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Abstract

Few-shot relation extraction aims to identify
the relation type between entities in a given
text in the low-resource scenario. Albeit
much progress, existing meta-learning meth-
ods still fall into prediction confusions owing
to the limited inference ability over shallow
text features. To relieve these confusions, this
paper proposes a discriminative rule-based
knowledge (DRK) method. Specifically, DRK
adopts a logic-aware inference module to ease
the word-overlap confusion, which introduces
a logic rule to constrain the inference pro-
cess, thereby avoiding the adverse effect of
shallow text features. Also, DRK employs a
discrimination finding module to alleviate the
entity-type confusion, which explores distin-
guishable text features via a hierarchical con-
trastive learning. We conduct extensive exper-
iments on four types of meta tasks and the
results show promising improvements from
DRK (6.0% accuracy gains on average). Be-
sides, error analyses reveal the word-overlap
and entity-type errors are the main courses of
mispredictions in few-shot relation extraction.

1 Introduction

With the emergence of new relation types and ever-
increasing annotation costs, traditional data-driven
relation extraction (RE) methods cannot survive
in this low-data regime (Wang et al., 2021; Chia
et al.). Therefore, the task of few-shot relation
extraction is proposed to cope with such a low-
resource dilemma. In few-shot RE, meta-learning
(ML) has been extensively employed and attained
promising performance, the core of which is to
learn the generalization ability from the data-rich
classes to help predict the data-scarce classes (Han
et al., 2018). These ML approaches can be roughly
divided into two categories: basic ML only acces-
sible to raw sentence text, e.g., prototype (Snell
et al., 2017) and MAML (Finn et al., 2017), and
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knowledge-based ML with the additional external
knowledge (Zheng et al., 2020a), e.g., TD-proto
(Yang et al., 2020) and REGRAB (Qu et al., 2020).

Albeit much progress, the insufficient labeled
data forces existing ML methods to make shal-
low inferences based on superficial text features,
e.g., the word overlap (Utama et al., 2021) and the
matched entity type (Brody et al., 2021). In this
light, as shown in Fig.1, when the support instances
of some relations exhibit massive word overlaps or
have a matched entity-type pair, these ML methods
inevitably get caught in the prediction confusions
(Wang et al., 2020). Based on the taxonomy of sim-
ilar pattern, prediction confusions can be further
classified into the word-overlap confusion and the
entity-type confusion as shown in Fig.1.

For the word-overlap confusion, intuitively, in-
corporating external knowledge, e.g., relation de-
scriptions (Yang et al., 2020), an entity-level knowl-
edge graph (KG) (Roy and Pan, 2021) or entity
types (Sainz et al., 2021; Hao et al., 2019; Yang
et al., 2021), into RE models can ease this semantic
uncertainty to some extent. However, this simple
incorporation (concatenation in the majority) just
provides additional information, and cannot alter
the fact that existing ML methods still process the
shallow inferences. Even worse, the lengthened
text may exceed the input limit and introduce noise,
thereby degrading the model performance. Besides,
the entity-type confusion can not be relieved with
the introduction of external knowledge. Since ex-
ternal information generally contains entity type
information, the simple introduction cannot work
in relations whose entity-type pairs are matched in
head and tail positions. Although the entity mask-
ing (Li et al., 2021) and some data augmentations
(Brody et al., 2021) can increase the relation separa-
bility by changing the data format, these solutions
still rely on the superficial features and fail to grasp
the subtle semantic differences.

In this paper, we attempt to solve these two pre-
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Word-overlap confusion

Alice had a daughter named Archelaus.

Helge was a daughter of Rode.

Rode had a daughter named Mary. 

P25 Mother

P40 Child

Alice(person) has a daughter named Archelaus(person).

Rode(person) has a daughter named Mary(person). 

 Mother

Spouse Rode(person) has a husband named Jack(person).

NGC 451(con) is a spiral galaxy located in Pisces(con).

Star's con

Part_of

Tau2 Grus(con) is a double star located in Grus(con).

P\u010h(place) is a beautiful island located in Hawaii(place).

Entity-type confusion

? ?

