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Abstract

Reasoning and knowledge-related skills are
considered as two fundamental skills for natu-
ral language understanding (NLU) tasks such
as machine reading comprehension (MRC) and
natural language inference (NLI). However, it
is not clear to what extent an NLU task defined
on a dataset correlates to a specific NLU skill.
On the one hand, evaluating the correlation re-
quires an understanding of the significance of
the NLU skill in a dataset. Significance judges
whether a dataset includes sufficient material
to help the model master this skill. On the
other hand, it is also necessary to evaluate the
dependence of the task on the NLU skill. De-
pendence is a measure of how much the task
defined on a dataset depends on the skill. In
this paper, we propose a systematic method
to diagnose the correlations between an NLU
dataset and a specific skill, and then take a fun-
damental reasoning skill, logical reasoning, as
an example for analysis. The method adopts a
qualitative indicator to indicate the significance
while adopting a quantitative indicator to mea-
sure the dependence. We perform diagnosis
on 8 MRC datasets (including two types) and
3 NLI datasets and acquire intuitively reason-
able results. We then perform the analysis to
further understand the results and the proposed
indicators. Based on the analysis, although the
diagnostic method has some limitations, it is
still an effective method to perform a basic di-
agnosis of the correlation between the dataset
and logical reasoning skill, which also can be
generalized to other NLU skills.

1 Introduction

Machine reading comprehension (MRC) and nat-
ural language inference (NLI) are used to bench-
mark natural language understanding (NLU) capa-
bilities. Although a large number of NLU-related
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datasets have been proposed (Yang et al., 2018;
Yatskar, 2019), it is hard to evaluate correlations
between the dataset and NLU-related skills due to
the lack of benchmark method (Richardson et al.,
2020), which may create an obstacle to choose ap-
propriate dataset for specific skill training. Accord-
ing to a widely accepted discourse comprehension
theory, construction-integration model (Kintsch,
1991), there are two processes for humans to un-
derstand language: 1) understanding the concepts
and discourses in the text and building their rela-
tionships with the real world; 2) synthesizing these
concepts and discourses to form a consistent under-
standing. These two processes mainly correspond
to two types of skills in NLU: Knowledge-related
skills and reasoning skills (Baral et al., 2020; Bo-
ratko et al., 2018; Tian et al., 2021). Previous re-
searches concentrate on evaluating the correlation
between datasets and knowledge, such as assess-
ing what types of knowledge are required to com-
plete an NLU task (Sap et al., 2019a; Rogers et al.,
2020) and offering various knowledge supplements
based on those needs (Feng et al., 2020). However,
compared to knowledge-based characteristics, rea-
soning abilities are more difficult to identify and
quantify directly. Besides, some existing work us-
ing probes (supervised models trained to predict
properties) mainly focuses on linguistic tasks (He-
witt and Liang, 2019; Conneau et al., 2018) and few
studies diagnose the logical discrepancies between
datasets.

Based on different deduction methods, reason-
ing skills can be divided into logical reasoning, co-
referential reasoning, numerical reasoning, causal
reasoning, etc (Sugawara et al., 2017). Among
all these reasoning skills, logical reasoning is a
fundamental skill widely used to understand nat-
ural language (Bhagavatula et al., 2020). In this
paper, we take logical reasoning as an example
and construct a systematic method to analyze the
correlations between NLU datasets and a specific
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reasoning skill. The correlations include two as-
pects: significance and dependence. 1) significance
aims to judge whether a dataset includes sufficient
(explicit or implicit) logical expressions; 2) depen-
dence is used to measure how much the task on a
dataset depends on the logical reasoning skill. To
aid the diagnosis, a logical probe, consisting of a
probe model and a probe dataset, is introduced. We
select 8 MRC datasets (including two types) and
3 NLI datasets to perform diagnosis. We create
a qualitative and quantitative indicator to reflect
the association between the dataset and logical rea-
soning after training the probe model on various
datasets in various ways. The results show: 1) Most
NLI datasets are relatively strongly correlated to
logical reasoning. 2) As for the comprehensive
MRC datasets (Type1), the correlations are moder-
ate which means that logical reasoning is not the
only dominant reasoning skill in this type; 3) The
correlations of different MRC datasets for specific
anticipations (Type2) vary remarkably according
to their purposes of design. Further cause analysis,
which is consistent with the results, confirms the
rationality of our method to a certain degree. In
conclusion, this method offers a reasonable view
of exploring the correlations between datasets and
logical reasoning.

