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Abstract

The keyphrase generation task is a challenging
work that aims to generate a set of keyphrases
for a piece of text. Many previous studies based
on the sequence-to-sequence model were used
to generate keyphrases, and they introduce a
copy mechanism to achieve good results. How-
ever, we observed that most of the keyphrases
are composed of some important words (seed
words) in the source text, and if these words
can be identified accurately and copied to create
more keyphrases, the performance of the model
might be improved. To address this challenge,
we propose a DualCopyNet model, which in-
troduces an additional sequence labeling layer
for identifying seed words, and further copies
the words for generating new keyphrases by
dual copy mechanisms. Experimental results
demonstrate that our model outperforms the
baseline models and achieves an obvious per-
formance improvement.

1 Introduction

A keyphrase is a short piece of text that summa-
rizes and abstracts the main semantics of a long
text (named “document” or “source text” in this
study). High-quality keyphrase promotes readers
to efficiently understand, summarize and access
documents’ content (Meng et al., 2017). Not only
that, extracting high-quality keyphrase had been
widely applied to many downstream tasks in Natu-
ral Language Processing and Data Mining, such as
Information Retrieval (Jones and Staveley, 1999),
Text Summarization (Zhang et al., 2004), Text Cate-
gorization (Hulth and Megyesi, 2006) and Opinion
Expression Mining (Berend, 2011). Thus, how to
automatically extract high-quality keyphrases has
become popular research topics in recent decades
(Augenstein et al., 2017; Kim et al., 2010). Due to
accessibility of text data, many datasets from scien-
tific articles are used as benchmarks for keyphrase
extraction algorithms. Thus, our study also focuses

Figure 1: An example of keyphrases. The colored words
(seed words) in the source text appear repeatedly in
keyphrases.

on extracting keyphrases from the scientific arti-
cles.

Generally speaking, keyphrases can be divided
into two categories: present keyphrase and ab-
sent keyphrase. Present keyphrases are the ex-
plicit words that appear directly in source text, and
vice versa for absent keyphrase. Many previous
studies have focused on how to extract present
keyphrases from documents. These studies (Cam-
pos et al., 2020; Hulth, 2003; Bougouin et al., 2014;
Boudin, 2018; Bennani-Smires et al., 2018) con-
sider the keyphrases extraction as a ranking task,
which extracts a set of candidate phrases from
the source text, and then selects keyphrases from
the sorted candidates with the higher importance
score. In recent years, some studies have also at-
tempted to use deep learning methods for present
keyphrase extraction. For example, Alzaidy et al.
(2019) considered the present keyphrases extrac-
tion as a sequence labeling task by using LSTM-
CRF model to label sequence, and obtained a bet-
ter performance. Sun et al. (2021) used popular
BERT (Devlin et al., 2019) model to extract present
keyphrases. However, these methods were not ex-
pert in extracting absent keyphrases because the
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source text has no absent keyphrase. To solve this
problem, some sequence-to-sequence (Sutskever
et al., 2014) based models were used to generate
present/absent keyphrases, such as (Yuan et al.,
2020; Chen et al., 2018; Meng et al., 2017; Chen
et al., 2019; Ye et al., 2021). They first encoded
the source text and then dynamically outputted cor-
responding present/absent keyphrases through a
decoder. However, the decoder usually generates
high-frequency words and ignores many out-of-
vocabulary words, so it is unsatisfied in the task.
To address this problem, Meng et al. (2017) in-
corporated a copy mechanism (Gu et al., 2016) in
decoder to successfully predict out-of-vocabulary
(OOV) words, namely OOV words copy mecha-
nism. Besides, in many scientific articles, we ob-
serve that some words repeatedly appear in many
keyphrases. For example, as shown in Figure 1,
such as “index” appears in keyphrases “nextword
index, index representation, inverted index”, and
“query” appears in keyphrases “query evaluation,
phrase query” (these words are called seed words
in this study). Therefore, if these seed words from
source text can be identified and applied by the
decoder to generate keyphrases as much as possi-
ble, the performance of the model will be greatly
improved.