Figure 1: Prediction confusions in few-shot RE, including the word-overlap confusion (left) and the entity-type
confusion (right). The word-overlap confusion has relations with the same grammatical structure and massive
word overlaps but mismatched entity-type pair (“con-con” vs. “place-place”), while the entity-type confusion has
relations with the same entity-type pair (“person-person” vs. “person-person”), where the head and tail entities are
indicated in red and blue respectively and the word constellation is abbreviated to “con”.

diction confusions by proposing a discriminative
rule-based knowledge (DRK) method that consists
of a logic-aware inference module and a discrimina-
tion finding module. Specifically, the logic-aware
inference module relieves the word-overlap confu-
sion by a rule-based incorporation of an ontology
KG (Hao et al., 2019). Different from the simple
concatenation in previous work , this module em-
ploys a logic rule (e.g., the “Star’s con” relation
happens when entity-type pair belongs to “con-con”
rather than “place-place”, shown in Fig.1) to con-
strain the model inference. In this way, the rule-
based knowledge can not only mitigate the adverse
effect of shallow text features but also provide a
new inference direction. Unfortunately, this intro-
duced rule is heavily dependent on the discrepancy
of entity types, thereby losing its advantages in the
entity-type confusion. To clear this confusion, the
discrimination finding module is proposed, which
employs a hierarchical contrastive learning strategy
(the instance level and the category level) to further
explore distinguishable text features.

We compare DRK with ML methods with and
without external knowledge on four types of meta-
tasks in FewRel 1.0 (Han et al., 2018). The results
demonstrate: 1) DRK achieves significant improve-
ments over the state-of-the-art baseline in terms of
accuracy; 2) the logic-aware inference module is
more effective than the discrimination finding one;
3) error analyses reveal that the word-overlap and
entity-type confusions are the main error courses
of mispredictions in few-shot RE, and DRK can
effectively relieve these two prediction confusions.

Our key contributions are: 1) a discriminative
rule-based knowledge (DRK) method for few-shot
RE, which targets to relieve prediction confusions;
2) a logic-aware inference module for the word-
overlap confusion by the rule-based knowledge
incorporation, which opens a new inference direc-
tion for few-shot RE; 3) a discrimination finding
module for the entity-type confusion by the hier-

archical contrastive learning, which explores sub-
tle semantic differences; 4) extensive experiments
demonstrating the effectiveness of our proposals.

2 Related Work

2.1 Basic ML for Few-shot RE

In few-shot RE, basic ML generally infers rela-
tion type based on original text as the sole in-
put, which can be roughly divided into two types,
i.e., optimization-based ML and metric-based ML
(Huang et al., 2021). Optimization-based ML fo-
cuses on finding good initialization points for pa-
rameters that can readily generalize to novel rela-
tion types within few gradient steps. For example,
MAML adopts a model-agnostic gradient update
strategy to produce good gradient stand points of
parameters for novel relations (Finn et al., 2017).
To reduce the computational complexity of MAML,
Reptile only employs first-order derivatives to up-
date parameters (Nichol et al., 2018). Metric-based
ML aims to design a metric function that clearly
measures the distance of instances in the embed-
ding space. For instance, prototypical networks
identify the relation labels by computing the simi-
larity between query instances and the relation pro-
totypes (Snell et al., 2017). Following this work,
quantities of methods devote to improving the per-
formance of prototype, e.g., Gao et al. (2019a) mod-
ify the representation of the prototype by highlight-
ing the crucial instances and features, and Sun et al.
(2019) redefine the prototype via a hierarchical at-
tention scheme.

However, these ML methods can’t make reliable
inferences in the low-resource scenario, and eas-
ily fall into the prediction confusions. To clear
these confusions, our proposal DRK introduces an
ontology-level KG by the rule-based incorporation
to avoid the adverse effect of shallow text infer-
ences.
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Figure 2: Framework of discriminative rule-based knowledge. For naming these process or submodules, “repre-
sentation” and “prototype” are abbreviated as “repre” and “proto”, respectively.

2.2 Knowledge-based ML for Few-shot RE

External knowledge has been widely employed in
few-shot RE due to the abundant auxiliary semantic
information. Based on the data structure, external
knowledge can be divided into unstructured text
and structured knowledge graph. For the unstruc-
tured text, most work focuses on leveraging rela-
tion and entity descriptions to enhance contextual
semantic representation (Yang et al., 2020). Com-
pared with the unstructured text, massive endeav-
ors have been devoted to the structured knowledge
graph. For example, Liu et al. (2020) inject entity-
level triplets into text by a sentence tree, Roy and
Pan (2021) integrate entity-level KG and text by
several fusion techniques, and Yang et al. (2021)
leverage an ontology-level knowledge graph to pro-
vide clues for the entity type and designed a fusion
module based on self-attention to bridge the gap
between the embeddings of text and the relation
types. Besides, Sainz et al. (2021) annotate the
entity type manually for each instance.

