我们正(提出)(上诉)
Translation: We are appealing
Chinese trigger: 上诉; Type: SUE
Alignment: (提出)(上诉)=“appealing”

Correcting far-fetched triggers Before align-
ment, some Chinese triggers are segmented into for-
mal characters or the ones holding less senses. As a
result, the Chinese triggers are easily aligned with
function words (prepositions and conjunctions) in-
stead of content words in English. Grounded on the
alignment results, the trigger designation method
produces a series of far-fetched triggers. For exam-
ple, the Chinese trigger “身中” (i.e., “injured”) in
(4) is mistakenly segmented into the characters “身”
(i.e., body) and “中” (“in”), and the aligned preposi-
tion “in” is designated as the INJURY trigger. The
number of English prepositions and conjunctions
that were designated as triggers is up to 226, occu-
pying 5.5%. We correct the errors by designating
them as Non-trigger words.

(4) 发射了80发胡椒弹并(身中)约57发
Segmentation: (发射)(了)(80)(发)(胡椒)—
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(弹)(并)(身)(中)(约)(57)(发)
Translation: Fired 80 pepper bombs at him,
with about 57 (in) his body
Chinese trigger: 身中; Type: INJURY
Alignment: (身中)=“in”

Skipping the omissions A large number of Chi-
nese triggers fail to be aligned with any English
word. For example, although the Chinese trigger
“启用” is semantically equivalent to the English
word “opened” in (5), the alignment is neglected.
This results in the omission of triggers in transla-
tions. More seriously, the omitted triggers will be
designated as Non-trigger word, and thus mis-
lead classification models during training. There-
fore, we skip the mentions in which trigger omis-
sion occurs. There are 426 cases of trigger omis-
sion found in the designation process, occupying
10.4% of all the Chinese triggers.

(5) 重新改建的勤务中心是在上午落成(启用)
Translation: The remodeled service center
was completed and (opened) in the morning
Chinese trigger: 启用; Type: Start-Org
Alignment: (启用)=“None”

3 Enhancing Classification Models

We use pretrained language models for ED, includ-
ing RoBERTa-base and RoBERTa-large (Liu et al.,
2019). RoBERTa-base is constructed by 12 trans-
former layers (Vaswani et al., 2017), each of which
contains a 12-head attention network and 768 hid-
den states. RoBERTa-large is constructed by 24
transformer layers, each of which contains a 16-
head attention network and 1,024 hidden states.
The input of both RoBERTa models is a sentence
no matter whether it appears as an event mention
containing triggers. The maximum input length
is set to 256 tokens, and padding is used if the
input sentence fails to reach the length (Section
4.2 presents other hyperparameters). The initial
word embeddings are obtained using look-up ta-
bles, and they are slightly strengthened by element-
wise fusion with position embeddings. Besides,
both RoBERTa models are connected with a linear
fully-connected layer and Softmax layer (Bridle,
1990). For each word in the input sentence, the
RoBERTa models conduct 34-class classification,
towards not only the predefined 33 ACE event types
but Non-trigger type.

We intend to enhance the classification models
by transfer learning (Bengio, 2012) and data expan-
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Figure 3: P and R-scores obtained by the baseline and
EDE♣, where RoBERTa-large is used.

sion (Journal and Alabert, 1989), using the trans-
lated Chinese ED corpus (MT-ED for short) as
the external data. The aforementioned rule-based
purification is utilized for regulating MT-ED. The
considered models in experiments are as below:

Baselines The baselines denotes the RoBERTa-
based classifiers which are merely trained on the
original training set. Such a training set contains
ED instances that were split from the English cor-
pus of the publicly shared ACE-2005 tasks.

EDT Transfer learning is used to enhance the
RoBERTa-based classifiers. We first train the classi-
fiers on MT-ED, and then train them on the original
training set. Within the double-stage training pro-
cess, the parameters obtained in the first stage (on
MT-ED) are transferred to the second stage (on the
original set). We refer the classifiers to EDTs.

EDE We use MT-ED to expand the original
training set by straight pouring, without any ad-
ditional handling. Using the expanded data set, we
train the RoBERTa-based classifiers from scratch.
We refer the obtained classifiers to EDEs.

4 Experimentation

4.1 Corpus and Evaluation Measure
We carry out experiments on the ACE-2005 bench-
mark dataset of English ED task, which comprises
599 documents. The documents contain about 5.2K
manually-labeled triggers for 33 predefined event
classes, and 280K Non-trigger words. We fol-
low the common practice to set up the training,
validation and test sets, which hold 529, 30, and 40
documents, respectively.

Besides, we use a set of Chinese ED instances
which are taken from the ACE-2005 multilingual
training corpus. Such data set comprises 633 doc-
uments scripted in Chinese, and involves about
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3.3K triggers of 33 ACE event classes as well as
170K Non-trigger words. After purification,
we collect 2.6K translated mentions, 2.6K triggers
and about 218K Non-trigger words for build-
ing MT-ED. It is taken into consideration during
transfer learning and data expansion (Section 3).

We evaluate all the considered classification
models using the measure of Precision (P), Recall
(R) and F1-score.

4.2 Hyperparameter Settings
The hyperparameters of both RoBERTa-base and
RoBERTa-large are set as follows. The learning
rate is set to 1e-5. We set epoch to 16 and batch
size to 8. AdamW (Loshchilov and Hutter, 2017)
optimizer is used where ε is set to 10e-8.