To address this challenge, we propose a novel
sequence-to-sequence model (named DualCopy-
Net) to incorporate dual copy mechanisms for gen-
erating present/absent keyphrases. Since there is
no labeled data, it is very difficult to directly ex-
tract the seed words from the source text. Thus,
we try to extract present keyphrases as seed words.
Specifically, besides a canonical encoder layer in
DualCopyNet, we also introduce a sequence label-
ing layer for extracting present keyphrases (seed
words). In addition, in the decoder layer, we intro-
duce two kinds of copy mechanism. Seed words
copy mechanism, it enables the decoder to gen-
erate phrases by selecting appropriate words from
seed words. OOV words copy mechanism, it is
a feasible solution that enables the decoder to pre-
dict OOV words by selecting appropriate words
from the source text (Meng et al., 2017). More-
over, the decoder of DualCopyNet softly fuses the
dual copy probability and generation probability
through a gate mechanism to copy words (seed
or OOV words) from the source text and gener-
ate words from the vocabulary. When training the
model, we use a multi-task learning approach to op-

timize the primary task (generating keyphrases) and
the auxiliary task (predicting seed words). Finally,
we conduct experiments on four datasets. The re-
sults show that DualCopyNet has an obvious perfor-
mance improvement in predicting present/absent
keyphrases. The contributions of our paper are as
follows:

• We introduce sequence labeling layer in the
sequence-to-sequence architecture for predict-
ing seed words and dynamically copy these
words to generate more keyphrases.

• We design a novel decoder that incorporates
dual copy mechanisms and uses a multi-task
learning approach to optimize the model when
generating present and absent keyphrases.

• On the four experimental datasets, our model
outperforms most of the baseline models and
obtains better results. Meanwhile, we demon-
strate the positive effect of the dual copy mech-
anism by ablation study.

2 Related Work

2.1 Keyphrase Extraction

Many previous works (Hulth, 2003; Boudin, 2018;
Witten et al., 1999; Bougouin et al., 2014) have
been focusing on the study of keyphrases extrac-
tion. Generally, the extraction consists of two main
steps: (1) Identifying candidate phrases by spe-
cial hand-crafted rules (Hulth, 2003; Medelyan
et al., 2009). (2) Sorting the candidate phrases
to obtain keyphrases. For example, (Boudin, 2018;
Bougouin et al., 2014; Campos et al., 2020; Mi-
halcea and Tarau, 2004) used an unsupervised ap-
proach to rank candidates. In recent years, some
studies used a supervised approach for ranking,
such as (Sun et al., 2021). And they achieved good
results by introducing the BERT (Devlin et al.,
2019) model. In addition, some studies consid-
ered keyphrase extraction as a sequence labeling
task (Alzaidy et al., 2019). Although extraction-
based methods obtained good results, they lacked
an ability to predict absent keyphrases.

2.2 Keyphrase Generation

Due to previous methods’ drawbacks for predict-
ing absent keyphrases, Meng et al. (2017) first
proposed a CopyRNN model to generate words
from vocabulary and copy words from the source
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Figure 2: The overall structure of DualCopyNet, which includes three parts: Encoder Layer, Sequence Labeling
Layer and Decoder Layer.

text. Subsequent studies have made many improve-
ments on the basis of CopyRNN. (1) For prob-
lem with few training samples in certain domains,
Ye and Wang (2018) proposed semi-supervised
keyphrase generation method to leverage labeled
data and large-scale unlabeled samples for learn-
ing. (2) Many studies ignored relationships among
keyphrases, therefore Chen et al. (2018) proposed
a new sequence-to-sequence architecture to capture
correlation among keyphrases for generating new
keyphrases. (3) Another problem is that the current
researches ignored the leading role of the title. And
Chen et al. (2019) realized the problem, then pro-
posed a novel model named TGNet for keyphrase
generation. (4) Different source texts should con-
tain different number of keyphrases. Therefore,
Yuan et al. (2020) proposed a recurrent generative
model to generate multiple keyphrases by delimiter-
separated sequences. (5) Keyphrases are inherently
a disordered set rather than an ordered sequence, so
Ye et al. (2021) proposed a new training paradigm
ONE2SET to concatenate keyphrases without a
predefined order.

In recent years, some new technologies have also
been applied for keyphrase generation task, such

as Reinforcement Learning (Chan et al., 2019) and
Generative Adversarial Networks (GANs) (Swami-
nathan et al., 2020).

