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Abstract

Chinese Named Entity Recognition (NER) has
continued to attract research attention. How-
ever, most existing studies only explore the
internal features of the Chinese language but
neglect other lingual modal features. Actually,
as another modal knowledge of the Chinese lan-
guage, English contains rich prompts about en-
tities that can potentially be applied to improve
the performance of Chinese NER. Therefore,
in this study, we explore the bilingual enhance-
ment for Chinese NER and propose a unified
bilingual interaction module called the Adapted
Cross-Transformers with Global Sparse At-
tention (ACT-S) to capture the interaction of
bilingual information. We utilize a model built
upon several different ACT-Ss to integrate the
rich English information into the Chinese rep-
resentation. Moreover, our model can learn the
interaction of information between bilinguals
(inter-features) and the dependency information
within Chinese (intra-features). Compared with
existing Chinese NER methods, our proposed
model can better handle entities with complex
structures. The English text that enhances the
model is automatically generated by machine
translation, avoiding high labour costs. Experi-
mental results on four well-known benchmark
datasets demonstrate the effectiveness and ro-
bustness of our proposed model.

1 Introduction

“One language sets you in a corridor for life. Two
languages open every door along the way.”

—Frank Smith, Psycholinguist
Named entity recognition (NER) is the task of de-
termining spans and semantic categories of named
entities such as organization (ORG), person (PER)
and location (LOC) in given free text. As the cor-
nerstone of a wide range of natural language pro-
cessing tasks, NER plays an essential role in many
downstream tasks, such as relation extraction (Ze-
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Chinese:
美国“亚特兰蒂斯”号航
天飞机上的宇航员…

[美国 LOC]
[“亚特兰蒂斯”号航天飞机 ORG]

[美国“亚特兰蒂斯”
号航天飞机 ORG]

English:
Astronauts on the US 
space shuttle Atlantis…

Chinese

English

Single 
language 

model

Our model

美国 “亚特兰蒂斯”号 航天飞机 上的 宇航员

the US Atlantis space shuttle on astronauts

Figure 1: An example of Chinese NER via bilingual
enhancement. The entity types of named entities are
highlighted.

lenko et al., 2003) and question answer (Diefen-
bach et al., 2018).

Compared with English NER, Chinese NER
meets a series of challenges caused by the char-
acteristics of Chinese. Aside from the lack of natu-
ral word boundary information, Chinese named
entities usually vary significantly in length and
have complex compositional structures (Dong et al.,
2016). At the same time, the annotated data of Chi-
nese NER is relatively scarce, and it is difficult
and costly to annotate the data manually (Liu et al.,
2022). Hence, without more annotated data, it is a
promising approach to improve Chinese NER by
leveraging external information resources, which
has attracted more and more research attention.

One way to utilize external resources is to per-
form Chinese NER with bilingual constraints. Pre-
vious works (Che et al., 2013; Wang et al., 2013)
have demonstrated that the joint use of bilingual in-
formation in Chinese and English can significantly
improve performance in the Chinese NER task. In
addition, incorporating vocabulary knowledge has
also become a promising solution(Zhang and Yang,
2018; Li et al., 2020; Mengge et al., 2020). What’s
more, several studies were proposed to exploit in-
formation from other modalities to supplement the
representation of Chinese text(Meng et al., 2019;
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Sun et al., 2021b; Wu et al., 2021; Sui et al., 2021).

