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Abstract

Knowledge-grounded dialogue generation con-
sists of two subtasks: knowledge selection and
response generation. The knowledge selector
generally constructs a query based on the dia-
logue context and selects the most appropriate
knowledge to help response generation. Re-
cent work finds that realizing who (the user
or the agent) holds the initiative and utilizing
the role-initiative information to instruct the
query construction can help select knowledge.
It depends on whether the knowledge connec-
tion between two adjacent rounds is smooth
to assign the role. However, whereby the user
takes the initiative only when there is a strong
semantic transition between two rounds, prob-
ably leading to initiative misjudgment. There-
fore, it is necessary to seek a more sensitive
reason beyond the initiative role to help re-
fine the history information used to construct
the query. To address the above problem, we
propose a Topic-shift Aware Knowledge sElec-
tor(TAKE). Specifically, we first annotate the
topic shift and topic inheritance labels in multi-
round dialogues via distant supervision. Then,
we alleviate the noise problem in pseudo labels
through curriculum learning and knowledge
distillation. Extensive experiments on WoW
show that TAKE performs better than strong
baselines.1

1 Introduction

Due to the dull response generation problem in the
general open-domain dialogue generation technol-
ogy, an increasing number of researchers focus on
knowledge-grounded dialogue generation (KGDG)
(Ghazvininejad et al., 2017; Li et al., 2019; Chen
et al., 2020a; Zhan et al., 2021a). By connecting
the external knowledge base with the generation
model as supplement information, the generated
response becomes more engaging and informative.

∗ Zheng Lin is the corresponding author.
1The code is available at https://github.com/

iie-ycx/COLING2022-TAKE.

Topic: French Bulldog
User (1) I love my French bulldog!

Agent

(2) Aww, I bet your dog is so cute.
The French Bulldog is a small breed
and also known as the Frenchie.
<French Bulldog’s nickname>

User (3) Yes, it is. What color is a bulldog
usually?

Agent
(4) They are a cross between bulldogs
and ratters. Most are white or black.
<French Bulldog’s color>

User (5) I see, do you own any pets?

Agent
(6) I have a pet snake. His name
is Slinky.
<snake>

User (7) Cool! Is it safe to have snake pets?

Agent

(8) Yes, if you have the right enclosure.
I have one that likes to eat prey much
larger than his head. I feed him rats.
<snake>

Table 1: An example of topic shift in WoW dataset. The
utterances (2) to (4) exhibit a sub-topic shift: from dog’s
nickname to dog’s color; the utterances (4) to (6) exhibit
an obvious topic shift: from dog to snake; the utterances
(6) to (8) exhibit a topic inheritance.

Knowledge selection plays a vital role in KGDG
task (Meng et al., 2021). Since one can choose
any reasonable knowledge to carry on the conversa-
tion, one-to-many relations exist between dialogue
context and knowledge (Kim et al., 2020). Thus,
selecting the most appropriate knowledge in the
vast knowledge pool becomes a significant chal-
lenge. And most of the existing methods pay close
attention to the design of the knowledge selector.

Some methods attempt to improve the accuracy
of knowledge selection by discovering more fea-
tures in the dialogue context (Meng et al., 2020;
Zheng et al., 2020) or introducing extra posterior
knowledge (Lian et al., 2019; Kim et al., 2020;
Chen et al., 2021). These methods often directly

https://github.com/iie-ycx/COLING2022-TAKE
https://github.com/iie-ycx/COLING2022-TAKE
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take the whole dialogue context as the input of the
knowledge selector, ignoring that different parts
of the context play different roles. Considering
this, Meng et al. (2021) propose to decouple the
knowledge selector according to the different part
of the input and only keep part of the history in-
formation by introducing mixed-initiative (user-
initiative and agent-initiative) characteristics. In
their method, the user takes the initiative when
the knowledge connection between two adjacent
rounds is unsmooth. Such a judgement only works
when there is a strong semantic transition between
two rounds. However, the conversational direction
can be changed by the user when the user shifts the
topic from one to another relevant one. For exam-
ple, the utterance flow (2) → (3) → (4) in Table 1
shows that the topic shifts from dog’s nickname to
dog’s color by the user, which means that the user
dominates the dialogue direction. Nevertheless, the
knowledge connection here is smooth because the
knowledge is still relevant to dogs, leading to an
agent-initiative judgement. The misjudgement will
make the model choose the improper part of (agent-
related) history information to select knowledge.

