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Abstract

Generating temporally-ordered event se-
quences in texts is important to natural
language processing. Two emerging tasks
in this direction are temporal event ordering
(rearranging the set of events to correct order)
and event infilling (generating an event at a
specified position). To tackle the two related
tasks, the existing method adopts a vanilla
sequence-to-sequence model via maximum
likelihood estimation (MLE). However,
applying this approach to these tasks will
cause two issues. One issue is that the MLE
loss emphasizes strict local alignment and
ignores the global semantics of the event.
The other issue is that the model adopts
a word-level objective to model events in
texts, failing to evaluate the predicted results
of the model from the perspective of event
sequence. To alleviate these issues, we present
a novel model to tackle the generation of
temporally-ordered event sequences via Event
Optimal Transport (EOT). First, we treat the
events in the sequence as modeling units and
explicitly extract the semantics of the events.
Second, to provide event sequence-level
evaluation of the predicted results of the
model, we directly match events in sequences.
Extensive experimental results show that our
approach outperforms previous models on all
evaluation datasets. In particular, the accuracy
is improved by 7.7%, and the Macro F1 is
improved by 7.2% on one of the datasets.

1 Introduction

Generating temporally-ordered event sequences in
texts is crucial to many artificial intelligence ap-
plications, such as discourse understanding (Nie
et al., 2019), dialog generation (Wu et al., 2018)
and stock prediction (Ding et al., 2016). Temporal
event ordering and event infilling are two challeng-
ing tasks in this line of work. The former refers
to the rearrangement of an unordered sequence of
events to an ordered sequence of events, and the
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Figure 1: The temporal event ordering task, event infill-
ing task and a single generation model handling these
two tasks.

latter refers to inferring missing events in an in-
complete sequence of events. Figure 1 shows an
example of the temporal event ordering task and
event infilling task in (a) and (b), respectively. For
the temporal event ordering, given an unordered
sequence (e3, e2, e4, e1) as input, the output is or-
dered sequence (e1, e2, e3, e4). For the event infill-
ing, given an incomplete sequence (e1, e2, e4) as in-
put, the output is complete sequence (e1, e2, e3, e4)
with the infilled event e3.

To handle these two related tasks, the currently
existing method (Lin et al., 2021) employs a uni-
fied generation model which is shown in Figure 1
(c). Their model takes incomplete unordered events
as input sequence and outputs a complete ordered
event sequence, based on the sequence-to-sequence
(Seq2Seq) model via maximum likelihood estima-
tion (MLE), which maximizes the likelihood of the
next word conditioned on its previous ground-truth
words. Such an approach adopts cross-entropy loss
as the objective, essentially measuring the word
difference at each position of the target sequence
and providing a word-level training loss. Although
their model has shown good performance in han-
dling the two tasks, there are still two issues.

First, the MLE loss emphasizes strict local align-
ment and ignores the global semantics of the event.
For example in Figure 2, the MLE loss will give the
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Figure 2: Comparison between word-level score and
event-level score on two predicted events.

predicted event A a high score and B a low score
because all words except one in event A are aligned
with the words in the answer event yet no word
event B is aligned with the words in the answer
event. However, the loss is expected to give event
A a low score and event B a high score because
from the perspective of event semantics, event A
is completely different from the answer event and
event B is the same as the answer event. There-
fore, we should consider the overall semantics of
the event, rather than the strict alignment of words
within the event.

Second, the goal of the model is to infer events
in texts, but the sequence-to-sequence model uses
a word-level objective so it fails to evaluate the
result from the perspective of event sequence. For
example in Figure 1, the correct predicted event
sequence is (e1, e2, e3, e4). If the model predicts an
event sequence (e4, e1, e2, e3), the MLE loss will
give it a low score because no event is predicted
correctly compared to the answer event sequence.
However, the sequence (e4, e1, e2, e3) should not
get a low score, because at least the orders of 3
events are predicted correctly. Therefore, how to
evaluate the predicted results of the model from
the perspective of event sequence is a challenging
problem.