3 Methodology

3.1 Problem Definition
Given a keyphrase dataset that contains N data sam-
ples, and the ith is denoted as (x(i), p(i)), where
x(i) is a source text, p(i) is a set of keyphrases.
p(i) contains Mi keyphrases and denotes as p(i) =
(p(i,1), p(i,2), . . . , p(i,Mi)), where p(i,j) is one of p(i)

. x(i) and p(i,j) are word sequences:

x(i) = (x
(i)
1 , x

(i)
2 , . . . , xl

(i)

x(i)), (1)

p(i,j) = (y
(i,j)
1 , y

(i,j)
2 , . . . , yl

(i,j)

p(i,j)
), (2)

where l
(i)
x and l

(i,j)
p is length of x(i) and p(i,j)

respectively. The keyphrase generation task is
to generate a set of keyphrase p(i) from the
source text x(i), namely maximizes the probability∏N

i=1

∏Mi
j=1 P (p(i,j)|x(i)).

3.2 DualCopyNet Architecture
In this section, we will introduce the proposed
DualCopyNet in detail. The model is based on
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the sequence-to-sequence framework (Sutskever
et al., 2014) and the copy mechanism (Gu et al.,
2016). The structure shown in Figure 2 includes
three parts: Encoder Layer, Sequence Labeling
Layer and Decoder Layer.

Specifically, we first feed the source text into
an encoder layer and a sequence labeling layer to
obtain corresponding contextual representations.
Then, we send the representations to a decoder
layer to produce keyphrases. For a better genera-
tion, we introduce a dual copy mechanisms namely
seed words copy mechanism and OOV words copy
mechanism in the decoder layer. After that, the
decoder dynamically generates words from the vo-
cabulary or copies useful words from the source
text.

Encoder Layer. To better generate contextual
representations from a text, DualCopyNet adopts
bi-directional GRUs (Cho et al., 2014) to encode
the source text. And the text is composed of word
embedding, which is defined as follows:

X = (w1,w2, . . . ,wn), (3)

where wi∈Ru1 denotes the word embedding of the
ith word in the source text. Let u1 be the dimen-
sion of the word embedding and n be the length
of the source text. Then, X∈Rn×u1 is sent into
the encoder layer, we employ bi-directional GRUs
(Bi-GRU) to read the text sequence from two direc-
tions and output the hidden state of each word as
follows:

→
ui =

−→
GRU(wi,ui−1),

←
ui =

←−
GRU(wi,ui+1).

(4)

We then concatenate
→
ui ∈Ru2 and

←
ui ∈Ru2 to get

the hidden state ui of the ith word, whose length
is 2u2 and computed as follows:

ui = [
→
ui;
←
ui]. (5)

Sequence Labeling Layer. As mentioned
above, we observe that some seed words repeat-
edly appear in many keyphrases. Therefore, we
expect to identify these seed words first and then
dynamically copy them into the output of the de-
coder. Since there is no labeled data, it is very
difficult to directly extract the seed words from
the source text. Therefore, in this study, we con-
sider identified present keyphrases as seed words
and introduce a sequence labeling layer based on

LSTM-CRF (Huang et al., 2015) in DualCopyNet
to extract these seed words. Specifically, we first in-
put the word embedding xi∈Ru1 at time step i into
the bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) to obtain the hidden state vi = [

→
vi;
←
vi]

and derive the emission potential from vi. Mean-
while, an additional Conditional Random Field
(CRF) (Lafferty et al., 2001) layer is employed to
calculate the most probable tag for the each word.
Then we use the BIESO scheme (Begin, Intermedi-
ate, End, Single, Other) to identify the seed words
in the texts. For given a source text x, the con-
ditional probability of a target tag∗ is computed
by:

P (tag∗|x) = expscore(x,tag
∗)∑

t̃ag exp
score(x,t̃ag)

, (6)

where the function score is defined as:

score(x,tag) =
∑
i

logϕemit(i, tagi)+

logϕtrans(tagi−1 → tagi),

(7)

where ϕtrans(tagi−1 → tagi) is the transition
score from tagi−1 to tagi. ϕemit(i, tagi) is the
score of the tagi for the ith input word and comes
from the hidden state of the Bi-LSTM at timestep
i.

Finally, the loss function of the sequence label-
ing layer is defined as:

Ls = −log(P (tag∗|x)). (8)

Decoder Layer. The source text has been en-
coded into two kinds of contextual representations
through an encoder layer and a sequence labeling
layer, respectively. Further, we adopt the decoder
based on the attention mechanism to fuse the dual
copy mechanisms to generate keyphrases. The de-
coder is created with one-way GRU. For each time
step t, the GRU fuses the hidden state st−1 and
the word embedding et−1 of the output word yt−1,
which is computed by:

st = GRU(et−1, st−1), (9)

where t − 1 denotes previous time step, e0 is the
embedding of the start token ‘<BOS>’.