To address the above problem, we bring the topic
into multi-turn knowledge selection. Through our
observation, we find that the topic shift and topic
inheritance affect knowledge selection deeply. For
the topic shift, it is generally caused by the active
user’s frequent questioning and the model should
select knowledge according to the current user utter-
ance. For the topic inheritance, it is mainly caused
by relatively passive users who agree with what
the agent says, and the model needs to find some
relative topics to continue the conversation accord-
ing to previously selected knowledge. We obtain
the topic shift label via distant supervision (Mintz
et al., 2009), where we regard the retrieving entity
as the topic word. Considering that there may exist
noises in the pseudo labels, we further alleviate
their negative effects through curriculum learning
and knowledge distillation (see section 2.6 for de-
tails).

Our contributions in this paper are as follows:

• For the KGDG task, we find that the topic
shift triggers knowledge alteration, and pro-
pose a Topic-shift Aware Knowledge sElector
(TAKE) to better locate the relevant parts from
the dialogue history at an opportune moment.

• To overcome the noisy label problem intro-
duced by distant supervision, we optimize the

topic-shift aware knowledge selector through
curriculum learning and knowledge distilla-
tion, which can effectively alleviate the nega-
tive influence of pseudo topic labels.

• Experimental results on WoW dataset show
that compared with strong baselines, TAKE
not only selects knowledge more accurately
especially on the unseen test set, but also
generates more informative responses on both
automatic and human evaluation metrics.

2 Approach

2.1 Task Formulation
Suppose we have a t-rounds conversation C =
{(Xt, Yt)}, t = 1, 2, . . . , |C| , where Xt and
Yt are the utterances of the user and the agent
at turn t respectively. In each turn, before the
dialogue agent generates responses, the model
is externally connected with a knowledge pool
Kt = {Kt

1,K
t
2, . . . ,K

t
D} which contains D pieces

of knowledge. Given the current user utterance
Xt, the dialogue history {Xi, Yi}t−1

i=1, the previous
golden knowledge {K ′

i}
t−1
i=1 and the current knowl-

edge pool Kt, our goal is to select the most ap-
propriate knowledge K ′

t from the pool and make
use of the selected knowledge Ks

t to generate the
response Yt = (yt1, y

t
2, . . . , y

t
|Yt|).

2.2 Overview of TAKE
As shown in Figure 1, our model TAKE contains
three components: Mixed Encoder, Topic-aware
Knowledge Selector and Decoder. In the following
subsections, we first introduce the three compo-
nents in section 2.3, 2.4 and 2.5. Next, we present
how to utilize curriculum learning and knowledge
distillation to alleviate the problem of noisy pseudo
labels obtained by distant supervision in section
2.6. Finally, we detail our training strategy and loss
functions.

2.3 Mixed Encoder
We take BERT as the backbone of Encoder. At turn
t, given the user utterance Xt and the knowledge
pool Kt = {Kt

1,K
t
2, . . . ,K

t
D}, we mix the user

utterance and the knowledge sentences following
(Zhao et al., 2020b). Specifically, we concatenate
Xt with [CLS] [SEP] token in BERT and the candi-
date knowledge Kt

i to acquire M t
i . In this way, we

can better use the multi-layer bidirectional attention
mechanism in BERT to allow the dialogue context
interact sufficiently with knowledge candidates.
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Figure 1: Architecture of the proposed model.

M t
i = [CLS]Xt[SEP]Kt

i (1)

We then take D concatenated context-knowledge
pairs Mt = {M t

1,M
t
2, . . . ,M

t
D} as the input of the

Encoder. Tokens in Mt will be encoded as word
representations [HCLSti ;HXt

i ;HSEPt
i ;HKt

i ]. After
that, we obtain sentence representations via mean
pooling (Cer et al., 2018):

hXt
i = pooling(HXt

i ),

hKt
i = pooling(HKt

i )
(2)

In order to get a unified sentence representation
of the user utterance, we integrate the D represen-
tations through additive attention mechanism and
obtain hXt :

si = v⊤u tanh(Wuh
Xt

i )

αt = SM({si}Di=1),h
Xt =

D∑
i=1

αt
ih

Xt
i

(3)

where vu and Wu are trainable weights, and SM
means softmax function.

2.4 Topic-aware Knowledge Selector
The knowledge selector module we designed is
composed of three parts: Topic Shift Discrimina-
tor, Topic-shifted Knowledge Selector and Topic-
inherited Knowledge Selector. We name the latter
two networks as Sub-KS for simplicity.

The topic shift discriminator can judge whether
the topic shift or the topic inheritance will occur at
the current turn and then choose one selector in Sub-
KS. According to the previous analysis, in the case
of topic shift, it is more likely that the user mentions
a new topic. Hence the topic-shifted knowledge
selector makes full use of the current user utterance
to construct query vectors. Otherwise, the topic-
shifted knowledge selector inherits a topic from

the previous conversation and selects a knowledge
under the topic.