Our contributions are as follows:

• We propose a systematic method to diagnose
the correlations between NLU datasets and
reasoning skills and take logical reasoning as
an example to validate the effectiveness of this
method.

• In particular, two indicators are introduced
to evaluate the correlation between the NLU
dataset and reasoning skill.

• We conduct extensive experiments on 11 NLU
datasets from both qualitative and quantitative
analyses. Results show that Winogrande is the
only dataset unable to judge the significance
based on qualitative analysis, while QASC,
SNLI and MNLI show relatively high depen-
dence on logical reasoning based on quantita-
tive analysis.

2 Related Work

NLU Datasets. Recently, the number of NLU
datasets has exponentially increased (Zeng et al.,
2020). Such datasets mainly include MRC

datasets and NLI datasets. MRC datasets, such as
SQuAD (Wang et al., 2016), CoQA (Reddy et al.,
2019) and DROP (Dua et al., 2019) are designed
to test whether machines can answer the text-
related questions or not, while NLI datasets, such
as SNLI (Bowman et al., 2015) and MNLI (Nangia
et al., 2017), are constructed to explore whether
models can detect inferential relationships between
natural language descriptions (Richardson et al.,
2020) or not. Overall, all these datasets aim to
define tasks to evaluate whether machines can un-
derstand the natural language as humans do.

Analysis for NLU. Recently, more and more re-
searches focus on what models have really learned
in NLU tasks. In this field, some researches attempt
to understand the knowledge (Ghosal et al., 2021;
Fang et al., 2021) and reasoning skills (Richard-
son et al., 2020) in language models, while others
mainly focus on systematic evaluations of NLU
models (Tenney et al., 2019; Ribeiro et al., 2020).
These studies have provided foundations to further
understand NLU. In addition, some researchers
begin to pay attention to the analysis of NLU
datasets (Baradaran et al., 2020). For example, Sug-
awara et al. (2020) have provided an ablation-based
method to understand the tasks defined on the NLU
datasets. However, such researches are still rare
and further investigations are required.

3 Methodology

In this paper, we limit our investigation to a
fundamental form of logical reasoning: conjunc-
tive implications with negation (Musen and Lei,
1988) which uses multiple conditions to derive
the final conclusion and can be expressed as:
[(¬)p1, (¬)p2, · · · , (¬)pn] → q, where pi, (i =
0, 1, · · · , n) represents each condition and q is the
conclusion. Although logical reasoning has many
complex forms, conjunctive implication with nega-
tion is the most commonly used one in daily con-
versation and can cover most situations in natural
language (Allwood et al., 1977).

Our method adopts control variates to control
what models learn. Supported by a logical probe,
we train models in the different manners on the di-
verse datasets to adjust the skills mastered by mod-
els. Based on the method, we design a qualitative
indicator and a quantitative indicator to indicate
significance and dependence, respectively. Next,
we will firstly introduce the logical probe and then
introduce two indicators and two corresponding
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processes.

3.1 Logical Probe

Logical probe includes a probe dataset and a probe
model. The probe dataset has two main functions:
1) to train the probe model and enable it to master
logical reasoning without increasing extra knowl-
edge; 2) to test whether a model has mastered logi-
cal reasoning or not. Therefore, the probe dataset
is required to meet the following three conditions:

• The dataset will involve as little explicit and
implicit knowledge as possible, while expres-
sions in the dataset should conform to natural
language form.

• It should contain a large number of logical
expressions and the task defined on the dataset
should relate strongly to logical reasoning.

As for the probe model, it is the original model
that will be trained on the different datasets in di-
verse manners. Therefore, the probe model is re-
quired to meet the following three conditions:

• The probe model itself can be used as a knowl-
edge base.