Generation and Seed Words Copy. As
mentioned above, the sequence labeling layer is
adopted to predict seed words. Then we expect to
dynamically copy these words into the output se-
quence for generating the keyphrases. Specifically,
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we first use the decoder vector s̃cst to generate the
next word, where s̃cst = [ccst ; st] is derived from
concatenating ccst and st, and the context vector
ccst is computed as a weighted sum of hidden repre-
sentations by the concatenate attention mechanism
(Luong et al., 2015):

ccst = attn(st, [v1,v2, · · ·vn],W cs
att). (10)

Then, the probability of generating the word
P cs
v (yt) from vocabulary is computed by:

P cs
v (yt|yt−1, x) =

softmax(Wv2(Wv1s̃cst + bv1) + bv2).
(11)

Furthermore, a copy mechanism (Gu et al., 2016)
is adopted to efficiently extract the in-text informa-
tion and strengthen the generation capability of our
model. We first calculate a soft gate Gcs

t to dy-
namical select the way of output, that is whether
generating from the vocabulary or copying from
the seed words at time step t, which is defined as:

Gcs
t = sigmoid(W cs

g mcs
t + bcsg ), (12)

where mcs
t = [et−1; s̃cst ] is the concatenation of

the embedding of previous output word y(t−1) and
s̃cst . Then, the probability of predicting a word yt
by copying from seed words or generating from
vocabulary is defined as:

P cs
f (yt) = Gcs

t P cs
c (yt)+ (1−Gcs

t )P cs
v (yt), (13)

where P cs
c (yt) =

∑
i:xi=yt

acst,i is a probability of
seed word copy for yt . And

∑
i:xi=yt

acst,i is the nor-
malized attention weight between st and sequence
labeling layer hidden state vi.

Generation and OOV Words Copy. The prob-
ability of generating the word P co

v (yt) for current
step is computed by:

P co
v (yt|yt−1, x) =

softmax(Wv4(Wv3s̃cot + bv3) + bv4),
(14)

where s̃cot = [ccot ; st] and the context vector ccot is
computed by:

ccot = attn(st, [u1,u2, · · ·un],W
co
att). (15)

Then, the second soft gate Gco
t is computed by:

Gco
t = sigmoid(W co

g mco
t + bcog ), (16)

where mco
t = [et−1; s̃cot ]. Eventually, the probabil-

ity of predicting a word yt by copying from OOV

Dataset |Samples| #KP %A-KP
Inspec 500 9.79 26.42

NUS 211 10.81 45.36

SemEval 100 14.43 55.61

KP20k 20000 5.26 37.23

Table 1: Statistics for the four testing datasets. |Sam-
ples|: the number of samples on the dataset, #KP: the
avg number of keyphrases, %A-KP: the proportion of
absent keyphrase.

words or generating from vocabulary is computed
by:

P co
f (yt) = Gco

t P co
c (yt)+(1−Gco

t )P co
v (yt), (17)

where P co
c (yt) =

∑
i:xi=yt

acot,i is a probability of
OOV word copy for yt. And

∑
i:xi=yt

acot,i is the
normalized attention score between st and encoder
hidden state ui.

In the end, the final probability distribution of
predicting a word yt is computed by summation of
P cs
f (yt) and P co

f (yt):

Pf (yt) = P cs
f (yt) + P co

f (yt). (18)

3.3 Training Loss

DualCopyNet is based on sequence-to-sequence
structure and involves two tasks: keyphrase genera-
tion and sequence labeling. Thus, the loss function
contains two parts: the sequence labeling layer in-
troduces an additional CRF loss (equation 8), and
the decoder layer adopts the negative log likelihood
(NLL) loss, which is defined as:

Lg = −
Ly∑
t=1

logPf (yt|yt−1, x, θ). (19)

We define the overall loss function with the CRF
loss and the NLL loss:

L = Ls + Lg. (20)

The loss is calculated as the average over mini
batch. Finally, we use Adam (Kingma and Ba,
2014) to optimize the model.