In essence, the above knowledge-based ML
methods are still built on shallow inferences, suf-
fering from prediction confusions. Our proposal
adopts the logic-aware inference module and the
discrimination finding module to clear the word-
overlap and entity-type confusions, respectively.

3 Approaches

In this section, we first introduce the task definition
as well as the framework of DRK in §3.1. Then,

we detail the logic-aware inference module in §3.2
and the discrimination finding module in §3.3.

3.1 Task definition and model framework

RE. Formally, given a Ls-word instance s with
the head and tail entities eh and et, i.e., s =
{w1, · · · , eh, · · · , et, · · · , wLs}, the goal of RE is
to correctly extract the relation triplet (eh, et, r),
where r is a relation label belonging to the prede-
fined relation label setR.
Few-shot RE. Following the typical N-way K-shot
setting, a meta task consists of a support set S
and a query set Q. S = {Si}Ni=1 has N novel
relations R = {ri}Ni=1, each relation r has Sr ={
sir
}K
i=1

containingK instances. Few-shot relation
extraction targets to predict the relation label rQ ∈
R of the query set Q based on the limited labeled
data S .

It is noteworthy that the few-shot RE models are
trained on meta tasks sampled from instances of
base relation labels then tested on meta tasks sam-
pled from instances of novel relation labels(Zheng
et al., 2021). And the base and novel relation labels
are disjoint.
External Knowledge. Based on the data structure,
external knowledge can be classified into the struc-
tured entity-level KG Ge, the structured ontology-
level KG Go and the unstructured knowledge Gt.

In specific,Ge consists of a set of relation triplets
{(eh, et, r) ∈ E × E ×Re}, where E and Re are
the entity node set and the entity-level relation set,
respectively. Similar to Ge, Go can also be formu-
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lated as {(eh, et, r) ∈ C × C ×Ro}, where C, Ro

are the ontology node set and the ontology-level
relation label set, respectively. Note that there ex-
hibits an “instance of” relation r̂ between E and
C, i.e., {(eh, et, r̂) ∈ E × C × r̂}. For unstructured
knowledge Gt, it describes each relation r from
the given relation setR with a Lr-word sequence
relation description ar = {wi}Lr

i=1.
Framework of DRK. As shown in Fig 2, In each
iteration step, the support set S and the query set
Q are first fed into external knowledge to obtain
their corresponding structured and unstructured in-
formation that are encoded by the graph encoder f1
and the text encoder f2, respectively. And then, the
logic-aware inference module employs the proto-
types on structured and unstructured information to
get the head, tail and contextual semantic represen-
tations, which are further constrained by the logic
rule to compute LCE . Furthermore, the discrimi-
nation finding module leverages the category-level
contrastive learning Lcate and the instance-level
contrastive learning Lins to mine the distinguish-
able text features.

3.2 Logic-aware inference module

This module employs structured and unstructured
knowledge encoders to get the entity-type and con-
textual semantic representations, which are further
constrained by the logic rule.

3.2.1 Structured knowledge encoder
Each entity belongs a set of entity types, e.g., the
entity “Biden” stemmed from the “politician” and
“person” types. Take the head entity eh for example,
the ontology KG Go

1 is adopted to construct it’s
type set Ch:

Ch = B (eh) , (1)

whereB is a link function base on the “instance_of”
relation between eh and ch. Then a graph neural
network encoder f1 is employed to obtain the head
entity type representation Heh of eh:

Heh =
1

|Ch|
∑
c∈Ch

f1 (c), (2)

where |Ch| is the number of elements in the type
set. For any relation r, its support instances Sr
contain K instances, hence the head entity type

1The construct process of Go can refer to
https://github.com/imJiawen/KEFDA

prototype of the relation r can be formulated as:

mr
h =

1

K

∑
eh∈Sr

Heh . (3)

Analogously, the tail entity type prototype mr
t

of the relation r can also be obtained. And, for
any query instance q in the query set Q, similar
encoding process can be employed to get its head
and tail entity type representations: Hq

h and Hq
t .