To tackle the above issues, we introduce a
novel method for the generation of temporally-
ordered event sequences via Event Optimal Trans-
port (EOT). Specifically, for the first issue, we treat
the events in the sequence as modeling units and ex-
plicitly extract the semantics of the events. For the
second issue, we propose to use optimal transport
to directly match events in sequences. The EOT al-
lows end-to-end supervised training and acts as an
effective sequence-level regularization to the MLE
loss.

In summary, our contributions can be summa-
rized as follows:

• We introduce a novel method for the gener-
ation of temporally-ordered event sequences

via Event Optimal Transport (EOT), which
treats the events in the sequence as modeling
units and explicitly extracts the semantics of
the events.

• We directly match events in sequences to pro-
vide event sequence-level evaluation of the
predicted results of the model.

• Extensive experimental results demonstrate
the superiority of the proposed method on all
evaluation datasets. Specifically, the accuracy
is improved by 7.7%, and the Macro F1 is
improved by 7.2% on one of the datasets.

2 Related Work

Script Event Prediction Given context event se-
quence, script event prediction aims at predicting
the subsequent event from a candidate list. The
task is first proposed by Chambers and Jurafsky
(2008), and a statistical model is proposed to learn
the cooccurrence between events. Jans et al. (2012)
leverages a bigram model to model the tempo-
ral order between events explicitly. The above
two methods are count-based, and then researchers
have proposed methods based on neural networks.
Granroth-Wilding and Clark (2016) proposes a neu-
ral network based model for simultaneously learn-
ing word embedding and composition function. In
Wang et al. (2017), they propose an LSTM based
model to integrate order information and event re-
lation. Li et al. (2018) treats event chain as a sub-
graph and leverages recurrent networks to better
model relatedness between events in the candidate
list with events in the graph. Lv et al. (2019) pro-
poses a model that integrates event-level and chain-
level attentions to better leverage information con-
tained in event chain. Zhou et al. (2021) proposes
a multi-task self-supervised model to cope with the
problem of lack of training data in script event pre-
diction. To incorporate event circumstances into
the narrative event prediction, Wang et al. (2021)
adopts the two multi-head attention to retrieve cir-
cumstances at the local and global levels. In this
paper, we consider two related tasks of temporal
event ordering and event infilling and leverage a
single generation model to tackle these two tasks.

Optimal Transport in NLP Optimal transport
has been applied in NLP for a variety of tasks
recently. In Kusner et al. (2015), the author
proposes the Word Mover’s Distance (WMD), a
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Figure 3: Overall architecture of the proposed generation model based on event optimal transport.

novel distance function between text documents
that measures the dissimilarity between two text
documents as the minimum amount of distance
that the embedded words of one document need
to “travel” to reach the embedded words of an-
other document. Later in Xu et al. (2018), a
novel Wasserstein method with a distillation mech-
anism is proposed, yielding joint learning of word
embeddings and topics. The cross-lingual corre-
spondence problem is cast as an optimal transport
problem in Alvarez-Melis and Jaakkola (2018),
and the Gromov-Wasserstein distance is exploited
for the alignment of word embedding spaces. A
content-aware sparse attention module based on
optimal transport is proposed in Chen et al. (2020)
to deal with textual network embedding problem.
Li et al. (2020) proposes student-forcing optimal
transport to tackle the exposure bias problem in
text-generation models trained by maximum like-
lihood estimation. Xu et al. (2021) formulates the
quest of vocabularization – finding the best token
dictionary with a proper size – as an optimal trans-
port problem and proposes a simple and efficient
solution without trial training. A time-aware op-
timal transport distance is introduced (Li et al.,
2021) for learning the model to compress the event-
graphs of news articles in an unsupervised manner.
In this paper, we leverage optimal transport and
propose event OT to directly match events in event
sequences to provide sequence-level supervision of

the predicted results.

3 Methodology

The overall structure of our model is illustrated
in Figure 3. The input of the model is a se-
quence of events x = (e1, ..., en), which is in-
complete and unordered, and the output of the
model is a complete and ordered sequence of events
y = (e1, ..., em). We represent e in the event se-
quence as the concatenation of its predicate with
all its arguments.