4 Experimental Settings

In this section, we will describe the training and
testing sets used for the experiments, then introduce
the baseline models and evaluation metrics.
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4.1 Dataset
We choose the largest public dataset KP20k (Meng
et al., 2017) for training models, it contains a large
number of high-quality academic papers mainly
from the computer science field. The dataset has
527,830 articles for training and 20000 articles for
validation.

Furthermore, we evaluate our model on four
testing datasets widely adopted in previous works
(Chen et al., 2018; Yuan et al., 2020; Chen et al.,
2019; Ye et al., 2021; Swaminathan et al., 2020;
Chen et al., 2020), including Inspect (Hulth, 2003),
NUS (Nguyen and Kan, 2007), KP20k (Meng et al.,
2017) and SemEval (Kim et al., 2010). Table 1
summarizes the statistics of each testing dataset.

4.2 Baselines
In our experiments, we choose the following
keyphrase generation models as the baselines:

• catSeq (Yuan et al., 2020): An RNN-based
attentional encoder-decoder model with copy
mechanism.

• catSeqD (Yuan et al., 2020): catSeq aug-
mented with orthogonal regularization and se-
mantic coverage mechanism.

• catSeqCorr (Chen et al., 2018): a new
sequence-to-sequence architecture for
keyphrases generation, which captures
correlation among multiple keyphrases in two
ways.

• catSeqTG (Chen et al., 2019): a new sequence-
to-sequence architecture for keyphrases gen-
eration, which explicitly considers the leading
role of the title to the overall document main
body.

• catSeq-RF (Chan et al., 2019): An extension
of catSeq with RL-based finetuning, which
introduces an adaptive reward function and
encourages the model to generate both suffi-
cient and accurate keyphrases.

• GAN-mr (Swaminathan et al., 2020): A
novel model for keyphrase generation ap-
proach using Generative Adversarial Net-
works (GANs).

• ExHiRD-h (Chen et al., 2020): An exclusive
hierarchical decoding model with a hard ex-
clusion mechanism.

4.3 Implementation Details
The models catSeq, catSeqD, catSeqCorr, catSe-
qTG and catSeq-RF are implemented by (Chan
et al., 2019). Followed by (Yuan et al., 2020;
Chen et al., 2020; Swaminathan et al., 2020; Chan
et al., 2019), when training our model, the ground-
truth keyphrase sequence is the concatenation of
present and absent keyphrases. Then the present
keyphrases are sorted according to the initial orders
arose in the document, and the absent keyphrases
keep their original orders. Furthermore, we replace
all digits with the symbol <digit> and define the vo-
cabulary V with the most frequent words numbered
50,000.

The embedding size and hidden size of GRU,
LSTM are set to 150; The batch size is 64 and
learning rate is 0.0001; The gradient clipping is set
to 1 and dropout is set to 0.1. The hyper-parameters
are tuned on validation set. Early stopping is ap-
plied when the validation loss stops dropping three
continuous evaluations. During testing, we set the
maximum depth of the beam search as 6 and the
beam size as 200. While on KP20k dataset, due
to the large amount of test data, we set the beam
size as 20. We implement the model using Pytorch
(Paszke et al., 2019) and train the model using
NVIDIA 3090TI and Ubuntu System.

4.4 Evaluation Metrics
Same as previous work (Chen et al., 2019; Swami-
nathan et al., 2020; Chan et al., 2019; Ye et al.,
2021; Chen et al., 2020), we adopt the macro-
averaged F1@5 and F1@M as the evaluation met-
rics. F1@M compares all keyphrases predicted by
the model with the ground-truth to compute the F1
score. And F1@5 compares top 5 keyphrases pre-
dicted by the model with the ground-truth. Specifi-
cally, when the number of predictions is less than
five, F1@5 will be the same as F1@M, so we must
randomly append incorrect keyphrases to fill five
predictions instead of directly using the original
predictions. Furthermore, we also apply Porter
Stemmer for preprocessing before comparisons.

5 Results and Analysis

5.1 Keyphrases Prediction
In this section, we will evaluate the performance
of the model in predicting present keyphrase and
absent keyphrase separately.