3.2.2 Unstructured knowledge encoder
Given a relation r with support instances {sir}Ki=1,
the unstructured knowledge Gt

2 is retrieved to ob-
tain the relation description ar. Then, the support
instances and the relation description are respec-
tively fed into a text encoder f2(·) to get the in-
stance representations {H0

sir
∈ RLs×d}Ki=1 and the

relation-describing representations Har ∈ RLr×d,
where d is the embedding dimension of f2. To high-
light the entities (Soares et al., 2019), the start to-
kens of the head and tail entities are concatenated to
get the entity representations {He

sir
∈ R1×2d}Ki=1

that is different from Eq.(2).
Interaction. On the one hand, the relation descrip-
tion ar elaborates the relation r, ar can be utilized
to further refine the instance representations. Tak-
ing the instance sir as an example, its refined in-
stance representation can be formulated as:

Har
sir

=

Ls∑
j=1

αjH
0
sir
[j :],

α = softmax
(
sum

(
H0

sir
HT

ar

))
,

(4)

where sum(·) is a row-wise summation function,
and hence the attention weight α = {αj}Ls

j=1 at-
tends over the instance tokens. On the other hand,
the relation description, as a highly-concise sum-
mary, also requires support instances to express its
semantics. Specifically, for a specific relation r,
its each support instance H0

sir
attends its relation

description ar to obtain the instance-aware relation-
describing representation H

sir
ar :

Hsir
ar =

Lr∑
j=1

βjHar [j :],

β = softmax

(
sum

(
Har

(
H0

sir

)T))
,

(5)

2All the relation descriptions in Gt is shown in Table 1 of
Appendix A.1
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where β = {βj}Lr
j=1 is the attention weight over

the relation description tokens and H
sir
ar elaborates

the instantiation traits of the relation r.
Contextual semantic representation. After the
interaction between the instance text and the re-
lation description, the final contextual semantic
representation can be further formulated as:

Hsir
= [He

sir
;Har

sir
] +Mul(Hsir

ar), (6)

where He
sir
∈ R1×2d, Hsir

ar ∈ R1×d, Har
sir
∈ R1×d

and Hsir
∈ R1×3d. Mul(·) is a multi-layer percep-

tron that converts the dimension from d to 3d.
Similar to Eq.(3), the contextual semantic proto-

type of r can be obtained:

mr
s =

1

K

K∑
i=1

Hsir
. (7)

Note that any instance q in the query set Q does
not have the relation description. Therefore, the re-
fined instance representations in Eq.(4) is replaced
with the average pooling and the Mul(·) operation
in Eq.(6) is removed when defining the contextual
semantic representation of q, i.e., Hq

s.

3.2.3 Logic rule
For RE, this logic rule is assumed as a set of condi-
tions that should be occurred simultaneously (Han
et al., 2021a). Taking the “Mother” relation in Fig.1
as an example, whether an instance expresses this
relation must satisfy three conditions: 1) the head
entity is the person type; 2) the tail entity is the
person type; 3) the contextual semantics of this
instance describes the “Mother” relation. Based
on this logic rule, such three conditions can corre-
spondingly be transformed into three probabilities.

Specifically, for a query instance q, the probabil-
ity of the head entity type belonging to relation r
is:

prh =
exp

(
d
(
Hq

h,m
r
h

))
N∑

n=1
exp

(
d
(
Hq

h,m
n
h

)) , (8)

where d (·, ·) indicates the dot product. Analogous
to Eq.(8), the probabilities of the tail entity and the
contextual semantics belonging to the relation r can
also be obtained, i.e., prt and prs. With these three
probabilities, the final probability of q expressing
the relation r is calculated as:

qr = prh · prt · prs. (9)

Consequently, the cross entropy loss is used to
optimize the RE parameters:

LCE = −
∑
q∈Q

log (qr), (10)

where the ground-truth relation label of the query
instance q is r.

3.3 Discrimination finding module
Despite effective in the word-overlap confusion,
the logic-aware inference module cannot handle the
entity-type confusion with the matched entity-type
pair. Then we propose a hierarchical contrastive
learning (including the the instance level and the
category level) to mine subtle differences of rela-
tion instances.

3.3.1 Instance-level contrastive learning
In a support set, we formulate the instance-level
contrastive (He et al., 2020) as follows:

Lins =
−1
NK2

N∑
r=1

K∑
i=1

log

∑K
j=1 exp(Hsir

·H
sjr
/τ1)∑

r′ 6=r

∑K
k=1(Hsir

·Hsk
r′
/τ1)

,

(11)
where τ1 is a temperature hyperparameter, Hsir

and
H

sjr
belonging to the same relation form positives

and Lins aims to pull the positives closer.