3.1 Generation Model
To leverage the power of pretrained transformers,
we base the underlying architecture for our model
on BART (Lewis et al., 2020). BART is a denoising
autoencoder for pretraining sequence-to-sequence
models which can be seen as generalizing BERT
(Kenton and Toutanova, 2019) (due to the bidirec-
tional encoder), GPT (Radford and Narasimhan,
2018) (with the left-to-right decoder), and other
recent pretraining schemes.

Similar to previous work (Lin et al., 2021), we
then prepend a special word [Ei] in front of each
event in input event sequence x. For the output, if
ej in y is one of the input events ei in x, then we
prepend special words [Ei]vej [A] before ej , where
vej is the predicate of event ej . Otherwise, the
special words [E]vej [A] are used in front of ej . An
example of the above is shown in Figure 3. The
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use of [Ei] helps the model differentiate between
events in the input and output sequences, which
facilitates optimal transport between events.

3.2 Event Optimal Transport
We first briefly introduce the optimal transport.
Given two spacesX and Y , the Kantorovich formu-
lation of optimal transport aims to find a probability
measure γ on X × Y that attains the following in-
fimum:

inf

{∫
X×Y

c(x, y)dγ(x, y) | γ ∈ Γ(µ, ν)

}
(1)

where Γ(µ, ν) is the set of probability measures
on X × Y with marginal µ on X and ν on Y .

Now given two discrete probability measures µ
and ν, which can be represented by Dirac measure
as below:

µ =
n∑
i=1

uiδxi , ν =

m∑
j=1

viδyj (2)

where δx is the Dirac measure sitting at x. The
coefficients u = {ui}ni=1 and v = {vj}mj=1 satisfy
the constraints

∑n
i=1 ui =

∑m
j=1 vi = 1 as both

µ and ν are probability measures. Under such a
setting, the objective function and the constraint in
the primal Kantorovich problem are then:

min
T

∑
i,j

T ij · c
(
xi,yj

)
= min

T
〈T ,C〉

s.t.
∑
j

T ij = ui, i = 1, ..., n,

∑
i

T ij = vj , j = 1, ...,m,

T ∈ Rn×m+ .

(3)

where C is the cost matrix with Cij = c
(
xi,yj

)
and c is the cost function. 〈T ,C〉 = Tr(T>C)
denotes the Frobenius dot-product, here Tr denotes
the trace of a matrix.

Because the exact solution of (3) is is highly
intractable (Arjovsky et al., 2017), researchers have
proposed some approximate algorithms, such as the
Sinkhorn (Cuturi, 2013) and IPOT (Xie et al., 2020)
algorithms. Here we choose the IPOT algorithm to
approximate the minimizer of (3). The details of
the IPOT algorithm are shown in Algorithm 1.

Assume the output (the last hidden state) of the
BART encoder and decoder areHe ∈ RLe×d and
Hd ∈ RLd×d respectively, where Le and Ld are

Algorithm 1 IPOT algorithm
Input: Feature vectors S = {xi}n1 ,S′ = {x′i}m1
Parameter: Generalized stepsize 1

β
Output: 〈T ,C〉

1: σ = 1
m1m,T (1) = 1n1m

>.

2: Cij = c(xi,x
′
j),Aij = e

−
Cij
β .

3: for t = 1, 2, ..., T do
4: Q = A� T (t). // � is Hadamart product
5: for k = 1, 2, ...,K do
6: δ = 1

nQσ ,σ = 1
mQ>δ .

7: end for
8: T (t+1) = diag(δ)Qdiag(σ).
9: end for

10: return 〈T ,C〉

lengths of input and output sequences. We first
partitionHe into n groups where each group cor-
responds to features of words in an event (note that
the input to our model is x = {e1, ..., en}), then
features of words in a group are averaged to obtain
a vector sequence S = {hi}ni=1. Note that besides
average, we also tried other aggregation functions,
such as max pooling, attention, etc., but they all
performed worse than average. The possible reason
is that there are already more complex aggregation
functions such as attention in BART, so it is enough
to use average as the aggregation function of the
BART output.

ForHd, it’s first input to a linear layer:

H l = HdW + b (4)

where W ∈ Rd×V and V is the vocabulary size.
We then use the argmax function over H l to ob-
tain the predicted indices i ∈ ZLd+ . We identify
indices of special word [Ei] in i and these identi-
fied indices are used to partitionHd into k groups
where each group corresponds to features of words
in an event. Note that there may be cases where
there are no identified indices, which are most
likely to occur at the beginning of training. To solve
possible errors, we partition Hd into Ld groups
when this happens. Finally after averaging, we
obtain another vector sequence S′ = {hj}kj=1.