• The knowledge stored in the model’s weights
can be updated after being trained in a specific
manner.

• The model can master logical reasoning after
being trained on the probe dataset.

3.2 Qualitative Diagnosis

A qualitative process is designed to diagnose the
significance of a dataset to logical reasoning which
indicates whether a dataset includes sufficient logi-
cal materials to enable the model to master logical
reasoning. To perform qualitative diagnosis, we
firstly involve a presupposition that as long as there
exists one model that can master logical reasoning
to a certain degree through the dataset to be diag-
nosed, we can assert that the dataset is significant
to logical reasoning. According to the presuppo-
sition, the qualitative process includes two steps
shown in Fig 1 and Alg 1. The first step is to train
the probe model M0 on the dataset D to be diag-
nosed in the supervised manner. Then we acquire
a trained model M1 which has acquired the domi-
nant patterns in D. The second step is to test M1

on the probe dataset P to acquire the metric R1.

Probe Model
M0

Trained Model
M1 = Update(M0)

Learning from Dataset
Supervised Training

NLU Data(Training Set)

Qualitative Diagnosis
Testing

Probe Data(Testing Set)

Result
R1

Qualitative Indicator
I1 = sign(R1, δ)

Purpose
Method
Dataset

Figure 1: Qualitative process. The probe model is first
trained on the NLU dataset to acquire significant skills
and tested on the probe dataset. Before testing, we re-
train the full connected classifier with fixed M1.

Note that in the testing step, we re-train the fully-
connected classifier with fixed M1 before testing.
The qualitative indicator can be calculated by the
Eq 1.

I1 = sign(R1, δ) =

{
+, R1 ≥ δ
−, R1 < δ

(1)

Where “+" means “significant to the logical reason-
ing" while “−" means “unable to judge" (the qual-
itative diagnosis has a natural limitation in which
we cannot traverse all models to fully verify the ex-
istential presupposition). δ is the threshold to judge
the significance (Since the probability of random
selection for the binary classification problem is
0.5, we can approximate that R1 is equivalent to
the result of random selection if R1 < δ = 0.55).

Algorithm 1 Qualitative Process.
Require: NLU datasets D = [D1, D2, · · · , Dn];

Probe dataset P ; Probe Model M0

Ensure: Qualitative Indicator, I1 = [I11 , I
2
1 , · · · , In1 ]

1: Initialize M0 with pre-trained parameters;
2: Initialize I1 = []

3: for i = 1 to n do
4: M i

1 = SupervisedTrain(M0, Di)

5: Ri
1 = Test(M i

1, P )

6: Ii1 = Sign(0, Ri
1 − δ)

7: I1.Append(Ii1)

8: end for
9: return I1;

3.3 Quantitative Diagnosis

A quantitative process is designed to diagnose
the dependence of a dataset on logical reasoning,
which aims to answer how much a task defined
on the dataset depends on the logical reasoning
skill. Here we make a hypothesis that if the only
difference between the two models is whether log-
ical reasoning has been mastered, the gap of the
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Probe Model
M0

Trained Model
M2 = Update(M0)

Capturing Knowledge
Unsupervised Training

NLU Data(Corpus)

Trained Model
M3 = Update(M2)

Mastering Reasoning Skill
Supervised Training

Probe Data(Training Set)

Quantitative Diagnosis
Testing

NLU Data(Testing Set)

Result
R3

Result
R2

Quantative Indicator
I2 = R3−R2

R3

Purpose
Method
Dataset

Figure 2: Quantitative process. The probe model is
firstly trained on the NLU corpus in an unsupervised
mannert to update its knowledge related to the NLU
dataset (get M2). The model is trained on the probe
dataset to master logical reasoning skills (get M3). We
re-train the full connected classifier with fixed M2/M3
before testing. Then, M2 and M3 are tested on the
NLU dataset, to get two results R2 and R3, respectively.
Finally, quantitative indicator I2 is calculated using the
difference of R3 and R2.

performances can indicate the dependence on logi-
cal reasoning. Based on the hypothesis, we define
a three-step process to calculate the quantitative
indicator: 1) training the probe model M0 on the
NLU dataset D in the unsupervised manner to abun-
dant knowledge and getting model M2; 2) training
M2 on the probe dataset P and getting the second
model M3; 3) Testing M2 and M3 on D and get-
ting results R2 and R3 (Testing step is similar to
it in the qualitative diagnosis). The quantitative
indicator is calculated by Eq 2.