However, despite the success of the above-
mentioned methods in Chinese NER by introduc-
ing external information, these methods still have
the following limitations. First, the external re-
sources utilized by these methods are mainly ob-
tained manually, which increases the cost signifi-
cantly. Second, existing methods for boosting NER
with bilingual constraints (Che et al., 2013; Wang
et al., 2013) rely on bilingual word alignment in-
formation and both Chinese and English sentences
need to be manually annotated, which limits its us-
age. Third, as the state-of-the-art approaches based
on deep neural networks for Chinese NER, lexi-
cal enhancement methods and multimodal methods
still fail to effectively handle entities with com-
plex composition structures, which, however, are
frequently observed in Chinese NER tasks. The
example in Figure 1 illustrates one of such dilem-
mas in Chinese NER. In this example, due to the
complex component structure, the ORG entity “美
国‘亚特兰蒂斯’号航天飞机(The US space shut-
tle Atlantis)" tends to be incorrectly labeled by the
NER model as a LOC entity “美国(USA)" and
an ORG entity “‘亚特兰蒂斯’号航天飞机(Space
shuttle Atlantis)". However, it is encouraging that
the clues of the English expression, such as the
preposition “on", will potentially alleviate this type
of incorrect labeling that often occurs in Chinese
NER tasks.

To address the above issues, in this work, we
propose to boost the performance of Chinese NER
with the unlabelled English text translated from the
corresponding Chinese text. English texts are auto-
matically generated through the publicly available
neural machine translation API without any extra
human labor all the way through. Besides, consid-
ering the Chinese texts and corresponding English
translations as two different modalities, we per-
form bilingual enhancement of Chinese NER with
multimodal NER approach. Furthermore, based
on the fact that a word in the text will only be
strongly correlated with a small fraction of words
in the translated text, we propose a bilingual in-
teraction enhancement model based on Adapted
Cross-Transformers with Global Sparse Attention
(short for ACT-S). The interaction of bilingual in-
formation as well as intra-linguistic interaction are
taken into account in the our model.

The primary contributions of this work can be
summarized as follows: (1) We improve the perfor-

mance of Chinese NER by bilingual enhancement,
based on the unlabeled translated English text au-
tomatically generated using the Neural Machine
Translation API. To the best of our knowledge,
this is the first end-to-end NER method that ef-
fectively exploits bilingual information. (2) We
further propose the neural module called Adapted
Cross-Transformers with Global Sparse Attention
to simultaneously model bilingual interactions and
inter-lingual interactions. So far as we know, it is
the first attempt to use global sparse attention mech-
anisms for multimodal information interaction. (3)
Experimental results on four Chinese NER datasets
show that our proposed model achieves superior
performance to other strong baseline models.

2 Related Work

2.1 Chinese NER with lexicon enhancement

In Chinese NER, a series of recent works focus
on introducing lexical boundaries and semantic in-
formation by word matching. Zhang et al. (2018)
proposed to introduce semantic and boundary infor-
mation of the lexicon through the lattice structure
in LSTM. Afterwards, some CNN-based NER lexi-
cal enhancement methods, such as LR-CNN (Gui
et al., 2019a), were proposed. Graph neural net-
works have also been applied to Chinese NER word
enhancement tasks, a typical one of which is LGN
(Gui et al., 2019b). And Transformer-like encoders
fusing lexical information are also used for Chinese
NER tasks, including PLTE (Mengge et al., 2020)
and FLAT (Li et al., 2020). In addition, some work
(Ma et al., 2020; Liu et al., 2021) has proposed to
fuse lexical information into the word embedding
representation instead of integrating word informa-
tion into the model encoder. However, the lexicon
enhanced Chinese NER approach still cannot effec-
tively deal with entities with complex composition
structures. And our approach utilizes bilingual
clues that can alleviate this problem in Chinese
NER.

2.2 Multimodal NER

In recent years, with the development of multi-
modal information processing technology, the mul-
timodal NER has emerged. In the field of English
information extraction, existing multimodal NER
works(Yu et al., 2020; Sun et al., 2021a; Zhang
et al., 2021) have focused on using image clues
to improve NER on Twitter. As for Chinese NER,
introducing information from other modalities has
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Figure 2: (a) The overall architecture of our model. (b) The implementation details of ACT-S.

also become a promising solution. On the one hand,
the multimodal information of Chinese characters
is used to mining the semantics in the structure
of Chinese characters(Sun et al., 2021b; Wu et al.,
2021). On the other hand, multimodal information
of the whole Chinese sentence, such as the audio
content of the text (Sui et al., 2021), is also used to
improve the word representation for Chinese NER.
Compared with existing methods, the method we
propose makes use of relative distance information
while focusing on strongly correlated units during
modal interactions.