3.3 Training and Optimization

In order to use a unified generation model to handle
temporal event ordering and event infilling tasks,
we first construct input-output data pairs related
to these two tasks. Specifically, given an ordered



1879

Algorithm 2 EOT algorithm
Input: Ground truth {(x1,y1), ..., (xN ,yN )}
Parameter: Batch size M

1: Initialize MLE model parameters.
2: for epoch = 1, ...,MaxEpoch do
3: for k = 1, ...,M do
4: Draw a pair of sequences (xi,yi).
5: Compute the outputs He and Hd of the

encoder and decoder.
6: Extract feature vector sequences of events

S and S′ fromHe andHd.
7: Compute the cost matrix C based on S

and S′ via cosine distance.
8: Compute the EOT loss defined in (4).
9: end for

10: Update model parameters by optimizing loss
in (6).

11: end for

event sequence y as defined above, we follow pre-
vious work (Lewis et al., 2020; Lin et al., 2021)
to corrupt it to obtain the required input x by two
steps. The first step is to shuffle events: perform-
ing a random shuffling of the complete ordered
event sequence y to produce an unordered event
sequence x′. The second step is to delete events:
randomly deleting each event in x′ with probability
p to produce the incomplete unordered input event
sequence x.

Take Figure 1 (c) for example, the complete
ordered event sequence on the right is y. After
performing event shuffling and event deletion, we
obtain incomplete unordered input event sequence
x on the left.

Now we introduce the optimization process of
the model. After obtaining two vector sequences
S = {hi}ni=1 and S′ = {hj}kj=1 as described in
the previous section, we can compute the event-
level OT loss using the IPOT algorithm described
above:

LEOT = IPOT(S, S′) (5)

Meanwhile, suppose the input sequence is x =
(w1, ..., wL) and the gold output sequence is y =
(w1, ..., wL′), where L and L′ are numbers of
words. We also have the following maximum like-
lihood estimation (MLE) loss:

LMLE =

L′∑
t=1

log pθ(wt|w<t,x) (6)

We then combine the two loss functions to obtain

the following loss:

L =
1

M

M∑
n=1

(−LMLE(xn,yn)+αLEOT (Sn, S
′
n))

(7)
where M is the number of training pairs. The pa-
rameters are updated by minimizing this loss and
the full algorithm is summarized in Algorithm 2.

4 Experiment

4.1 Experimental Setup
Dataset Following Lin et al. (2021), the temporal
event sequences are extracted from the EventsNar-
ratives corpus (Yao and Huang, 2018). The SRL
model from AllenNLP (Gardner et al., 2018) is
used to extract verbs (events) and their arguments.
Then, only events in different sentences are con-
nected to construct temporal event sequences, and
only event chains associated with a common en-
tity are included. We train our model on 100,000
sequences extracted by the above procedure. Two
different orders are used to scramble each sequence,
resulting in a total of 200,000 training data.

For testing, two out-of-domain English datasets
CaTeRS (Mostafazadeh et al., 2016) and MCTaco
(Zhou et al., 2019) are used to extract the test tem-
poral event sequences. CaTeRS includes annota-
tions of events and their causal and temporal rela-
tions on short stories. MCTaco is a question answer-
ing dataset for evaluating the model’s capability of
understanding temporal commonsense. Following
Lin et al. (2021), 842 event sequences are extracted
for CaTeRS and after applying two different per-
mutations to each sequence, 1684 CaTeRS exam-
ples are finally obtained. For MCTaco, 585 test
sequences are extracted.