I2 =
R3 −R2

R3
× 100 (2)

The quantitative process is shown in the Fig 2 and
Alg 2. The test algorithm in both Alg 1 and Alg 2
is shown in Alg 3.

4 Diagnosis

4.1 NLU Datasets to Be Diagnosed

We select 11 NLU datasets to perform diagnosis.
These datasets can be classified into three types:
NLI datasets and two types of MRC dataset. The
NLI datasets include three commonly used ones:
SNLI (Bowman et al., 2015), MNLI (Nangia et al.,
2017) and αNLI (Bhagavatula et al., 2020). Type
1 MRC datasets (comprehensive MRC datasets)
include BoolQ (Clark et al., 2019), DROP (Dua
et al., 2019) and CODAH (Chen et al., 2019), all
with tasks requiring diverse NLU skills to solve.
Type 2 MRC datasets (specific MRC datasets)
are constructed to benchmark one dominant NLU

Algorithm 2 Quantitative Process.
Require: Diagnosed datasets D = [D1, D2, · · · , Dn];

Probing dataset P ; Probing Model M0

Ensure: Quantitative Indicator, I2 = [I12 , I
2
2 , · · · , In2 ]

1: Initialize M0 with pre-trained parameters;
2: Initialize I2 = []

3: for i = 1 to n do
4: M i

2 = UnsupervisedTraining(M0, Di)

5: Ri
2 = Testing(M i

2, Di)

6: M i
3 = SupervisedTraining(M i

2, P )

7: Ri
3 = Testing(M i

3, Di)

8: Ii2 = R3−R2

R3
× 100

9: I2.Append(Ii2)

10: end for
11: return I2;

Algorithm 3 Test (including Re-train FC Classi-
fier).
Require: Model M ; Dataset D
Ensure: Metric R

1: Initialize fully-connected classifier C randomly;
2: Fix M

3: C ′ = SupervisedTrain([M,C], D)

4: R = CalMetric([M,C ′], D)

5: return R;

skill, including QASC (Khot et al., 2020), Re-
CLor (Yu et al., 2020), SocialIQA (Sap et al.,
2019b), QuaRTz (Tafjord et al., 2019) and Wino-
grande (Sakaguchi et al., 2020).

In order to make the diagnosis results on dif-
ferent datasets comparable, we process the NLI
and MRC datasets separately. Given an item D =
[context, question, answer] in an MRC dataset,
we combine question and answer to a statement
and transfer the D to a binary classification rep-
resented by D′ = [context, statement, label],
where label is True or False.As for the
item D = [fact1, fact2, label] in an NLI
dataset, we just set fact1 as context and
fact2 as statement, and change label ∈
{entailment, neural, contradiction} to label ∈
{True, False} (entailment is True; neural
and contradiction are False based on the closed
world assumption, CWA). To ensure the balance of
samples, we adjust the number of negative samples
by removing or constructing. The statistics of the
processed datasets are shown in Table 2.



1712

Paras. Unsupervised. Supervised. Training.

batch size 16 16 16
lr − 1e−5 1e−3

lr for BERT 5e−6 5e−6 −
decay rate 0.9 0.9 0.8
l2 coeff. 1e−5 1e−5 1e−5

early stop 5 5 5
epochs 20 20 20

optimizer ADAMW ADAMW ADAMW

Table 1: Hyper-parameter settings.

Datasets Average No. Data (k)

Length Train Dev. Test

SNLI 21 300.0 6.0 6.0
MNLI 30 245.0 13.5 13.4
αNLI 33 339.0 3.0 6.0
BoolQ 102 4.6 2.4 2.4
DROP 197 132.0 18.5 14.7
CODAH 17 3.5 1.0 1.0
QASC 108 13.9 1.9 2.4
ReCLor 97 8.2 1.0 1.0
SocialIQA 23 33.4 2.0 2.2
QuaRTz 37 5.3 0.7 1.3
Winogrande 20 78.3 2.5 2.5

Probe Dataset 103 70.1 9.9 20.0

Table 2: Statistics of NLU datasets to be diagnosed and
the probe dataset.