Due to BERT’s NSP pre-training scheme (Devlin
et al., 2018), the [CLS] token is endowed with the
ability to extract semantic information in sentences.
We use a feedforward layer to extract the semantic
associative information between the current user
utterance and the knowledge candidates as:

ut
i = Relu(FC(HCLSti)) (4)

where FC means fully connected layers.
Besides, we use the attention mechanism on

knowledge candidates similar to function (3) and
then extract the differential features between them
through a multilayer perceptron(MLP).

hKt = attention({hKt
i }Di=1),

ekt = Relu(FC(hKt))
(5)

Topic-shifted Knowledge Selector: Given the
current user utterance representation hXt , the can-
didate knowledge representations [hKt

1 , . . . ,hKt
D ],

and the representations mentioned above ut
i, e

k
t

,we construct query vector and key vector as:

Qsh = MLP([hXt ; ekt ])

Ksh
i = MLP([ut

i ; h
Kt

i ])

Ksh = [Ksh
1 ; . . . ;Ksh

D ]

(6)

Given Qsh and Ksh, the topic-shifted knowl-
edge selector predicts the distributions over the
knowledge pool Kt by additive attention:

P (Kt|S) = SM(v⊤0 tanh(W0Ksh + U0Qsh))
(7)

where v0,W0 and U0 are trainable parameters.
Topic-inherited Knowledge Selector: Follow-

ing (Meng et al., 2021), we apply a stack of trans-
former encoder blocks with positional embeddings
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to integrate the previously selected knowledge and

extract the inherited topic h
K′

t−1

trans:

[h
K′

1
trans; . . . ;h

K′
t−1

trans] =

TransformerEncoder([hK′
1 ; . . . ;hK′

t−1 ])
(8)

Then, given the representation of inherited topic

h
K′

t−1

trans, the candidate knowledge representations
[hKt

1 , . . . ,hKt
D ] and the representation of knowl-

edge difference ekt , we construct query vector and
key vector as:

Qinh = MLP([hKt−1

trans; e
k
t ])

Kinh
i = MLP(hKt

i )

Kinh = [Kinh
1 ; . . . ;Kinh

D ]

(9)

Similarly, the topic-inherited knowledge selector
predicts the distributions P (Kt|inherit) by:

P (Kt|I) = SM(v⊤1 tanh(W1Kinh + U1Qinh))
(10)

Topic Shift Discriminator: There are two topic
shift discriminators at the training stage: teacher
topic shift discriminator and student topic shift dis-
criminator. The former is provided with the current
golden knowledge as posterior information, and it
generates soft labels of topic shift, which can guide
the student model to distinguish noises. In section
3.3 we will explain how it works in detail. The lat-
ter generates hard labels indicating which Sub-KS
works, and this corresponds to the 0/1 switch in
Figure 1.

Given the integration of the previously selected

knowledge h
K′

t−1

transand the current-turn user utter-
ance representation hXt , we first extract the topic
information in the current user utterance ext by a
multilayer perceptron(MLP). Then we construct
two discriminators based on whether they have ac-
cess to posterior information as follows:
Teacher module:

vT = [hK′
t ; ext ;h

K′
t−1

trans; e
x
t − h

K′
t−1

trans; e
x
t ⊙ h

K′
t−1

trans]

PT (D = S) = Sigmoid(FC(vT ))
(11)

Student module:

vT = [ext ;h
K′

t−1

trans; e
x
t − h

K′
t−1

trans; e
x
t ⊙ h

K′
t−1

trans]

PS(D = S) = Sigmoid(FC(vS))
(12)

where ⊙ denotes element-wise product, and D = S
means discrimination result is topic shift.

We train both of the two modules with Cross En-
tropy loss, ŷt represents the topic shift labels ob-
tained by distant supervision:

L(D) = − 1

|C|

|C|∑
t=1

ŷt log(P (D)) (13)

2.5 Decoder
We take GPT-2 as the backbone of Decoder. Sim-
ilar to (Zhao et al., 2020b; Zheng and Huang,
2021), we define new tokens in the dictionary of
GPT-2 Tokenizer: "<context>", "<response>" and
"<knowledge>". These tokens are treated as seg-
ment embeddings to mark different information
components.

At the training stage, the inputs of the de-
coder are the concatenation of the dialogue con-
text, the golden knowledge and the responses.
The training loss is the Cross Entropy on the re-
sponses. At the inference stage, given the se-
lected knowledge Kt

sel and the dialogue context
{(X1, Y1), . . . , (Xt−1, Yt−1), Xt} , the decoder
synthesizes the two parts to generate the current
response until <eos>.

Lg = − 1

|Yt|

|Yt|∑
i=1

log(P (yti |X≤t, Y<t,K
′
t, y

t
<i))

(14)

2.6 Pseudo Label Learning
Our findings on topic shift in multi-round conver-
sation suggest that topic shift helps knowledge se-
lection. However, we still face a lack of labels.
Inspired by distant supervision, we regard the en-
tity words of retrieving knowledge candidates as
topic words and obtain topic shift labels D′. After
that, we alleviate the noise problem in pseudo la-
bels through curriculum learning and knowledge
distillation. In this subsection, we describe our
methods in detail.