2.3 Sequence labelling with bilingual clues or
translation

Some previous works (Che et al., 2013; Wang et al.,
2013) have demonstrated that constraints in bilin-
gual parallel annotated corpora can be used to im-
prove NER performance in two languages. But dif-
ferent from them, our proposed approach can take
advantage of the hints in the unannotated English
texts which are automatically translated by Neural
machine translation tools. In addition, in cross-
lingual sequence labelling tasks, translation meth-
ods(Mayhew et al., 2017; Fei et al., 2020; Zhen
et al., 2021) are used to migrate annotation informa-
tion from rich languages to low-resource languages.
Unlike these previous works, the only resources
used by our model in the additional language are
texts with no annotation information. Furthermore,
the model automatically learns all bilingual lexical

alignment information with no assistance from any
bilingual alignment tool.

3 Methodology

3.1 Overall Architecture

Task Formulation: Given a Chinese text Sc =
(cw1, ..., cwi, ..., cwn) and its corresponding En-
glish translated text Ec = (ew1, ..., ewl, ..., ewm)
, where cwi represents the i-th Chinese character
and ewl represents the l-th character of English
translated text, the goal of the task is to utilize the
information in the bilingual text to determine the
spans and types of all named entities in the Chi-
nese text. In this work, we formulate the task as
a sequence labeling task. And the BMES (Begin-
ning, Middle, End, Singleton)(Xue, 2003) tagging
scheme is adopted.

The architecture of our proposed model is shown
in Figure 2. In our model, we absorb the inspira-
tion from the unified multimodal Transformer en-
coder widely used in vision-language tasks (Tsai
et al., 2019; Yu et al., 2020). And similar to MECT
(Wu et al., 2021), we introduce distance-aware and
direction-aware components in Transformer atten-
tion. However, unlike previous works, we pro-
pose to use global sparse attention in the Cross-
Transformer to reduce the noise in the information
fusion process of the two modalities. Each part of
the model is introduced in detail in the following
sections.
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3.2 Word Representations
Since many previous works have proven the ef-
fectiveness of the pre-trained language model in
Named Entity Recognition task (Li et al., 2020; Wu
et al., 2021), we use BERT (Devlin et al., 2019)
as our contextualized representation encoder for
both Chinese text and English translated text. To fit
the BERT encoding procedure, we add two special
symbols [CLS] and [SEP] at the beginning and end
of the input sentence respectively, and we discard
the representation vectors of [CLS] and [SEP] at
the end of the BERT encoding computation. If
a word is tokenized into several subwords by the
Byte Pair Encoding (BPE) algorithm used in BERT,
we found empirically that the model performs bet-
ter when the average pooling method is used to
merge the representations of the subwords that be-
long to the same word into a single representation
vector. Thus, we can obtain the word representation
generated using BERT:

(c1, c2, ..., cn) = BERT−Ch (cw1, cw2, ..., cwn) (1)
(e1, e2, ..., em) = BERT−En (ew1, ew2, ..., ewm) (2)

3.3 Adapted Cross-Transformer with Global
Sparse Attention

This section presents our first proposed Adapted
Cross-Transformer with Global Sparse Attention
(ACT-S) for bilingual information interaction in
detail. As illustrated in Figure 2(a), several param-
eter independent ACT-Ss are used in our model for
both inter- and intra-language interactions between
bilinguals. The implementation details of ACT-S
are shown in Figure 2(b).