3.3.2 Category-level contrastive learning.
Similar to Eq.(3), the instance-aware relation-
describing prototype of r can be obtained, i.e.,

mr
a =

1

K

K∑
i=1

Hsir
ar . (12)

This prototype mr
a summarizes the instance-aware

traits of relation r. When encountering the predic-
tion confusion, these traits can help RE models to
distinguish the subtle differences of instances.

In a support set, the contextual semantic proto-
type mr

s must be close to the belonged relation-
describing prototype mr

a, and keep away from the
others. Hence, the category-level contrastive learn-
ing is formulated as:

Lcate =
−1
N

N∑
r=1

log
exp (mr

s ·mr
a/τ2)

N∑
j 6=r

exp
(
mr

s ·m
j
a/τ2

) ,
(13)

where τ2 is a temperature hyperparameter.
In all, the overall training objective is:

L = LCE + Lins + Lcate, (14)



2134

Task #Rel #Ins Len Link(%)

Training 50 35000 25 98.35
validation 14 9800 24 98.46
testing 16 11200 24 98.70

Table 1: Statistics of FewRel 1.0. “#Rel” and “#Ins”
denote the number of relations and instances, respec-
tively. “Len” means the average token length of in-
stances. “Link” demonstrates the probability of an en-
tity linking to a corresponding type in Go.

4 Experiments

4.1 Dataset

Experiments are conducted on FewRel 1.0 3 (Han
et al., 2018) that consists of 100 relations extracted
from Wikipedia. Since the test set with 20 relations
is unpublished, following previous work (Yang
et al., 2020, 2021), we re-split the published 80 rela-
tions into 50, 14 and 16 for training, validation and
testing, respectively. The statistics of the re-splitted
dataset can refer to Tabel 1. The ontology-level KG
we adopt in this paper comes from KEFDA 4. Be-
sides, the unstructured text knowledge for test data
is represented in Table 5 in Appendix A.1.

4.2 Model Configuration

The model configurations are kept the same among
all discussed models, including our proposal and
the selected baselines. In detail, following (Han
et al., 2018, 2021b), we use the classification accu-
racy to evaluate the performance of DRK on four
typical meta tasks (Han et al., 2018): 5-way 1-shot,
5-way 5-shot, 10-way 1-shot and 10-way 5-shot.
We use BERTbase (Soares et al., 2019) as the text
feature encoder f2 and apply DistMult (Yang et al.,
2015) as the graph neural network (Zheng et al.,
2020b) encoder f1. The embedding dimension of
f2 and f1 is 768 and 256, respectively. We train
and test each model with 20,000 and 10,000 itera-
tion steps, respectively. Besides, we set the batch
size to 4, the weight decay to 2 × 10−5, the max
sentence length Ls to 128, τ1 to 1, and τ2 to 1.

4.3 Baselines

As mentioned above, we introduce several basic
ML and knowledge-based ML methods as base-
lines. In specific, the basic ML approaches contain
GNN (Satorras and Estrach) that considers all the

3https://github.com/thunlp/FewRel
4https://github.com/imJiawen/KEFDA

instances in a meta task as nodes in a graph, then
leverages the label propagation to infer relations,
Snail (Mishra et al., 2018) that combines temporal
convolutions and soft attention to learn information
from past experiences to predict relations, Siamese
(Mishra et al.) that employs siamese neural net-
works to distinguish relations, Proto (Snell et al.,
2017) that calculates the similarity between the
query instance and the relation prototypes to pre-
dict relation types, and BERT-PAIR (Gao et al.,
2019b) that concatenates the query instances with
all labeled support instances as pair sequences, then
identifies the relation type through the similarity
in each pair. ; while the knowledge-based ML
approaches include ConceptFERE 5 (Yang et al.,
2021) that concatenates the entity type with sen-
tence text by a self-attention fusion, and KEFDA
(Zhang et al., 2021) that also concatenates the en-
tity type and sentence text, and leverages a relation-
meta learning network (Chen et al., 2019) to learn
implicit relation matching. Note that all the base-
lines and our proposal use the same text feature and
graph encoders for fair comparisons.

4.4 Overall Evaluation
To examine the few-shot relation extraction perfor-
mance of our proposal as well as the baselines, we
report the overall evaluation results on four types
of meta tasks in Table 2.