Distant Supervision: During the construction
of the KGDG dataset, the candidate knowledge is
retrieved from Wikipedia by entity words through
search engines. The entity word can retrieve the
corresponding knowledge, which indicates that it
highly summarizes the content of the knowledge
sentence. However, the existing methods ignore
this useful information. According to (Brown and
Yule, 1983), the topic is the most frequently used
term. We make a hypothesis according to the idea
of distant supervision (Mintz et al., 2009): the en-
tity used to search candidate is the topic word of
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each knowledge sentence. Then, we mark topic
shift labels according to the topic words. If the
topic words of the current round appeared in the di-
alogue context, we mark the current round as topic
inheritance with label 0; if the entity words of the
current round have not appeared in the dialogue
context, we mark the current round as topic shift
with label 1. We will prove that the pseudo labels
acquired in this way are instructing in section 3.6.

Noisy Label Learning: The hypothesis men-
tioned above is relatively strong. Therefore, we
adopt curriculum learning (Bengio et al., 2009) and
knowledge distillation (Hinton et al., 2015) meth-
ods to alleviate the noises and further optimize the
model. Specifically, with the increase of training
steps, our model gradually chooses the Sub-KS
based on the output of the discriminator to reduce
the dependence on the topic shift label D′.

LCL = − 1

|C|

|C|∑
t=1

(pi log
(
P (Kt)P

(
D′))

+(1− pi) log (P (Kt)P (DS)))

(15)

where pi decreases with the training steps.
Besides, we distill knowledge between the

teacher model and the student model through KL
divergence loss:

Ldistill = DKL(PT ||PS) (16)

We train TAKE’s knowledge selector in two
stages:

Stage I: LK1 = Lks + α(LT )

Stage II: LK2 = LCL + α (Ldistill + LS)
(17)

and the original KS loss is defined as:

Lks = − 1

|C|

|C|∑
t=1

ŷt log
(
P (Kt) | P

(
D′)) (18)

3 Experiments

3.1 Experimental Setup
Dataset. There are dozens of datasets chosen
for evaluating the KGDG task before (Moghe
et al., 2018; Zhou et al., 2018; Dinan et al., 2018).
We take the most challenging one Wizard of
Wikipedia(WoW) for experiments. The WoW data
is obtained from a crowdsourcing data collection
website. In data collection, the user side plays the

role of the apprentice, and the agent side plays the
role of the wizard. The wizard has access to the
knowledge retrieved from Wikipedia as ground-
source to generate informative responses, while the
apprentice prefers speaking common utterances.
In the WoW dataset, there are nearly 67 pieces of
knowledge on average in a knowledge pool. The
WoW dataset consists of 22,311 dialogues with
201,999 turns divided into training set/validation
set/test set. The test set is further divided into test
seen set and test unseen set. The conversation
topics of the test seen set have appeared in the
training set, while the topics of the test unseen set
are brand-new. The latter contains out-of-domain
data which is more challenging.

Baseline Models. We compare our TAKE model
with several SOTA models, including:
MemNet: A model proposed by Dinan et al.
(2018), which is regarded as the most basic base-
line in the KGDG task.
SKLS: Kim et al. (2020) design the sequential la-
tent knowledge selection model according to the
idea of conditional variational auto-encoder.
DukeNet: Meng et al. (2020) design a knowledge
selection network that takes knowledge tracking
and knowledge transfer as a pair of dual tasks to
provide feedback to each other.
DiffKS: A model considered the difference of
knowledge between the two adjacent rounds of
dialogue, proposed by Zheng et al. (2020). We take
the decoupled version as one baseline.
KnowledGPT: Zhao et al. (2020b) design a joint
training strategy, which uses the combination of
RL and CL to improve the knowledge selection
module and generation module. It takes GPT-2 as
the decoder.
MIKe: Meng et al. (2021) introduce the concept
of mixed-initiative into knowledge-grounded dia-
logue generation and train the initiative discrimina-
tor with a self-supervised learning strategy.
CoLV: A model proposed by Zhan et al. (2021a),
the authors propose a collaborative latent variable
model to integrate the diversity of KS and DG si-
multaneously in separate yet collaborative latent
spaces.
MIKe + GPT2: We reinforce the MIKe model
with GPT-2 as a strong baseline, and the KS mod-
ule remains unchanged.