The performances of predicting present
keyphrase are shown in Table 2. As we can see
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Model Inspec NUS SemEval KP20k
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

catSeq 0.262 0.225 0.397 0.323 0.283 0.242 0.367 0.291

catSeqD 0.263 0.219 0.394 0.321 0.274 0.233 0.363 0.285

catSeqCorr 0.269 0.227 0.390 0.319 0.290 0.246 0.365 0.289

catSeqTG 0.270 0.229 0.393 0.325 0.290 0.246 0.366 0.292

catSeq-RF 0.300 0.250 0.426 0.364 0.327 0.285 0.383 0.310

GAN-mr 0.299 0.258 0.417 0.348 \ \ 0.378 0.303

ExHiRD-h 0.291 0.253 \ \ 0.335 0.284 0.374 0.311

DualCopyNet 0.342 0.284 0.395 0.379 0.339 0.315 0.337 0.312

Table 2: F1 of present keyphrases prediction on four datasets. The best/second results in each column are highlighted
with bold/underline.

Model Inspec NUS SemEval KP20k
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

catSeq 0.008 0.004 0.028 0.016 0.028 0.020 0.032 0.015

catSeqD 0.011 0.007 0.024 0.014 0.024 0.016 0.031 0.015

catSeqCorr 0.009 0.005 0.024 0.014 0.026 0.018 0.032 0.015

catSeqTG 0.011 0.005 0.018 0.011 0.027 0.019 0.032 0.015

catSeq-RF 0.017 0.009 0.031 0.019 0.027 0.018 0.047 0.024

GAN-mr 0.019 0.013 0.038 0.026 \ \ 0.045 0.032
ExHiRD-h 0.022 0.011 \ \ 0.025 0.017 0.032 0.016

DualCopyNet 0.014 0.012 0.055 0.038 0.029 0.023 0.042 0.025

Table 3: F1 of absent keyphrases prediction on four datasets. The best/second results in each column are highlighted
with bold/underline.

that DualCopyNet greatly outperforms the whole
baseline models on F1@5, especially on Inspec,
NUS and SemEval datasets, but there is only a
slight improvement on the KP20k dataset. For
F1@M, DualCopyNet also achieves the best results
on the Inspec and SemEval datasets, outperforms
all models, which demonstrates the effectiveness
of our method.

Predicting absent keyphrases is a challenging
task. As shown in Table 3, we can see that all
models are poor in predicting absent keyphrases
comparing to predicting present keyphrases. In this
task, DualCopyNet achieves better performance on
the NUS and SemEval datasets and outperforms all
baseline models. While, the performance is slightly
lower than some baseline models on Inspect and
KP20k datasets.

Overall, the advantage of our model is more obvi-
ous on datasets containing more target keyphrases,
such as NUS, SemEval and Inspec. Because
the more keyphrases, the greater the number of
seed words included, and the model can achieve
a greater performance improvement. In contrast,
as can be seen from Table 1, The average number

of keyphrases on KP20k is much lower than the
other three datasets. Therefore, our model does not
achieve the best results on KP20k dataset.

5.2 Ablation Study
We conduct an ablation study to further analyze
dual copy mechanisms and multi-task learning.
First, we introduce three variants of DualCopyNet:

• SeqLabelingNet: We remove the decoder
layer and only keep the sequence labeling
layer.

• OOVCopyNet: We remove the seed words
copy mechanism in the decoder layer, and
only keep the OOV words copy mechanism.

• DualCopyNetnll: This model is same as Dual-
CopyNet. But we only use the negative log-
likelihood loss (Equation 19) to optimize the
model when training phase.

The present keyphrases prediction results of the
ablation study are shown in Table 4. After adding
the seed words copy mechanism, the performance
of the models (DualCopyNet and DualCopyNet)
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Model Inspec NUS SemEval KP20k
P R F1 P R F1 P R F1 P R F1

SeqLabelingNet 0.275 0.075 0.118 0.446 0.169 0.245 0.389 0.142 0.208 0.349 0.222 0.271

OOVCopyNet 0.407 0.273 0.327 0.353 0.402 0.375 0.285 0.353 0.315 0.258 0.473 0.334

DualCopyNetnll 0.419 0.276 0.332 0.351 0.435 0.388 0.280 0.370 0.319 0.259 0.485 0.338
DualCopyNet 0.403 0.298 0.342 0.348 0.458 0.395 0.303 0.384 0.339 0.258 0.485 0.337

Table 4: Ablation study on the four datasets for present keyphrases predication. The P denotes Precision@M,
the R denote Recall@M and the F1 denote F1@M. The best/second results in each column are highlighted with
bold/underline.