Among all baselines, the knowledge-based ML
ConceptFERE achieves the best performance with
the average 1.11% improvement against BERT-
PAIR (the best basic ML) on the four meta tasks.
This performance advancement reflects the benefits
brought by the external knowledge that provides
auxiliary clues for relation extraction. Compared
with ConceptFERE, our proposal DRK can further
enhance the extraction performance with the re-
spective improvements of 6.72%, 2.30%, 10.73%
and 4.17% on the four meta task. Such model
improvements prove the effectiveness of DRK by
relieving the prediction confusions.

Clearly, as the shot number decreases, all dis-
cussed models get impaired. For example, compar-
ing meta tasks on 5-way 1-shot and 5-way 5-shot,
the best baseline ConceptFERE loses the relative
6.71% model performance (9.56% in 10-way 1-
shot vs. 10-way 5-shot). These phenomena show
that these models are sensitive to the shot number,

5We use the ConceptFERE(simple) version here to allow
for the computation overheads in the training of “5-way 5-shot”
and “10-way 5-shot” meta tasks.
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Model 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot

Snail 57.82 80.53 50.40 68.11
GNN 66.48 82.65 48.14 73.22

Siamese 81.29 88.18 71.00 81.12
Proto 78.59 88.99 64.07 81.80

BERT-PAIR 82.57 89.00 73.37 81.81
KEFDA 80.46 89.88 68.23 81.49

ConceptFERE† 84.28 90.34 74.00 81.82
DRK(Our) 89.94M 92.42M 81.94M 85.23M

Table 2: Few-shot relation extraction performance in terms of accuracy(%) on four types of meta tasks. †means the
results are quoted from the original paper (Yang et al., 2021). Results of the best baseline and the best performer
in each column are underlined and boldfaced, respectively. Statistical significance of pairwise differences of DRK
vs. the best baseline is determined by a t-test (M for α = 0.05).
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Figure 3: Effect on the performance of our proposal and baselines affected by the sentence length.

and prone to fail when the labeled data become
fewer. In the same comparisons about the shot
number, however, DRK only has 2.68% and 3.86%
performance wastage, indicating that DRK is more
robust than other methods in the low-data regime.

4.5 Impact of sentence length

To explore the performance of few-shot RE af-
fected by the sentence length, we group the test-
ing performance of our proposal and baselines

based on the sentence length Ls. Consider-
ing the distribution of testing data, the sentence
length is divided into four groups, i.e., Ls ∈
(0, 15), [15, 30), [30, 45), [45,+∞). With these
sentence groups, the results on the 5-way 1-shot, 5-
way 5-shot, 10-way 1-shot and 10-way 5-shot meta
task are plotted in Fig.3. Then, we take the perfor-
mance on the 5-way 1-shot meta task for instance
to analyze the results.

In general, with the increase of sentence length,
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Model 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
DRK 89.94 92.42 81.94 85.23
- logic&text 84.08 90.48 79.02 81.90
- logic&type 83.64↓ 90.37↓ 74.60↓ 81.45↓
- instance 88.07 91.80 80.53 83.43
- category 85.22 90.63 79.83 81.63

Table 3: Ablation studies on DRK, where “-logic&text” (“-logic&type”) means that the logic-aware inference
module is replaced with prototypical networks that do not use entity type from ontology-level KG (the simple
concatenation of incorporating entity type from ontology KG), while “-instance” (“-category”) denotes the removal
of the instance-level (category-level) contrastive learning, and the biggest drop in each column is appended ↓.

almost all models (except for Snail on 5-way 1-shot
meta task in Fig.3a) exhibit a ever-decreasing trend
in terms of the model performance. This down-
ward trend can be attributed to the fact that short
sentences are more concise than long sentences in
the grammatic structure, and hence easier for RE
models to understand their semantics. In particular,
the steep performance degenerations in KEFDA
and ConceptFERE shown in Fig.3a further confirm
our hypothesis about the existing knowledge-based
ML methods. Furthermore, the upward trend of
Snail in Fig.3a may be due to the probable error
in the low-shot setting. In other three meta tasks,
Snail still keeps the decreasing trend.

Next, let’s focus on our proposal DRK. Clearly,
DRK still presents notable performance advan-
tages over all baselines for each sentence group.
For example, compared to the best baseline Con-
ceptFERE on 5-way 1-shot meta task in Fig.3a,
DRK achieves 0.47%, 4.51%, 4.90% and 6.96%
model improvements in terms of accuracy when
Ls ∈ (0, 15), [15, 30), [30, 45), [45,+∞), respec-
tively. Interestingly, the improvement magnitude
of DRK always keeps pace with the increase of
sentence length. This increasing pattern can be
explain by the fact that DRK can effectively ex-
tract distinguishable features from overlong sen-
tences, thereby reducing the adverse effect of mas-
sive noises in sentences.