Motivation: In multimodal tasks, the widely
used cross-modal Transformers (Yu et al., 2020;
Sui et al., 2021; Wu et al., 2021) typically use Soft-
max to normalize the cross-modal attention distri-
bution of each head. As a result, in multi-head
cross-modal attention, each unit is represented by
all the units in the other modality by multiple differ-
ent weighted averages. However, it is essential that
a word is only associated with a small number of
words in the other language in bilingual enhanced
Chinese NER. Based on the above observations, we
propose for the first time to incorporate the global
sparse attention mechanism in a cross-modal Trans-
former to learn bilingual interactive word represen-
tations, which exclude the interference of irrelevant
words in the other language. To our knowledge, it
is the first time that global sparse attention is used
for a multimodal task.

For inputs X = (x1, ..., xu, ..., xn̂) and Y =
(y1, ..., yv, ..., ym̂) , we treat X ∈ Rn̂×d as queries,
and Y ∈ Rm̂×d as keys and values. The input Q,
K, and V are obtained by linear transformation of
X and Y :

Q(h),K(h), V (h) = XW (h)
q , Y W

(h)
k , Y W (h)

v (3)

where h ∈ {1, 2, ..., Nh} is the index of the h-th
attention head and Nh is the number of attention
heads.

{
W

(h)
q ,W

(h)
k ,W

(h)
v

}
∈ Rd×dk are learn-

able parameters and dk = d
Nh

.
To provide the attention mechanism in ACT-S

with the ability of both distance perception and di-
rection perception, we adopt the component of sens-
ing relative distances similar to that in MECT(Wu
et al., 2021) in the attention matrix computation
process:

Ã(h)
u,v = Q(h)

u

(
K(h)

v

)T

+Q(h)
u RT

u−v

+K(h)
v RT

u−v + α
(
K(h)

v

)T

+ βRT
u−v

(4)

Ru−v =
[
..., sin

( u− v

106p/dk)

)
, cos

( u− v

106p/dk

)
, ...

]
(5)

where u is the index of the word in the target
language and v is the token in the other language,
Qu, Kv is the query vector and key vector of word
xu, yv respectively , Ru−v ∈ Rdk is the relative
position encoding, p in Eq. 5 is in the range

[
0, dk2

]
,

α ∈ Rdk and β ∈ Rdk are learnable parameters.
Different from MECT, we add a key bias term

K
(h)
v RT

u−v to attention matrix to represent the bias
of v-th token in the key sequence on certain relative
distance and we empirically found that models per-
form better with it. And in this work, we consider
that words in the target language are only relevant
to a small number of words in another language. To
learn a better representation of the target language
words guided by the relevant words in another lan-
guage. For the first time, we introduce sparse prior
information to the global attention distribution via
the top-k mask operation Tkm(·), which is formu-
lated as follows:

Tkm(Ã(h)
u,v , k) =

{
Ã

(h)
u,v if Ã

(h)
u,v ∈ top(Ã

(h)
u,: , k)

C if Ã
(h)
u,v /∈ top(Ã

(h)
u,: , k)

(6)

Where k is a hyperparameter, masking constant
C ≪ 0, Au,: = Q

(h)
u

(
K(h)

)T ∈ Rm̂ contains the

attention values between Q
(h)
u and all keys in K(h),
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top(Ã
(h)
u,: , k) is a set containing the largest k values

in Ã
(h)
u,: . The Adapted Global Sparse Attention

matrix for the h-th attention head is then calculated
as:

A(h)
u,v = Tkm(Ã(h)

u,v , k) (7)

And the attention score is calculated as follows:

Atten(h) = softmax
(
A(h)

)
V (h) (8)

Atten =
[
Atten(1); ...;Atten(Nh)

]
W o (9)

where W o ∈ Rd×d is a learnable parameter. Then,
we stack the following sub-layers on top to obtain
the text representation based on bilingual interac-
tion:

Ô = LN (X +Atten) (10)

O = LN
(
Ô + FFN

(
Ô
))

(11)

where FFN is the feed-forward network, LN
is the layer normalization. Both of these operations
are consistent with those in vanilla Transformer
(Vaswani et al., 2017).