Training Details We choose the cosine distance
as the cost function in the event optimal transport
and the hyper-parameter α is set to 0.1. The learn-
ing rate of our model is 1e-5, and a polynomial de-
cay scheduling with 500 steps of warm-up is used.
We set the batch size to 64, the models are trained
for 10 epochs, with 2000 updates each epoch. We
set the event deletion probability to 0.15 for the
deletion training strategy. The BART-large pre-
trained model from Hugging-Face’s Transformers
library (Wolf et al., 2020) is used as the underly-
ing structure which is the same as previous work.
Beam search with the beam size 4 is used when
decoding the output event sequences during the
evaluation for temporal event ordering.
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CaTeRS MCTaco
Model All Pair Acc. Longer Pair Acc. Acc. Macro F1
BERT-based SSVM 65.7 62.3 67.2 47.0
Pointer Network 54.1 52.3 54.7 42.7
TemporalBART† 77.1 74.7 63.9 50.1
TemporalBART-indexed† 79.7 78.0 74.9 55.1
EOT 81.3 80.2 82.6 62.3

Table 1: Temporal ordering results on dataset CaTeRS and MCTaco. For CaTeRS, All Pair Acc. means pairwise
accuracy of predicted ordering for all event sequences, while Longer Pair Acc. denotes pairwise accuracy for
sequences containing more than three events. For MCTaco, Accuracy and Macro F1 score are computed on the
ordering between the question event and answer event. The symbol † represents the results we reproduced using
public code released by Lin et al. (2021), and other two results are taken from Lin et al. (2021).

Baselines We compare our model with the fol-
lowing baseline methods for temporal event order-
ing:

• BERT-based Pairwise Model + SSVM (Han
et al., 2019) leverages a BERT-based model
(Kenton and Toutanova, 2019) to compute
pairwise scores for two events in the output,
and the final output is then obtained by solving
an ILP over all the pairwise scores.

• BERT-based Pointer Network first uses
BERT to extract representations for events
that are fed into an LSTM-based pointer net-
work to compute the probability for ordering.

• TemporalBART (Lin et al., 2021) is based on
BART (Lewis et al., 2020), and special words
are prepended in front of events in input and
output sequences to provide extra clues.

• TemporalBART-indexed (Lin et al., 2021) is
the same as TemporalBART except that the
indices of the special words prepended before
events are considered.

For event infilling, we compare our model with
these extra baselines:

• HAQAE (Weber et al., 2018) is a vector quan-
tized variational autoencoder with a latent
space defined by a hierarchy of categorical
variables which encodes schema knowledge.

• GPT-2 (Radford et al., 2018) is a transformer-
based pretrained language model which is
used as the underlying structure in many gen-
eration tasks.

• Infilling GPT-2 (Qin et al., 2020) generates
the infilling events conditioned on both the

prefix events and the events after the insertion
position.

4.2 Results on Temporal Event Ordering
CaTeRS Dataset Experimental results on
CaTeRS are shown in Table 1, pairwise accuracy is
used to calculate the proportion of ordered event
pairs in the predicted sequence.

Among all the approaches, our method performs
best. It achieves the best performance on both all
sequences and long sequences. The reasons may
be that compared with the BERT-based pointer net-
work, our model can condition the word-level em-
beddings of the events when generating the out-
put events instead of condensed event embeddings.
Compared with BART-based models, our model
treats the events in the sequence as modeling units
and explicitly extracts the semantics of the events
instead of emphasizing strict local alignment of
words.

MCTaco Dataset The accuracy on predicting the
temporal relation of event in question and event
in answer is computed, since only gold temporal
relation of event in question and event in answer
is known for each test sequence. The macro F1
score is also computed because the proportion of
before/after questions is unbalanced in MCTaco.

Our EOT model outperforms all the baselines, in
particular, our model outperforms TemporalBART-
indexed by 7.7% in accuracy and 7.2% in Macro
F1. We attribute the significant improvement to the
direct events matching in sequences by our model.
We will further demonstrate the effectiveness of di-
rect events matching in the following experiments.