Similar findings can also be found on the 5-way
5-shot, 10-way 1-shot and 10-way 5-shot meta
tasks. The ever-decreasing trend in the 5-way 1-
shot also appears in these meta tasks. Comparing 1-
shot and 5-shot meta tasks, all the methods achieve
improvements for four sentence groups due to the
increase of training data. Besides, compared to
baselines, our proposal achieves the biggest im-
provements for four sentence groups in Fig.3c than
on the other three meta tasks. This phenomenon

shows that our proposal is robust and competitive
on the most challenging 10-way 1-shot meta task.

4.6 Ablation Studies

In order to better understand the contributions of
different components, the ablation studies are con-
ducted on four types of meta tasks. In the abla-
tion studies, we remove or replace some specific
parts to measure their influence on DKR, which is
marked with the notation“-”. The ablation results
are demonstrated in Table 3.

Clearly, the removal or replacement of compo-
nents all leads to the model degeneration, proving
the efficacy of each component. In particular, the
biggest drop happens in “-logic&type”, which re-
flects that the logic-aware inference module plays
a key role in few-shot RE and simple concatena-
tion in previous works probably cannot improve
the model performance. These findings can be
further verified in the comparison of “-logic&text”
and “-logic&type”, where the model incorporating
the ontology-level KG (“-logic&type”) loses the
competitions against the model only using text (“-
logic&text”). Besides, in the discrimination finding
module, losing the category-level contrastive learn-
ing is more sever than DRK without the instance
level one. The comparisons demonstrate that com-
pared to the instance-level contrastive learning, the
category-level one can better identify inter-class
differences to help predict relations.

4.7 Error analyses

To further figure out the error causes, we conduct
error analyses of our proposal and the best base-
line ConceptFERE on the test set. In particular,
we divide the causes of classification errors into
there main categories: word-overlap (word), entity-
type (entity) and others. For each test relation,
we randomly select 5 instances (i.e., K=5) and 50



2137

Relation Correct Word Entity Other Top 2 confounders

constellation
0.98 0.02 0.00 0.00 follows(0.02)
0.96 0.03 0.00 0.01 part of(0.02),located in body of water(0.02)

part of
0.50 0.35 0.08 0.07 follows(0.10)
0.40 0.39 0.11 0.10 member(0.18), subject(0.14)

mother
0.92 0.00 0.08 0.00 child(0.06), spouse(0.02)
0.52 0.00 0.48 0.00 child(0.42), spouse(0.06)

spouse
0.48 0.00 0.52 0.00 child(0.44), mother(0.08)
0.36 0.02 0.72 0.00 child(0.34), mother(0.28)

Table 4: Rates of the correct predictions (Correct), the word-overlap error (Word), the entity-type error (Entity)
and the other errors (Other) in DRK (shown in orange) and ConceptFERE (shown in blue). Top 2 confounders list
the top two wrongly-predicted relations and their rates.

instances of this relation into the support set and
the query set, respectively. And in the evaluating
process, the support set is used to calculate the re-
lation prototype, then predict the relation label in
the query set based on the similarity to the relation
prototype. Also, we repeat the process three times
and reported the mean result. Note that the predic-
tion rate in the query set is presented relation-by-
relation. Based on this setting, the error analyses
of some relations are listed in table 4, and the other
test relations can refer to Appendix A.2.

As shown in table 4, the rate of correct predic-
tion varies widely among different relations, es-
pecially for some confusion relations (“part of”
and “spouse”), their performance are much lower
than expected. This unexpected performance is
stemmed from the “word” and “entity” error types.
Besides, the top 2 confounders have similar expres-
sions or the same entity-type pairs as the instances
of the ground-truth label. These findings all verify
our arguments that owing to the limited inference
based on the shallow features, RE models easily
fall into the prediction confusions.

Fortunately, DRK relieves the prediction con-
fusion by reducing the rates of these two errors.
Taking “spouse” as an example, DRK achieves
obvious declines in the “word” and “entity” er-
rors against ConceptFERE (reducing 0.02 and 0.20
rates, respectively). Furthermore, DRK lowers the
number of confounders relations. For example, tak-
ing “constellation” for example, ConceptFERE has
two confounders (“part of” and “located in body
of water”) while DRK only has one confounder
(“follows”). The above phenomena demonstrate
that our proposal can further boost RE performance
for each relation by reducing these errors, rather

than improving easy relations for good average
performance as the baselines do.