3.4 Chinese representation with bilingual
interaction

Given a Chinese text sequence C = (c1, c2, ..., cn)
and an English text sequence E = (e1, e2, ..., em),
obtaining the Chinese representation of fused bilin-
gual information requires two steps: inter-modal
fusion and intra-modal fusion.

Inter-modal interaction: In order to learn a
better representation of Chinese with the aid of in-
formation in the English text, we first employ ACT-
Ss to get the English-Aware Chinese Representa-
tion. Similarly, to align each English word with its
closely related Chinese characters, i.e., assigning
high/low attention weights to its related/unrelated
Chinese characters, we also use parameter inde-
pendent ACT-S to gain the Chinese-Aware English
Representation:

K(t) = ACT -S_cn(K(t−1), J(t−1)) (12)

J(t) = ACT -S_en(J(t−1),K(t−1)) (13)

where t ∈ {1, · · · , N} , N denotes the
number of interactions between bilingual modal-
ities, K(t) =

(
k
(t)
1 , k

(t)
2 , ..., k

(t)
n

)
, J (t) =(

j
(t)
1 , j

(t)
2 , ..., j

(t)
m

)
, K(0) = C and J (0) = E.

Intra-modal interaction: In order to learn the
dependencies between Chinese words, we use an-
other ACT-S to obtain the Intra-Chinese Interaction
Representation:

A = ACT -S_in(C, J(N)) (14)

Then, we concatenate A = (a1, a2, ..., an) and
J (N) and input them into a fully connected layer
to obtain the final hidden representations H =
(h1, h2, ..., hn):

H =
(
a1 ⊕ j

(N)
1 , ..., an ⊕ j(N)

n

)
WF + b (15)

where ⊕ denotes the concatenation operation,
WF and b are learnable parameters.

At last, we pass the final hidden representations
H to a Conditional Random Field (CRF) (LAF-
FERTY, 2001) module.

4 Experiments

4.1 Experiment Settings

4.1.1 Datasets
We used four publicly available Chinese NER
datasets, including Weibo NER (Peng and
Dredze, 2015), Resume NER (Zhang and Yang,
2018), MSRA (Levow, 2006) and Ontonotes 4.0
(Weischedel et al., 2010). The corpus of MSRA
and Ontonotes 4.0 comes from news, the corpus
of Weibo comes from social media, and the cor-
pus of Resume comes from the resume data in
Sina Finance. The splitting methods and other
pre-processing methods of datasets follow those
in (Zhang and Yang, 2018; Li et al., 2020; Wu
et al., 2021).

4.1.2 Text Translation
Neural machine translation (NMT) methods have
achieved state-of-the-art performance for the trans-
lation of a wide range of language pairs(Vaswani
et al., 2017). Therefore, automatic text translation
with NMT is applicable. In this work, we employ
Baidu Translation API1 and Tencent Translation
API2 to automatically translate Chinese text into
English, respectively, and both machine translation
systems have achieved the highest BLUE score on
the WMT Chinese-English task(Sun et al., 2019;
Wang et al., 2021b) in recent years.

1https://fanyi-api.baidu.com/
2https://cloud.tencent.com/product/tmt

https://fanyi-api.baidu.com/
https://cloud.tencent.com/product/tmt
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Models Resources Weibo Resume MSRA Ontonotes 4.0
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