Evaluation Metrics. For automatic evalua-
tion, we evaluate KS with accuracy and eval-
uate response generation quality with sentence-
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Model
WoW Test Seen WoW Test Unseen

BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC
MemNet 17.2 1.61 24.1 17.0 15.5 23.9 13.7 0.6 21.7 15.6 13.1 14.0

SKLS 18.9 1.8 24.5 17.6 16.0 26.8 17.3 1.1 21.0 16.1 13.7 18.3
DukeNet 18.6 2.6 25.4 18.8 17.3 26.2 16.3 1.8 23.2 16.9 15.4 20.1
DiffKS 18.8 2.2 24.8 17.9 16.8 25.6 17.4 1.7 23.6 16.8 14.7 19.8
MIKe 19.1 2.8 25.9 19.2 18.3 28.2 17.6 2.1 24.2 17.8 16.0 21.5
CoLV - 2.9 20.6 - - 30.1 - 2.1 19.7 - - 18.9

KnowledGPT 19.5 - 24.7 - - 28.0 17.7 - 22.3 - - 25.4
MIKe + GPT2 20.4 3.3 26.7 20.2 19.4 28.2 18.8 2.5 25.1 18.6 17.4 21.5

TAKE 20.8 3.6 27.1 20.5 19.9 28.8 20.1 3.3 26.2 19.7 18.9 25.8

Table 2: Automatic Evaluation results on Wizard of Wikipedia.

WoW Test Seen WoW Test Unseen
Model

informativeness coherence fluency informativeness coherence fluency
Dukenet 1.63 1.96 1.69 1.57 1.89 1.61

MIKe 1.66 1.97 1.62 1.61 1.90 1.86
MIKe+GPT-2 1.84 2.09 2.05 1.70 2.15 2.27

TAKE 1.88 2.14 2.05 1.90 2.21 2.29

Table 3: Human Evaluation results on Wizard of Wikipedia. The improvement of TAKE to the best baseline
(MIKe+GPT-2) is statistically significant (t-test with p-value < 0.05).

level BLEU-1 (Papineni et al., 2002), BLEU-4,
ROUGE-1 (Lin, 2004), ROUGE-L and METEOR
(Denkowski and Lavie, 2014). These metrics have
been widely used in generation tasks before. For
human evaluation, We randomly sample 50 re-
sponses in test seen set and 50 responses in test
unseen set. By labeling manually, we find the
proportion of the topic shift turn is close to the topic
inheritance turn among these samples. Then we
invite five knowledgeable annotators to score these
samples in {0,1,2,3} considering the following
three aspects: context coherence, fluency and infor-
mativeness(which response contains more knowl-
edge and looks more informative). We compute
Fleiss’ kappa value (Fleiss, 1971) among different
annotators to measure their agreement.

Implementation Details. We use PyTorch
(Paszke et al., 2019) framework to implement our
model. For the implementation of pre-training mod-
els BERT(110M) and GPT-2(117M), we utilize
the open-source Hugging Face transformers (Wolf
et al., 2020). The whole model is optimized with
Adam (Kingma and Ba, 2014) algorithm and gradi-
ent clipping with a maximum gradient norm of 0.4.
We use the gradient accumulation method (accumu-
lation number is 16), and preprocess the knowledge
pool by limiting the number of candidate knowl-
edge to 32 and retaining the golden knowledge at
the training stage to save GPU memory. The batch
size is 2 for training KS and 4 for training DG. The
learning rates are 1e-5 for BERT; 6e-5 for the topic-

aware knowledge selector; 3e-5 for GPT-2. We
adopt the linear scheduler with a warm-up strategy
for the training of Bert and the knowledge selector.
It takes total ten epochs for training stages I and
II and five epochs for training the GPT-2 Decoder.
The weight α in multi-task learning is set to 0.5.
Our model is trained on one NVIDIA Geforce RTX
3090 GPU. For other settings, such as the hidden
size, dropout rate, sentence length and so on, we
keep consistent with MIKe.

3.2 Experimental Results

Table 2 demonstrates automatic evaluation results
on WoW. Our model outperforms the typical base-
line methods Memnet, SKLS, Dukenet and Diffks
remarkably. These methods treat the dialogue con-
text equally to construct query vectors, and the
cursory construction hurts knowledge selection,
thus leading to terrible generation results. In terms
of KS performance, although TAKE has no obvi-
ous advantage in the test seen set compared with
the strong baselines MIKe and Colv, it has a no-
table improvement in the test unseen set (+4.3%
MIKe,+6.9% CoLV). We think that the promotion
comes from a better location of history information
of our method to conduct attention mechanism. Be-
sides, TAKE has a significant improvement over
all generation metrics, which indicates that TAKE
can generate more informative and engaging re-
sponses. For fairness, we transplant the GPT-2
module in TAKE to MIKe to make a further com-
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Model
WoW Test Seen WoW Test Unseen

BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC
TAKE 20.84 3.58 27.14 20.45 19.88 28.75 20.12 3.25 26.16 19.74 18.85 25.78