5 Conclusion

This paper focuses on the prediction confusions
in few-shot RE. To relieve these confusions, this
paper develops a discriminative rule-based knowl-
edge (DRK) method consisting of a logic-aware
inference module and a discrimination finding mod-
ule. Specifically, the first module relieves the word-
overlap confusion through the rule-based knowl-
edge incorporation and the other module alleviates
the entity-type confusion by a hierarchical con-
trastive learning. Extensive experiments show the
effectiveness of our proposal. As for future work,
we plan to explore the confusion by the parameter-
efficient prompt tuning (Lester et al., 2021; Liao
et al., 2022).
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A Appendix

A.1 Dataset
We demonstrate some unstructured text knowledge,
including the relation id„ name and description in
Table 5.

A.2 Errors in test relations
Following the setting in section §4.7, the detail
prediction performance of DRK and ConceptFERE
on each test relation is shown in Table 6.

In general, our proposal outperforms the baseline
for almost all test relations, and the observations
from section §4.7 can also be found in Table 6.
Besides, compared to the ConceptFERE that only
precisely identifies one relation (P2094), our pro-
posal can accurately identify four relations (P177,
2094, P412 and P413), which demonstrates our
proposal has a competitive inference ability. How-
ever, our proposal underperforms the baseline for
the relation P206. This unusual relation may be
stemmed from an improper representation of en-
tity in the linking process, thereby invalidating our
proposed modules.
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Id Ralation name Relation description

P155 follows immediately prior item in a series of which the subject is a part.
P177 crosses obstacle (body of water, road, ...) which this bridge crosses over or this

tunnel goes under.
P206 located in or next to

body of water
located in or next to body of water", "sea, lake or river".

P2094 competition class official classification by a regulating body under which the subject
(events, teams, participants, or equipment) qualifies for inclusion.

P25 mother female parent of the subject. For stepmother, use stepparent.
P26 spouse the subject has the object as their spouse (husband, wife, partner, etc.)
P361 part of object of which the subject is a part (it’s not useful to link objects

which are themselves parts of other objects already listed as parts of the
subject).

P364 original language of
film or TV show

language in which a film or a performance work was originally created.

P40 child subject has object as biological, foster, and/or adoptive child.
P410 military rank military rank achieved by a person.
P412 voice type person’s voice type. expected values: soprano, mezzo-soprano, con-

tralto, countertenor, tenor, baritone, bass (and derivatives).
P413 position played on

team
position or specialism of a player on a team, e.g. Small Forward.

P463 member of organization or club to which the subject belongs. Do not use for
membership in ethnic or social groups, nor for holding a position such
as a member of parliament.

P59 constellation the area of the celestial sphere of which the subject is a part (from a
scientific standpoint, not an astrological one).

P641 sport sport in which the subject participates or belongs to.
P921 main subject primary topic of a work.

Table 5: Relation descriptions for the test set with the relation id, name and description content.

Id Correct Top 2 confounders

P155 0.88 0.86 P361(0.04), P463(0.04) P361(0.04), P463(0.04)
P177 1.00 0.96 None P361(0.02), P206(0.02)
P206 0.42 0.62 P177(0.38),P361(0.20) P177(0.38)
P2094 1.00 1.00 None None
P25 0.92 0.52 P40(0.06), P26(0.02) P40(0.42), P26(0.06)
P26 0.48 0.36 P40(0.44), P25(0.08) P25(0.34), P26(0.28)
P361 0.50 0.40 P463(0.20), P155(0.10) P463(0.18), P921(0.14)
P364 1.00 0.98 None P921(0.02)
P40 0.82 0.66 P26(0.06), P25(0.06) P25(0.28), P26(0.06)
P410 0.98 0.98 P413(0.02) P413(0.02)
P412 1.00 0.96 None P413(0.04)
P413 1.00 0.82 None P412(0.14), P2094(0.04)
P463 0.82 0.76 P361(0.10), P412(0.06) P361(0.08), P26(0.04)
P59 0.98 0.96 P155(0.02) P206(0.02), P361(0.02)
P641 0.48 0.82 P413(0.30), P2094(0.10) P412(0.16), P364(0.02)
P921 0.52 0.40 P361(0.24), P641(0.06) P463(0.18), P59(0.14)

Table 6: Rates of the correct prediction and top 2 confounders in our proposal DRK (shown in orange) and Con-
ceptFERE (shown in blue)