BERT-Tagger♦† - - - 68.20 - - 95.53 - - 94.95 - - 80.14
LSTM-CRF[BERT]♦∗ - 68.21 68.38 68.29 95.11 96.01 95.56 95.33 95.04 95.18 79.92 80.56 80.24
TENER[BERT]♦∗ - 67.19 69.49 68.32 94.98 96.20 95.59 95.39 95.44 95.41 78.69 82.21 80.41
FLAT[BERT]♦† L - - 68.55 - - 95.86 - - 96.09 - - 81.82
DyLex♦† L - - 71.12 - - 95.99 - - 96.49 - - 81.48
MECT[BERT]♦† L+RC - - 70.43 - - 95.98 - - 96.24 - - 82.57
Ours(N=2)♦∗ T-T 72.60 74.16 73.37 96.29 96.99 96.87 96.62 96.82 96.72 83.95 83.77 83.86
Ours(N=2)♦∗ T-B 72.57 73.95 73.25 96.30 96.91 96.60 96.59 96.89 96.74 83.98 83.85 83.91
BERT-Tagger▲† - 67.12 66.88 67.33 96.12 95.45 95.78 94.43 93.86 94.14 78.01 80.35 79.16
LSTM-CRF[BERT]▲∗ - 67.63 67.18 67.40 95.84 95.61 95.72 94.46 93.89 94.17 78.92 79.56 79.24
TENER[BERT]▲∗ - 66.69 68.21 67.44 95.05 96.63 95.83 94.45 94.19 94.32 78.99 79.70 79.34
LEBERT▲† L - - 70.75 - - 96.08 - - 95.70 - - 82.08
PLTE[BERT]▲† L 72.00 66.67 69.23 96.16 96.75 96.45 94.91 94.15 94.53 79.62 81.82 80.60
SLex-LSTM[BERT]▲† L 70.94 67.02 70.50 96.08 96.13 96.11 95.75 95.10 95.42 83.41 82.21 82.81
Ours(N=2)▲∗ T-T 73.21 71.90 72.55 96.21 96.89 96.55 96.35 95.91 96.13 83.24 83.82 83.53
Ours(N=2)▲∗ T-B 73.15 71.84 72.48 96.32 96.87 96.59 96.37 95.92 96.14 83.41 83.71 83.56

Table 1: Main results. Bold marks the highest score. † marks results quoted directly from the original papers.
♦ marks results produced with BERT-wwm. ▲ marks results produced with BERT-base-Chinese. ∗ marks the
results implemented in the fastNLP3 framework. ‘L’ denotes using the lexicon resources. ‘RC’ denotes the radical
information of Chinese. ‘T-T’ denotes using the bilingual information from the Tencent Translation API and ‘T-B’
denotes using the bilingual information from the Baidu Translation API.

4.1.3 Baseline Methods

To demonstrate the effectiveness of our proposed
model, we compare it with several strong baseline
models for Chinese NER: (1) BERT-Tagger (De-
vlin et al., 2019)(2) LSTM-CRF[BERT] (Huang
et al., 2015) (3) TENER[BERT] (Yan et al., 2019).
Besides, we also compare our method with the
lexicon enhancement methods, which are the state-
of-the-art methods for Chinese NER: (1) LEBERT
(Liu et al., 2021) (2) FLAT[BERT] (Li et al.,
2020) (3) PLTE[BERT] (Mengge et al., 2020)(4)
SoftLexicon-LSTM[BERT] (Ma et al., 2020)( In
this paper, we call Soft-Lexicon SLex for short.)
(5)DyLex (Wang et al., 2021a) (6) MECT[BERT]
(Wu et al., 2021).

4.1.4 Implement Details

The English word representations E are initial-
ized with the cased BERT-base-English model pre-
trained by Devlin et al. (2019). In addition, to make
the comparison with the results of the baseline mod-
els convincing, we use BERT-base-Chinese(Devlin
et al., 2019) and BERT-wwm(Cui et al., 2021) to
initialize the Chinese word representations C sepa-
rately to get different experimental results for com-
parison and fine-tuned during training. All the
neural models are implemented with PyTorch and
fastNLP3. More implementation details are de-
scribed in Appendix A.