We trained our model on NVIDIA 16GB Tesla
P100 and V100 GPUs. For fine-tuning BERT, the
model costs around 22GB memory with the batch
size of 16. The hyper-parameters are shown in
Table 1.

4.2 Probe Dataset

In the diagnosis, we use the dataset proposed
by Clark et al. (2020) as the probe dataset (An
example of which is shown in Fig 3) for it clearly
satisfying the last two conditions. Based on the con-
struction rules (constructing propositions through
meaningless sentences) of the probe dataset, it will
not involve explicit knowledge into models. To
validate that the implicit knowledge involved by
the dataset can be negligible, we also make a sim-
ple statistical analysis in Preliminary 1. Therefore,
this dataset is suitable to be the probe dataset. In
practice, we use the 3-hop dataset to train the probe
model because Clark et al. (2020) have illustrated
that Transformers trained on this dataset has good
generalization capability. Statistical information of
the probe dataset is shown in Table 2.

Facts:
F1: Anne is quiet.
F2: Bob is blue.
F3: Bob is quiet.
F4: Charlie is blue.
Rules:
R1: All smart, blue things are green.
R2: Quiet things are red.
R3: If Bob is blue then Bob is red.
R4: All quiet, red things are smart.
Statements:
S1: Bob is green.
L2: True (F3→R2→R4→F2→R1→S1)
S2: Anne is not red.
L2: False (F1→R2→ ¬S2)

Figure 3: An example of the probe data.

4.3 Probe Model

BERT (Devlin et al., 2019) naturally meets all
three conditions of the probe model. Firstly, BERT
itself can be used as the knowledge base since it
contains a large amount of knowledge and its ar-
chitecture has the ability to update knowledge af-
ter being trained in the unsupervised manner (the
same way to train the language model) (Rogers
et al., 2020; Petroni et al., 2019). Secondly, it has
been proved that Transformers, the basic architec-
ture of BERT, can master the generalizable logical
reasoning (Clark et al., 2020; Hahn et al., 2020).
Therefore, we select BERT as the probe model.
Although BERT can satisfy all three conditions,
we still need to prove that no matter what initial
weights are, the architecture of Transformers al-
ways has the ability to master generalizable logical
reasoning. These two preliminaries are shown in
Preliminary 2 and Preliminary 3, respectively.

4.4 Preliminaries

Preliminary 1: Validating that implicit knowl-
edge involved by the probe dataset can be neg-
ligible. Implicit knowledge is always hidden in
the representative vectors of words. We have made
a simple statistics that the vocabulary size of the
probe dataset is 67. This means that the propor-
tion of overlapping words to the NLU dataset’s
vocabulary is very low, almost negligible, which is
intuitive evidence that implicit knowledge involved
by the probe dataset can be negligible.

Preliminary 2: Proving that BERT will not
master logical reasoning after being trained in
the unsupervised manner. We conduct a con-
trolled experiment to compare three kinds of mod-
els trained and tested on the probe dataset. We use
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Probe Model
M0

Trained Model
M2 = Update(M0)

Capturing Knowledge
Unsupervised Training

NLU Data(Corpus)

Trained Model
M3 = Updata(M2)

Mastering Reasoning Skill
Supervised Training

Probe Data(Training Set)

Validation 3
Testing

Probe Data(Testing Set)

Result
RV 3

Figure 4: The process for Preliminary 3.
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NLU Data 
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Figure 5: Results for Preliminary 3.

BERT + fully-connected classifier as the original
architectures. For the first model, we fix BERT and
only train the fully-connected classifier. For the
second model, we firstly train BERT in the unsu-
pervised manner, and then fix it and only train the
fully-connected classifier. For the third model, we
fine-tune BERT and train the classifier at the same
time. The final results of the first two models are
almost equivalent to random selection (Accuracy:
50.41% and 50.00%, respectively) but the result of
the third model can reach 98.69%. This has vali-
dated that BERT cannot master logical reasoning
after being trained in the unsupervised manner.