-CL 20.65 3.41 27.08 20.24 19.69 28.22 19.95 3.17 26.05 19.62 18.76 25.11
-CL -distill 20.53 3.25 26.86 20.12 19.63 27.83 19.82 3.17 25.96 19.49 18.58 24.75
-label Soft 20.55 3.27 26.91 20.15 19.62 27.92 19.68 2.99 25.90 19.34 18.42 23.37
-label Hard 20.12 3.14 26.34 19.75 19.01 25.43 19.36 2.94 25.35 19.10 18.08 22.32

Table 4: Ablation study on the WoW dataset. -CL denotes removing the curriculum learning method. -distill denotes
removing the teacher model and knowledge distillation method. -label Soft denotes removing the pseudo topic shift
label for supervising and connecting the discriminator and Sub-KS with probability. -label hard denotes removing
the pseudo topic shift label for supervising, and the discriminator still chooses Sub-KS through the gumbel-softmax
trick.

parison. The results further emphasize that our
topic-aware knowledge selector has stronger ability
of KS than the mixed-initiative knowledge selector.

The human evaluation is shown in Table 3. The
kappa values are between 0.65 and 0.75, denot-
ing substantial agreement among the annotators
.Thanks to GPT-2 model, TAKE is superior to the
typical baselines on all metrics. As for the strong
baseline MIKe+GPT2, although it is comparable
with TAKE on fluency, our model exceeds it on
informativeness and context coherence a lot. We
think the reason is that TAKE selects knowledge
which is more coherent with the dialogue context.

3.3 Ablation Study
In order to clarify the source of performance im-
provement in TAKE, we conduct ablations by re-
moving particular modules from TAKE. The abla-
tion results are shown in Table 4, which denotes
all components are beneficial for TAKE. The two
methods of noise alleviation in section 2.6 can im-
prove the performance in the inference stage by
making the model adapt to noises introduced by
inaccurate discrimination in advance. Besides, be-
cause the topic transfer label is binary, the curricu-
lum learning method can neutralize the noises in
the pseudo labels. With the increase of the training
rounds, TAKE has more possibilities on discrimi-
nating noisy samples which avoids the overfitting
on wrong labels. The teacher model with posterior
information learns part of the noises in the pseudo
labels in advance and guides the student model to
correct these samples in the form of soft labels. For
the last two lines of the experiment, we find that the
model tends to deteriorate without instructing la-
bels. Only one of the two sub-KS is activated, and
the other is idle. The reason is that the topic shift
discriminator is not supervised by labels, hence
only one of the two sub-KS has been fully trained.
This set of experiments proves the importance of

the pseudo labels.

3.4 Case Study

To better evaluate the performance of response gen-
eration, we randomly select some examples from
the WoW dataset generated by DukeNet, MIKe,
KnowledGPT and TAKE to make comparisons. In
Table 5, the user asked when Instagram appeared
at the current turn. Dukenet and the knowledGPT
model do not capture this vital information to con-
struct queries, so they select the wrong knowledge.
MIKe mistakenly judges that the current round is
an agent initiative dialogue because the connec-
tion between the history and current responses is
smooth. Consequently, it selects knowledge about
Instagram usage based on the previously selected
knowledge. Only TAKE constructs the query vec-
tor based on the current user utterance and selects
the most appropriate external knowledge. We post
the remaining topic-inherited example in appendix
A.2.
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Figure 2: Recall experiment of TAKE on WoW dataset

3.5 Multi-Knowledge Integration
Performance

By conducting experiments on Recall of KS and
multi-sentence knowledge integration, we find that
the one-to-many relations between the dialogue
context and knowledge occur more frequently dur-
ing topic inheritance. Under the framework we
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Topic: Instagram
K0 no passages used.
K1 Users can apply various digital filters to their images and add locations through geotags.

K2
It was created by Kevin Systrom and Mike Krieger, and launched in October 2010 as a
free mobile app exclusively for the iOS operating system.

K3
They can add hashtags to their posts, linking the photos up to other content on Instagram
featuring the same subject or overall topic.
...

context
(1)Are you familiar with Instagram? (2) Oh yes, I love going on Instagram! (3) I think
it makes the images look much more professional. (4) Yeah, they have many neat features.
I wonder when it was started?

DukeNet (K0×) I’m not sure but I know that they are called " x ".
KnowledGPT (K0×) I’m not sure but I know that it was made in the world.
MIKe (K1×) I’m not sure, but I know that users can apply digital filters through geotags.
TAKE (K2✓) It was launched in October 2010 as a free mobile app exclusively for the iOS system.

Table 5: An example for case study. K2 is the golden knowledge. Only TAKE focuses on the current user utterance
to select the golden knowledge and integrates it in response.