3https://github.com/fastnlp/fastNLP

4.2 Main Results

We compared our proposed method with the state
of the art methods. The experimental results are re-
ported in Table 1, which is divided into two blocks.
The methods in the first block use the Chinese word
representation from BERT-wwm. And the methods
in the second block use the Chinese word repre-
sentation from BERT-base-Chinese. Our model
achieves a significant and consistent performance
boost over current SOTA models on four Chinese
NER datasets. From the results, we can observe
that:

(1) In comparison with the methods with-
out external resources (BERT-Tagger, LSTM-
CRF[BERT] and TENER[BERT]), our model
achieves a significant performance boost. Because
our model makes use of the rich prompt informa-
tion in the English text that help to determine the
boundaries and types of entities. It demonstrates
the significant effect of introducing bilingual infor-
mation compared to just using the internal features
of Chinese.

(2) Compared with the lexicon enhancement
method using pre-trained BERT-wwm Chinese rep-
resentation, our model has superior performance,
i.e., +2.25 , +0.88, +0.25 ,+1.34 on Weibo, Re-
sume, MSRA, Ontonotes4.0, respectively. When
compared with baselines with BERT-base-Chinese,
the performance of our model is still be competi-
tive, i.e., +1.8, +0.14, +0.44, +0.75 on Weibo, Re-
sume, MSRA, Ontonotes4.0, respectively. This
verifies our claim that, compared with the exter-

https://github.com/fastnlp/fastNLP
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Models Weibo Resume MSRA OntoNotes
Ours 73.37 96.87 96.72 83.86
-GS 71.68 96.09 96.02 82.72
-RA 72.23 96.18 96.14 82.81

-APW 73.28 96.80 96.65 83.79
-KB 73.25 96.75 96.64 83.81

Table 2: An ablation study of the proposed model. F1
scores were evaluated on the test sets. ‘GS’ denotes
the Global Sparse operation. ‘RA’ denotes the relative
distance-aware attention. ‘APW’ denotes the average
pooling operation used to obtain the word-level rep-
resentations. ‘KB’ denotes the key bias term in the
attention matrix.

nal resources used by most Chinese NER models,
incorporating the rich information in English is
a promising way to improve the performance of
Chinese NER tasks.

(3) All translated English texts used in this work
are automatically generated from the publicly avail-
able machine translation API. Compared with the
baseline models with external resources, our pro-
posed bilingual enhanced approach improves per-
formance and requires no artificially generated ex-
ternal knowledge. From another perspective, we be-
lieve that our proposed model transfers the knowl-
edge in the neural machine translation model to
enhance the Chinese NER model.

(4) Our proposed model could achieve state-of-
the-art performance in both cases with English texts
automatically translated by two different machine
translation systems. This suggests that the perfor-
mance improvement of our model is not dependent
on a specific machine translation system.

(5) Even when the size of training set is small,
such as Weibo NER, the performance improvement
of our model over other baselines is still significant.
This demonstrates that our proposed model is not
data-hungry and has promising potential in low-
resource NER scenarios.

5 Analysis and Discussion

5.1 Ablation Study

To study the contribution of the main components
in our model, we conducted an ablation study on
all four datasets. The results are reported in Table
2. And we can observe the following facts:

(1) To demonstrate the advantage of global
sparse operation, we remove it from the model.
The results show that, without global sparse op-
eration, the performance of the model degrades
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Figure 3: Impact of the machine translation quality. F1
scores were evaluated on the test sets.
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Figure 4: Impact of missing translated texts. F1 scores
were evaluated on the test sets.

severely, which indicates that there exist severe in-
terference of irrelevant words during the process of
bilingual interactions. The global sparse operation
in ACT-S substantially improves the performance
of our model, demonstrating its effectiveness while
achieving higher interpretability for our method.

(2) The component of sensing relative distance
in ACT-S has a significant positive impact on the
performance of the proposed model, and the model
without it shows a certain degree of performance
degradation. This illustrates the validity of the
relative distance-aware component in our model.