Preliminary 3: Validating that Transformers al-
ways has the ability to master logical reasoning
no matter what initial weights are. We perform
this validation based on the process shown in Fig 4.
Firstly, we acquire M3 following the quantitative
process. Secondly, we test M3 on the probe dataset.
We compare the results RV 3 with the original re-
sult in (Clark et al., 2020), which is shown in Fig 5
(dotted line represents the original result). The
comparison illustrates that no matter what initial
weights are, the performance will finally reach a
similar level to the original result’s level.

5 Results and Analysis

5.1 Overall Results of Diagnosis
Based on the diagnosis, we acquire a qualitative
indicator I1 and a quantitative indicator I2 for each
NLU to be diagnosed and the results are shown in
Table 3. Based on the results, we firstly answer
two questions related to the correlation on logical
reasoning.

1. Whether does a dataset have sufficient explicit
or implicit logical expressions that enables mod-
els to master logical reasoning or not? Based
on results (I1) of the qualitative diagnosis, almost
all datasets (except for Winogrande) shows signifi-
cance to logical reasoning, which means they have
a certain amount of logical reasoning to enable
the probe model to master logical reasoning. Wino-
grande, the only exception that cannot be judged by
the probe model, will be further analyzed in the sec-
tion of Exception Analysis. To compare NLI and
MRC datasets, we adopt another threshold δ′ = 0.6
to distinguish “very significant" (“++") and “sig-
nificant" (“+"). Generally, NLI datasets are more
significant than MRC datasets. We speculate that
reasons for the conclusion are: 1) Logical patterns
in the NLI datasets are more likely to be captured
as the contexts in these datasets are much simpler;
2) MRC datasets usually contain complicated con-
texts requiring a variety of reasoning skills, which
makes it hard to expose the logical patterns.

2. How much does the task defined on a
dataset depend on the logical reasoning skill?
Although most NLU datasets can provide materials
of logical reasoning, not all tasks defined on these
datasets have strong dependences on logical rea-
soning. We have shown the dependence indicator
I2 in Fig.6. From the figure, we can find that NLI
datasets, except for αNLI, have relatively high de-
pendences on logical reasoning. This means that
NLI tasks often highly rely on logical reasoning,
which plays a dominant role in these tasks. These
results are roughly consistent with the definition
and the purpose of the NLI tasks (The outlier in
NLI datasets, αNLI, will be further analyzed in
the section of Exception Analysis). Among com-
prehensive MRC tasks (Type 1), we can find the
dependence indicators for all three tasks are mod-
erate, which may be due to their requirements of
multiple NLU skills. In terms of MRC datasets
for specific purposes (Type 2), the results show a
remarkable difference among these tasks. On the
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Diagnosis Acc.(%)/Ind.

Datasets

NLI MRC(Type1) MRC(Type2)

SNLI MNLI αNLI BoolQ DROP CODAH QASC ReCLor SocialIQA QuaRTz Winogrande

Qualitative R1 60.35 61.32 57.12 58.14 58.38 59.13 58.39 58.21 60.35 57.30 50.77

Quantitative

R2 70.40 64.16 50.29 58.14 51.11 56.80 55.40 51.60 55.80 50.91 50.00

R3 78.87 70.61 52.58 60.75 53.80 60.00 65.44 52.80 57.90 51.56 51.34

∆R 8.13 6.45 2.29 2.61 2.69 3.20 10.04 1.20 2.10 0.65 1.34

Indicators
I1 ++ ++ + + + + + + ++ + -

I2 10.31 9.13 4.36 4.30 5.00 5.33 14.35 2.27 3.63 1.26 2.61

Table 3: Diagnosed Results: I1 and I2 are two indicators for the qualitative process and the quantitative process,
respectively. The threshold δ of qualitative indicator is 55%. To compare NLI and MRC datasets, we adopt another
threshold δ′ = 60% to distinguish “very significant (++)" and “significant (+)". Therefore, “-" means “unable to
judge", “+" means “significant" and “++" means “very significant".