Ordering Unseen Events for CaTeRS Follow-
ing Lin et al. (2021), we also evaluate our EOT
model on an additional variant task of temporal
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Model
All seq Longer seq

EM Top2 EM EM Top2 EM
Random 34.1 69.5 23.7 48.7
HAQAE 37.1 71.9 28.7 53.2
GPT-2 35.2 68.4 22.6 48.2
Infilling GPT-2 38.8 73.5 26.3 55.4
TemporalBART† 57.7 83.3 48.2 70.6
TemporalBART-indexed† 58.4 87.4 50.9 77.4
EOT 58.8 88.2 52.6 78.1

Table 2: The results of ordering unseen events on se-
quences from dataset CaTeRS. Longer seq means re-
sults for sequences containing more than three events.
The symbol † has same meaning as Table 1.

event ordering which better tests its capability as
a generative model. Specifically, for each event
sequence in CaTeRS, we first randomly delete an
event e∗ in the sequence, and let the remaining
events be denoted as (e1, ..., eN ). We want to test
whether the model can insert the deleted event e∗

to its original position, thus we use the genera-
tion probability of the model to rank the N + 1
sequences which are obtained by inserting e∗ to
N + 1 different positions. The higher the model
ranks the original sequence, the better the model is
able to capture the relationship between seen events
and possibly generated unseen events.

Table 2 shows the results, and the top-1 and
top-2 exact match (EM) are used to evaluate the
results, which calculate the proportion of gold se-
quences that the model ranks first and second above.
Our model outperforms all the baselines on both
all the event sequences and long sequences, which
again demonstrates the effectiveness of considering
event-level semantics and direct events matching in
sequences. Another observation is that compared
with the TenporalBART-indexed model, the perfor-
mance of our EOT model on longer sequences is
more significant than on all the sequences. One
possible reason is that longer sequences have more
events which are more helpful for the model to do
the event-level matching.

4.3 Results on Event Infilling

Now we consider temporal event infilling and the
dataset CaTeRS is used. Given an event sequence
from CaTeRS, we first randomly delete an event to
obtain (e1, ..., ei−1, ei+1, ..., en). Then the model
should generate an infilled event e∗ at position i
and the new sequence (e1, ..., ei−1, ei, ei+1, ..., en)
is expected to be temporally ordered.

We measure the quality of generated events
through human evaluation. Given a sequence with

a generated event at some position, 3 raters are
asked to score this sequence in terms of the coher-
ence (How coherent the generated event is with
the context?) and temporality (Does the generated
event occur in the right order concerning the con-
text?) for the generated event and both scores are
from {0, 1, 2}. The final scores are the majority
scores of the 3 raters for both coherence and tem-
porality. We then randomly sample 15 sequences
from CaTeRS and the averaged scores are took as
the metric.

The result is shown in Table 3, and our EOT
model achieves better performance than all the
baseline models in terms of coherence and tempo-
rality. The reason may be that by explicitly match-
ing events in input and output sequence, the model
can generate an event that is more relevant to the
scenario of events in the input sequence.

Model Coherence Temporality
GPT-2 1.27 0.60
Infilling GPT-2 1.53 0.80
TemporalBART 1.13 0.87
TemporalBART-indexed 1.53 1.07
EOT 1.67 1.13

Table 3: The human evaluation result for event infilling
on dataset CaTeRS.

We show two examples of events generated by
different models in Figure 4. As we can see in
Figure 4 (a), the event generated by infilling GPT-2
is less relevant to the context events. The order
of the event generated by TemporalBART-indexed
is inappropriate, although it’s coherent with the
scenario of the input events. The event generated
by our model EOT is both coherent and temporally
ordered. Another example is shown in 4 (b).

4.4 Further Demonstration of EOT’s
Effectiveness

To further demonstrate the effectiveness of our
event optimal transport, we compare EOT with
two extra models. Recall that in our model, the
output (the last hidden state) of the BART encoder
and decoder areHe ∈ RLe×d andHd ∈ RLd×d re-
spectively, then two vector sequences S = {hi}ni=1

and S′ = {hj}kj=1 corresponding to events in in-
put and output are extracted to construct event OT
loss. Now, we directly treat vectors inHe andHd

as S and S′ respectively to construct word-level
loss, and this model is called Word Optimal Trans-
port (WOT). We also test the model which com-
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[INSERTED EVENT] e2: Her mom told her if she gets all good grades, she
could get one.

e3: Maddie's mom took her to get her
puppy as her reward. 

Infilling GPT-2: The first time I saw
the movie, I was in my early 20s.

TemporalBART-indexed: Maddie's
mom was a teacher. EOT: Maddie wanted to get a puppy.

e1: Ashley went to the cabinet. e2: Ashley pulled out a bottle of
wine. e4: She opened the wine. 