(3) We empirically found that the model per-
forms better at word-level bilingual interactions
than at subword-level.

(4) There are positive effects of introducing a
key bias term into the cross-attention matrix.
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Figure 5: Influence of attention sparsity k. Γ is the
length of the text sequence.

5.2 Impact of machine translation quality &
missing translated texts

To illustrate the robustness of our model, we set up
separate experiments to investigate the effect of ma-
chine translation quality and missing translated text
on our model. We randomly replace words in the
automatically translated English text with the mask
token [MASK] in a fixed proportion to simulate a
reduction in the machine translation quality. Simi-
larly, we randomly replace the entire automatically
translated English text with a fixed-length(average
length of samples in the training set) sequence of
the mask token [MASK] at a certain rate for all
samples. As shown in Figure 3 and Figure 4, our
model can achieve excellent performance even in
cases where the translated text has little noise or is
missing. And when the translated text is almost full
of noise or even 100% missing, our model still out-
performs TENER [BERT], a strong baseline that
does not use any external resources, which demon-
strates the robustness of our model. In addition, it
demonstrates that the performance improvement
of our model originates not only from bilingual
resources but is also related to the model itself.

5.3 Impact of attention sparsity k.

We also conducted experiments to verify the impact
of the attention sparsity control factor k in ACT-Ss.
The results reported on the four datasets are shown
in Figure 5. From the results, we can see that the
inappropriate sparsity of global attention signifi-
cantly degrades the performance of the model. If
the global cross-attention matrix is too sparse, such
as in the case of k = 1, the ACT-S module cannot
learn sufficiently about the dependencies between

Method NER results

Gold labels

[美国“亚特兰蒂斯号”航
天飞机 ORG]上的宇航员...
Astronauts on [the US space
shuttle Atlantics ORG]...

BERT-Tagger
[美国 LOC]“亚特兰蒂斯号”
航天飞机上的宇航员...

MECT
[美国 LOC][“亚特兰蒂斯号”
航天飞机 ORG]上的宇航员...

Translation-1
Astronauts on the US

space shuttle Atlantics...

Ours-1
[美国“亚特兰蒂斯号”

航天飞机 ORG]上的宇航员...

Translation-2
Astronauts on space shuttle

Atlantics of US...

Ours-2
[美国“亚特兰蒂斯号”

航天飞机 ORG]上的宇航员...

Table 3: Example-1 of the NER results.

bilingual texts. At the other extreme, if the atten-
tion matrix takes too many interactions between
bilingual words into account, the model will not
achieve the best performance either. This indicates
the sparse nature of lexical dependencies between
bilingual texts. Furthermore, the experimental re-
sults suggest that it is applicable and interpretable
to introduce sparse attention rather than full atten-
tion in bilingual interactions.

5.4 Case Study
Table 3 illustrates one typical example where our
proposed bilingual enhancement model success-
fully tackles the dilemma of the complex structure
of entity composition in the Chinese NER task.
Most of the existing Chinese NER methods utilize
only the internal features of the Chinese language,
which makes it difficult to tag entities with complex
composition structures correctly. When rich cues
in English are leveraged, this problem can be alle-
viated. In addition, it can be seen from these two
cases that the clues in the different English trans-
lations are all beneficial for the correct labeling of
complex entities.

6 Conclusion

In this paper, we propose an Adapted Cross-
Transformers with Global Sparse Attention (ACT-
S) module to explore bilingual interaction infor-
mation to improve the performance of the Chinese
NER task. Several parameter independent ACT-
Ss are employed in our work to capture the rich
information in both English and Chinese. We eval-
uate the proposed model on four Chinese NER
datasets and the experimental results illustrate that
our method achieves significant and consistent im-
provement compared to other baselines. In the fu-
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ture, we will explore how to improve Chinese NER
with features from languages other than English
and extend our model to other sequence labelling
tasks.
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