4.3 Results and Analysis
First, we examine the feasibility of cross-language
data expansion for enhancing ED. The performance
is indicated by EDE∗ in Table 1, where the mark
“*” denotes that EDE is trained on the unpurified
MT-ED. It can be observed that, compared to the
baseline, EDE∗ obtains worse performance. By
contrast, training EDE using the purified MT-ED
produces substantial performance gains, as indi-
cated by EDE♣ in Table 1. The test results reveal
the necessity of data purification when MT-ED is
combined with the original training set.

We compare RoBERTa-base to RoBERTa-large
when different training sets are used, including the
original training set, as well as the expanded ver-
sion with the purified MT-ED. Table 1 shows P
and R-scores they achieved, which are opposite to
each other. Specifically, as indicated by baseline
and EDE♣, RoBERTa-base achieves much higher
R-score and slightly lower P-score when data ex-
pansion is used, but on the contrary, data expansion
has exactly the opposite effect for RoBERTa-large.
We also evaluate the performance of binary clas-
sification for triggers and Non-trigger words.
Figure 2 shows the P and R-scores obtained by the
baseline and EDE♣ when RoBERTa-base is used,
while Figure 3 shows that of RoBERTa-large. It
can be observed that EDE♣ achieves much higher
R-score than baseline when RoBERTa-base is con-
sidered, but both of them achieve the same P-scores.
On the contrary, the P and R-scores obtained when
RoBERTa-large is considered change to be oppo-
site states. The phenomena imply that the deeper
neural networks like RoBERTa-large most prob-
ably overfit the common or homogeneous event

RoBERTa-base P (%) R (%) F1 (%)
Baseline 72.7 74.2 73.4
EDE∗ 70.3 76.0 73.0
EDE♣ 72.5 76.9 74.6△

RoBERTa-large P (%) R (%) F1 (%)
Baseline 72.9 78.5 75.6
EDE∗ 75.9 74.9 75.4
EDE♣ 76.2 76.7 76.5△

Table 1: Performance of 34-class classification for ED
when data expansion is used. The mark “*” denotes
the use of unpurified MT-ED data for expansion, “♣” is
that of purified, and “△” indicates the significance level
that p-value (Dror et al., 2018) is smaller than 0.05.

RoBERTa-base P (%) R (%) F1 (%)
EDT♣ 69.7 76.7 73.0
EDE♣ 72.5 76.9 74.6
RoBERTa-large P (%) R (%) F1 (%)
EDT♣ 77.6 75.1 76.3
EDE♣ 76.2 76.7 76.5

Table 2: Comparison between EDE♣ and EDT♣.

instances in the original training set and MT-ED,
though a small amount of novel knowledge within
MT-ED is impervious to them.

In a separate experiment, we compare the effect
of data expansion to that of transfer learning, where
EDT♣ and EDE♣ are considered. Table 2 shows
the comparison results. It can be observed that
EDE♣ outperforms EDT♣ for F1-score no mat-
ter what kind of RoBERTa (base or large) is used.
Note that the scale of external data they take from
MT-ED is the same. The comparison results sug-
gest that asynchronous learning from exotic event
knowledge to local contributes less to ED, com-
pared to synchronous learning on the shuffled data.

5 Related Work

Conventional ED models rely heavily on elabo-
rate feature engineering, such as that of context-
independent features (Ji and Grishman, 2008), as
well as cross-event (Liao and Grishman, 2010) and
cross-entity (Hong et al., 2011) statistical features.
In order to pursue the perception of deep event
semantics, the current study concentrates on the
utilization of neural networks, designing and devel-
oping a series of reliable neural ED models, includ-
ing those which are grounded on CNN (Nguyen
and Grishman, 2015), DMCNN (Chen et al., 2015),
RNN (Nguyen et al., 2016), GAN (Hong et al.,
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2018), GCN (Li et al., 2020) and VAE (Huang and
Ji, 2020). Recently, the pretrained language models
like BERT (Yang et al., 2019), RoBERTa (Wang
et al., 2021) and AD-DMBERT (Wang et al., 2019)
are used, yielding substantial improvements.

Data-driven enhancement strategies have been
explored for ED, most of which are implemented by
data augmentation. Yang et al. (2019) produce new
ED instances by entity replacement. It is potentially
effective to enhance entity-aware neural encoders
for detecting events that hold entities. Tong et al.
(2020) leverage knowledge distillation, which is
beneficial for bringing open-domain knowledge
into the understanding of local events. Veyseh et al.
(2021) use GPT-2 to generate new training data.
Teacher-student learning is applied for attenuating
the effect of the generated noises.

6 Conclusion

We use cross-language data expansion to enhance
neural ED models. Experimental results demon-
strate that unregulated data expansion yields less
improvement or even causes performance degra-
dation. By contrast, data purification by simple
heuristic rules produces substantial performance
gains. In addition, it is proven that data expansion
contributes more to ED then transfer learning.

Conducting multilingual data expansion poten-
tially contributes to the enhancement of ED mod-
els. It is because diverse pragmatics in different
languages and exotic event knowledge are infor-
mative for versatile encoding. However, it is chal-
lenging due to the lack of shareable purification
rules among different languages for trigger align-
ment. Therefore, we will develop an automatic
purification model that generalize well in different
languages, where the encoding of syntactic infor-
mation and reinforcement learning will be used.
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