10.3

9.1

4.4 4.3
5.0 5.3

14.4

5.3

3.6

1.2

2.6

NLI

MRC (Type 1)

MRC (Type 2)

Figure 6: Quantitative indicators. Among all three kinds
of datasets, most NLI datasets (except for αNLI) have
high indicators. The indicators of comprehensive MRC
datasets are relatively moderate. Specific MRC datasets
contain QASC with the highest I2 and QuaTRz with the
lowest I2, which are complicated.

one hand, tasks such as QASC (I1 = 14.35) show
a strong dependence on logical reasoning. On the
other hand, tasks such as SocialIQA (I2 = 3.63),
QuaRTz (I2 = 1.26) and Winogrande (I2 = 2.61),
show almost no dependence on logical reasoning.
Based on the reports from original papers, the cor-
responding dominant skills for four MRC datasets
(Type 2) are logical resaoning (Khot et al., 2020),
knowledge-based skill (Sap et al., 2019b), numer-
ical reasoning (Tafjord et al., 2019) and corefer-
ential reasoning (Sakaguchi et al., 2020), respec-
tively. This is consistent with I2 indicating that
only QASC has a strong dependence on logical rea-
soning among these four datasets. Surprisingly, al-
though ReCLor, a Type 2 MRC dataset, is designed
for the purpose of evaluating logical reasoning (Yu
et al., 2020), I2 cannot indicate that the dataset has
a strong dependence on logical reasoning. Aiming
at this exception, we will also perform individual
analysis in the section of Exception Analysis.

5.2 Exception Analysis

In this section, we conduct a detailed analysis of
the exceptions, αNLI, ReCLor and Winogrande,
mentioned above to further understand the causes
of the results. Meanwhile, on the basis of the anal-
ysis, we also acquire a better understanding of the
limitation of the proposed quantitative indicator I2.

1. Winogrande. From the qualitative indicator
I1, Winogrande is the only dataset unable to
judge whether it contains sufficient logical
expressions or not. We take a representative pair of
examples in the dataset as the case to analyze. The
case includes (Context: The trophy does
not fit into the suitcase, Statement:
because trophy is too large, Label:
True) and (Context: The trophy does
not fit into the suitcase, Statement:
because suitcase is too large, La-
bel: False). It is obvious that no logical
expressions or underlying logical forms.

2. αNLI. αNLI seems an outlier which has
a lower I2 than other NLI tasks. Based on our
analysis, we find that although αNLI is classified
into the NLI category, it is designed to benchmark
sequential reasoning in a narrative text rather
than logical reasoning. An example of αNLI
is (Context: Jill had a pet cat .
She was able to remove the fleas
by sprinkling salt on her floors,
Statement: The cat had fleas, Label:
True). It is obvious that the example requires
the model to be able to understand the sequential
relation between context and statement rather than
apply logical reasoning. Therefore, the dependence
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SocialIQA CODAH SNLI QASC

I2 3.63 5.33 10.31 15.34

Δ(%) 10.6 12.3 18.2 22
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Figure 7: Line charts of quantitative indicator I2 and
paired difference ∆. The results show that I2 is signifi-
cantly correlated to ∆.

of αNLI on logical reasoning is weak.

3. ReCLor. As Yu et al. (2020) reported, ReCLor
is constructed from GMAT and LAST to evaluate
logical reasoning. However, in our diagnosis, the
indicator of ReCLor is very low. Based on our
analysis, the causes may include: 1) To solve the
task defined on ReCLor requires a large amount
of legal-related domain knowledge and common-
sense, which is not sufficiently acquired by the
probe model. Therefore, the model cannot capture
the underlying logical forms; 2) Although logical
reasoning is the dominant skill in ReCLor, it cannot
be decoupled from multiple complex skills. There-
fore, we can further understand the limitations of
our proposed method from the analysis of ReCLor.
Actually, I2 reflects the lower bound of the depen-
dence on logical reasoning, as it can just indicate
the part satisfying the following conditions:

• logical reasoning is the dominant skill under
the condition that knowledge acquired by the
probe model is sufficient.