WoW Test Seen WoW Test Unseen
Model

BLEU-1 RG-1 METEOR BLEU-1 RG-1 METEOR
MIKe+GPT2 20.44 26.74 19.42 18.77 25.06 17.40

MIKe+GPT2 R@2 20.28 26.65 19.27 18.76 24.92 17.47
TAKE 20.84 27.14 19.88 20.12 26.16 18.85

TAKE R@2 20.65 27.00 20.11 19.92 26.15 18.85
TAKE Inh R@2 20.89 27.24 20.14 20.21 26.26 18.94

Table 6: Top-2 knowledge integrated evaluation results
on WoW. R@2 denotes integrating two knowledge;
TAKE Inh R@2 denotes TAKE’s topic-inherited KS
integrates two knowledge.

proposed, the topic-inherited selector inherits top-
ics in previous rounds. Even though TAKE does
not select the golden knowledge, it chooses rational
knowledge with closing topics. The golden knowl-
edge probably ranks at the k-th positions (k>1).
As shown in Figure 2, with the increase of Re-
call, the curve of the topic-inherited selector rises
steeper, and the improvement of KS comes from
topic-inherited rounds.

Apart from that, we find our topic-aware frame-
work is very suitable for explicit multi-knowledge
integration. Studies have shown that increasing the
number of knowledge integrated into dialogue gen-
eration blindly hurts the generation performance
(Bruyn et al., 2020), which can be confirmed by
the first four lines in Table 6. This is because there
is roughly no relationship between the rank-1 and
rank-2 items of knowledge. However, the genera-
tion results improve if we recall top-2 knowledge
only for topic-inherited rounds. The phenomenon
explains that TAKE is robust, and it can utilize
multi-knowledge effectively.

3.6 Analysis of Pseudo Label and Noisy Label
Learning

To prove the effectiveness of our pseudo labels and
noisy label learning methods, we further conduct
experiments by replacing the output of the discrimi-
nator with random 0/1 labels or different proportion
of pseudo labels at the inference stage. Table 7 and
Figure 3 exhibit the results. If we use random topic-
shift label, the Sub-KS performs terribly with the
wrong part of history information. By compari-
son, the last line in Table 7 denotes that if TAKE
can learn to discriminate topic shift the same as
pseudo labels, the performance will improve much
better. Apart from that, the rising trends in Fig-
ure 3 apparently shows that the more proportion of
pseudo labels the model obtains, the better results
it performs. In our experiments, TAKE’s topic shift
discriminator can predict about 78 percent pseudo
labels after training. However, its knowledge selec-
tion accuracy is significantly higher than 78 percent
pseudo-labels-given experiment during inference
on both the seen and unseen test set. The phe-
nomenon demonstrates that the curriculum learning
and knowledge distillation methods alleviate the
noisy pseudo label problem, and then get fine per-
formance which can only be reached under a higher
proportion of pseudo labels.

4 Related Work

Knowledge-grounded dialogue generation In re-
cent years, the KGDG task has been a hot spot
of research, and many new datasets have emerged
(Zhou et al., 2018; Dinan et al., 2018; Eric et al.,
2021; Komeili et al., 2022). The existing work of
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Model
WoW Test Seen WoW Test Unseen

BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC BLEU-1 BLEU-4 RG-1 RG-L METEOR ACC
TAKE(78%) 20.84 3.58 27.14 20.45 19.88 28.75 20.12 3.25 26.16 19.74 18.85 25.78

Random 19.58 2.95 25.84 19.40 18.57 23.60 18.59 2.64 24.70 18.67 17.35 18.04
80% 20.59 3.37 26.94 20.17 19.7 27.99 19.96 3.19 26.0 19.61 18.78 25.13
90% 20.98 3.65 27.37 20.61 20.03 29.97 20.3 3.32 26.37 19.93 19.04 27.34

Ideal(100%) 21.22 3.79 27.70 20.86 20.40 32.63 20.44 3.45 26.66 20.13 19.31 28.63

Table 7: More experiments on Wizard of Wikipedia. Random denotes that TAKE decides Sub-KS randomly. Ideal
denotes that TAKE decides Sub-KS entirely depending on pseudo labels at the inference stage. 80% denotes that
TAKE decides Sub-KS depending on 80% accurate pseudo labels.
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Figure 3: Analysis of model with different pseudo label proportions on WOW. The red dots indicate experiment
results under normal settings.