Model Inspec NUS SemEval KP20k
P R F1 P R F1 P R F1 P R F1

OOVCopyNet 0.008 0.012 0.010 0.041 0.032 0.036 0.045 0.013 0.020 0.038 0.036 0.037

DualCopyNetnll 0.013 0.019 0.015 0.048 0.039 0.043 0.049 0.025 0.033 0.040 0.044 0.042
DualCopyNet 0.012 0.015 0.014 0.063 0.048 0.055 0.062 0.019 0.029 0.040 0.044 0.042

Table 5: Ablation study on the four datasets for absent keyphrase predication. The best/second results in each
column are highlighted with bold/underline.

on four datasets has been obviously improved, es-
pecially in Recall, which means the model can re-
call more keyphrases through the seed words copy
mechanism, and this is also consistent with our ex-
pectations. Due to the KP20k dataset only contains
few keyphrases, so there is only a slight improve-
ment on F1. In addition, the precision of SeqLabel-
ingNet achieves the best results on most of datasets,
so it is reasonable and effective to identify present
keyphrases as seed words and copy them into the
decoder.

Since SeqLabelingNet cannot predict the ab-
sent keyphrase, there only remains three mod-
els. The experimental results are shown in Ta-
ble 5. In the prediction of absent keyphrases,
the models (DualCopyNetnll and DualCopyNet)
have obviously improved in Recall, Precision
and F1 after adding the seed words copy mech-
anism. Furthermore, the models DualCopyNet and
DualCopyNetnll have the same structure, but Dual-
CopyNet employs multi-task learning when train-
ing phase. As can be seen from Table 4 and Table 5,
F1 of DualCopyNet outperforms DualCopyNetnll

on most of datasets. It proves that multi-task learn-
ing can effectively improve the performance of the
model.

5.3 Ability to Generate Diverse Keyphrases

To investigate the model’s ability of generating di-
verse keyphrases, we adopt NDCG (Wang et al.,
2013) to evaluate models. NDCG is used to evalu-
ate the diversity of generated text, which is widely

Figure 3: NDCG@10 metrics on four datasets.

used in text generation tasks (Habibi and Popescu-
Belis, 2013) and information retrieval (Santos et al.,
2013) tasks. The higher NDCG means the more di-
verse content that the model can generate. It works
by penalizing redundant keyphrases and rewarding
new keyphrases.

The results are summarized in Figure 3. Com-
pared to OOVCopyNet, DualCopyNet achieves bet-
ter NDCG@10 on three of the four datasets. Es-
pecially, there is an obvious improvement on the
KP20k and Inspec datasets. It proves that the in-
troduction of the seed words copy mechanism not
only improves the performance of the model, but
also generates more diverse phrases.

5.4 Case Study

In Figure 4, we show examples of keyphrases gen-
erated by SeqLabelingNet, OOVCopyNet and Du-
alCopyNet respectively. After inputting the title
and the abstract, we can see that DualCopyNet
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Figure 4: Case study. The keyphrases in the rectangle are truth keyphrases. Words remarked with green indicate
copied from OOV words. Words remarked with orange indicate copied from seed words.

can generate more diverse keyphrases, the quantity
even exceeds the ground-truth. Not only that, these
generated keyphrases are generally reasonable and
typical. Next, we can find that DualCopyNet copies
the seed words “phrase” predicted by the sequence
labeling layer to generate some new keyphrases,
such as “phrase indexing”. But the keyphrases
generated by OOVCopyNet contain none of the
above words, which proves the effectiveness of the
seed words copy mechanism. On the other hand,
DualCopyNet also generates keyphrases copying
from OOV word “nextword”. Finally, through the
case study, it is proved that our model can well
integrate the two copy mechanisms and effectively
improve the performance of generating keyphrases.

6 Conclusions

In this paper, we propose a novel DualCopyNet for
keyphrases generation. Based on the phenomenon
of that many keyphrases are composed of seed
words in the source text, we design dual copy mech-
anisms to precisely copy seed words and OOV
words from the source text. Furthermore, aim-
ing to obtain seed words, we introduce an addi-
tional sequence labeling layer and train the model
with a multi-task learning. Finally, the experiments
conducted on multiple datasets show our model’s
achievements are higher than most of baselines.
Meanwhile, ablation experiments show a positive
effect of the seed word copy mechanism and multi-
task learning.
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