Infilling GPT-2: She poured it into
her glass. TemporalBART-indexed: She drank the wine. EOT: The wine was good.

[INSERTED EVENT]

(a)

(b)

Figure 4: Two examples of events generated by infilling GPT-2, TemporalBART-indexed and our model EOT. The
input events are in green and orange, while events generated by the models are in blue and purple.
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Figure 5: The performances of the 4 models on the
8 evaluation metrics which correspond to Table 1 and
2. The TBART-idx represents the TemporalBART-
indexed model. Pacc means Pairwise Accuracy and 3+
means sequences with 3 or more events.

bines event and word-level OT loss and is called
EOT+WOT.

Experimental results are shown in Figure 5, from
which we can make the following observations:

(1) The WOT model achieves comparable re-
sults with the TemporalBART-indexed model and
performs better on some metrics. This shows that
imposing global sequence-level guidance via new
supervision is effective, although the effect is not
obvious, because it did not take into account the
event-level matching.

(2) When event-level matching is considered,
the EOT model achieves performance improve-
ments on almost all metrics compared to the
WOT model, and the EOT model outperforms the
TemporalBART-indexed model on all metrics. This
demonstrates that incorporating event-level match-
ing can further improve the performance of optimal
transport and outperform the baseline models.

(3) When we combine word-level with event-

level OT, the performance is expected to get better.
Unfortunately, the performance of EOT+WOT de-
creases compared with EOT. One possible reason is
that word-level matching and event-level matching
conflict with each other to some extent: two events
may match well, but the words in the two events
may not match each other.

5 Conclusion

In this paper, we consider a single generation model
which can support inferences in the two related
tasks. We introduce a novel method for the gen-
eration of temporally-ordered event sequences via
Event Optimal Transport (EOT). Compared with
the MLE-based Seq2Seq model, our approach has
two advantages: (i) we treat the events in the se-
quence as modeling units and explicitly extract
the semantics of the events; (ii) we directly match
events in sequences to provide event sequence-level
evaluation of the predicted results of the model.
Experimental results show the superiority of our
model on all evaluation datasets. Specifically, the
accuracy is improved by 7.7%, and the Macro F1
is improved by 7.2% on one of the datasets.

Acknowledgements

This work is supported by the National Key
Research and Development Program of China
(No.2020AAA0106400), the National Natural
Science Foundation of China (No.62176257,
61976211, 61922085). This work is also sup-
ported by the Strategic Priority Research Pro-
gram of Chinese Academy of Sciences (Grant
No.XDA27020200), the Youth Innovation Promo-
tion Association CAS, and Yunnan Provincial Ma-
jor Science and Technology Special Plan Projects
(No.202202AD080004).



1883

References
David Alvarez-Melis and Tommi Jaakkola. 2018.

Gromov-wasserstein alignment of word embedding
spaces. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1881–1890.

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
2017. Wasserstein generative adversarial networks.
In International conference on machine learning,
pages 214–223. PMLR.

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Pro-
ceedings of ACL-08: HLT, pages 789–797.

Liqun Chen, Guoyin Wang, Chenyang Tao, Ding-
han Shen, Pengyu Cheng, Xinyuan Zhang, Wenlin
Wang, Yizhe Zhang, and Lawrence Carin. 2020. Im-
proving textual network embedding with global at-
tention via optimal transport. In ACL 2019-57th An-
nual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, pages
5193–5202. Association for Computational Linguis-
tics (ACL).

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. Advances in neu-
ral information processing systems, 26.

Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan.
2016. Knowledge-driven event embedding for stock
prediction. In Proceedings of coling 2016, the 26th
international conference on computational linguis-
tics: Technical papers, pages 2133–2142.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. In Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 1–6.

Mark Granroth-Wilding and Stephen Clark. 2016.
What happens next? event prediction using a com-
positional neural network model. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 30.

Rujun Han, I-Hung Hsu, Mu Yang, Aram Galstyan,
Ralph Weischedel, and Nanyun Peng. 2019. Deep
structured neural network for event temporal rela-
tion extraction. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 666–106.

Bram Jans, Steven Bethard, Ivan Vulić, and
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