KGDG has three improvement directions: improv-
ing the accuracy of knowledge selection; improving
the integration of external knowledge in generation
(Zheng et al., 2021; Cui et al., 2021; Zhao et al.,
2020b); improving the low-resource scenarios per-
formance (Zheng and Huang, 2021; Zhao et al.,
2020a; Liu et al., 2021). We mainly focus on the
first direction. Lian et al. (2019) first proposed to
utilize posterior knowledge to improve KS. Follow-
ing (Lian et al., 2019), Kim et al. (2020) propose a
sequential latent knowledge selection model; Chen
et al. (2020b) attempt to bridge the gap between
prior and posterior knowledge selection; Zhan et al.
(2021a) find that sampling latent variable also helps
response generation and proposed a collaborative
latent variable model. Other work discovers more
features in dialogue context to model KS (Zheng
et al., 2020; Meng et al., 2020).

Topic-shift related works There is no general
definition for "topic" (Purver et al., 2011). How-
ever, the definition given by Owen (1985) inspires
our work in this paper. Although there have been
various types of research about topic (Glavas and
Somasundaran, 2020; Si et al., 2021), there is little
work combining topic shift with multi-round dia-
logue. Xie et al. (2021) introduce a new topic-shift

aware dialog benchmark TIAGE and three tasks.
Sevegnani et al. (2021) propose a new dialogue
connection task when the topic shifts. Zhan et al.
(2021b) utilizes a BiLSTM-CRF network to predict
topic tags before knowledge selection.

5 Conclusion

In this paper, we propose a Topic-shift Aware
Knowledge sElector(TAKE) model, which better
locates the relevant parts from dialogue history to
improve the performance of knowledge selection.
Besides, we obtain topic shift labels inspired by the
idea of distant supervision and adopt curriculum
learning and knowledge distillation methods to alle-
viate the negative influence of noises. Experiments
on the WoW show that our model outperforms the
baselines, and the ablation study indicates that all
components of our methods work. In the future,
we will research on multi-sentence knowledge inte-
gration further and combine the labeling work with
knowledge graph.
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A Example Appendix

A.1 Demonstrations of Pseudo Label
Table 8 shows a case on how we obtain pseudo
labels.

A.2 More Cases
Example in Table 9 indicates that even though
MIKe could select the golden knowledge like
TAKE, TAKE has a better ability to integrate the
ground source. MIKe tends to repeat the golden
knowledge simply while TAKE generates more co-
herent and fluent responses.
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Topic: Canada

Agent
(1) I have many friends in Canada, located in the northern part of North America.
Knowledge: <Canada> Canada is a country located in the northern part of North America.
Pseudo label: 0

User (2) I don’t know anyone from Canada, what’s it like?

Agent

(3) It has 10 provinces.
Knowledge: <Canada> Its ten provinces and three territories extend from the Atlantic to
the Pacific and northward into the Arctic Ocean, covering , making it the world’s
second-largest country by total area.
Pseudo label: 1

User (4) In which provinces are some of your friends?

Agent

(5) My friend lives in a place called Guelph. Canada is sparsely populated,
most of its land is dominated by forest.
Knowledge: <Canada> Canada is sparsely populated, the majority of its land territory being
dominated by forest and tundra and the Rocky Mountains.
Pseudo label: 1

User (6) In Guelph, is it too cold?

Agent

(7)It can be very cold there, especially in Wellington County.
Knowledge: <Guelph> The area – much of what became Wellington County – had been
part of the Halton Block, a Crown Reserve for the Six Nations Iroquois.
Pseudo label: 0

User (8) What are some interesting places in Wellington County?

Agent

(9) Not many interesting places, the population there is only 90k.
Knowledge: <Wellington County, Ontario> According to the 2016 Census,
the population of the County was 90,932.
Pseudo label: 0

Table 8: An example of labelling on the WoW dataset.

Topic: Horse training
K0 no passages used.

K1
There is tremendous controversy over various methods of horse training and even some of
the words used to describe these methods.

K2 Historically, horses were trained for warfare, farm work, sport and transport.

K3
Horses are trained to be manageable by humans for everyday care as well as for equestrian
activities from horse racing to therapeutic horseback riding for people with disabilities.

K4
Horse training refers to a variety of practices that teach horses to perform certain behaviors
when asked to do so by humans.
...

context

(1)It amazes me that some can take a wild horse and train it to be so obedient. Do you know
anything about horse training? (2)Yes! I’m a horse trainer! I use a variety of practices that
teach horses to perform behaviors when asked. I love my job. Horses are such smart animals!
(3) Please tell me more about what you do. I love horses and would love to know more.

DukeNet (K2×) Well horses were trained for warfare, farm work, sport and transport.
KnowledGPT (K2×) Well, I love horses, they were trained for warfare, farm work and transport.

MIKe (K3✓) Well, horses are trained to be manageable by humans for everyday care as well as
therapeutic horseback riding.

TAKE (K3✓) I love to train themto be manageable by humans for everyday care. I also love to
ride them for therapeutic horseback riding.

Table 9: An example for case study. The utterances (2) to (4) exhibit a topic inheritance.
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