• logical features can be decoupled from the
complex reasoning features.

Despite the limitations, I2 is still a reasonable indi-
cator to evaluate the dependence of NLU tasks on
logical reasoning. Further illustration will be given
in the next section.

5.3 Paired Analysis

Intuitively, models with logical reasoning are
sensitive to subtle differences between logically
true propositions and logically false propositions.
Based on this intuition, we perform a paired anal-
ysis to provide intuitive evidence that M3 does
master logical reasoning compared with M2. This
is indirect evidence that our proposed indicator,

I2, is reasonable to indicate the dependence be-
tween the NLU dataset and logical reasoning. To
perform the analysis, we first reconstruct paired
sets comprising pairs of positive and negative sam-
ples on four datasets, SNLI (NLI), CODAH (Type 1
MRC), QASC (Type 2 MRC) and SocialIQA (Type
2 MRC). These four datasets have a common fea-
ture that for each positive example, we can extract
a corresponding negative example directly from
the datasets and vice versa. The only difference
between the pair is that two samples have differ-
ent keywords in their statements. This setting can
ensure that if a sample includes a logically true or
false proposition, the counterpart must include a
logically false or true proposition. Next, we test
M2 and M3 directly on paired sets and calculate
their paired accuracies. Finally, we use the gap
between M3’s accuracy and M2’s accuracy ∆ to
conduct the analysis. These results are shown in Ta-
ble 4. From the table, ∆ for each dataset is larger
than 10%, which is evidence that the difference
between M3 and M2 is decidedly due to logical
reasoning.

Acc.(%) SNLI CODAH QASC SocialIQA

M3 41.3 18.5 11.6 18.4
M2 59.5 30.8 33.6 29.0

∆ 18.2 12.3 22.0 10.6

Table 4: Paired differences of SNLI, CODAH, QASC
and SocialIQA.

Moreover, we further make a horizontal compar-
ison between datasets and Fig 7 is the line charts
of I2 and ∆. According to the analysis above, ∆ is
a reasonable indicator to measure the dependence
on logical reasoning. From the figure, a significant
positive correlation between I2 and ∆ exists. This
is intuitive evidence that I2 is also a reasonable
indicator to reflect the dependence of a dataset on
logical reasoning skill.

5.4 Case Study

In this part, we perform a case study to show the
logical structure detected by the quantitative indi-
cator I2. We select a case from QASC (shown in
Fig.8) which shows the strongest dependence on
logical reasoning. From the case, we list the logical
structure of the case for reasoning p1 ∧ p2 → q1.
This is a typical logical form of the conjunctive
implication which can be diagnosed by I2.
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context: Beads of water are formed by
water vapor condensing (p1). Clouds are
made of water vapor (p2). Condensation is
the change of water vapor to a liquid (p3).
An example of water vapor is steam (p4).
Condensation of water vapor occurs during
the chilling season (p5).
statement: Beads of water is formed by
clouds (q1).
Liquid of water is formed by clouds (q2).
label: True for q1 and False for q2.
logical structure for reasoning: p1 ∧ p2 →
q1

Figure 8: A logical case from QASC

6 Conclusions and Future Work

In this work, we present a novel framework, which
can diagnose the correlation between the NLU
dataset and a specific skill and we probe a fun-
damental reasoning skill, logical reasoning, on 11
NLU datasets. Our framework involves a logical
probe to conduct diagnosis and defines a qualitative
process and a quantitative process to calculate two
indicators. From the results, We observe that 1)
Most NLI datasets have a relatively strong corre-
lation with logical reasoning. 2) The correlations
between Type 1 MRC datasets and logical reason-
ing are moderate because logical reasoning is not
the only dominant skill in these datasets. 3) The
dependences of Type 2 MRC datasets are not al-
ways exactly consistent with their intended purpose.
Based on the analysis, although there are several
limitations in our proposed method, this work is
still a reasonable attempt to deeply understand the
relationship between the dataset and a specific NLU
skill. In future works, we will focus on: 1) explor-
ing the solution to the limitations of the proposed
method; 2) build associations for different datasets
that require the same NLU capabilities.
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