
Proceedings of the 29th International Conference on Computational Linguistics, pages 1467–1479
October 12–17, 2022.

1467

Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension

Jialin Chen1, Zhuosheng Zhang2,3, Hai Zhao2,3,∗

1School of Mathematical Sciences, Shanghai Jiao Tong University
2Department of Computer Science and Engineering, Shanghai Jiao Tong University

3Key Laboratory of Shanghai Education Commission for Intelligent Interaction
and Cognitive Engineering, Shanghai Jiao Tong University

sjtuchenjl@sjtu.edu.cn, zhangzs@sjtu.edu.cn, zhaohai@cs.sjtu.edu.cn

Abstract

Machine reading comprehension (MRC) poses
new challenges over logical reasoning, which
aims to understand the implicit logical relations
entailed in the given contexts and perform in-
ference over them. Due to the complexity of
logic, logical relations exist at different granu-
larity levels. However, most existing methods
of logical reasoning individually focus on ei-
ther entity-aware or discourse-based informa-
tion but ignore the hierarchical relations that
may even have mutual effects. In this paper, we
propose a holistic graph network (HGN) which
deals with context at both discourse level and
word level, as the basis for logical reasoning,
to provide a more fine-grained relation extrac-
tion. Specifically, node-level and type-level
relations, which can be interpreted as bridges
in the reasoning process, are modeled by a hi-
erarchical interaction mechanism to improve
the interpretation of MRC systems. Experimen-
tal results on logical reasoning QA datasets
(ReClor and LogiQA) and natural language in-
ference datasets (SNLI and ANLI) show the
effectiveness and generalization of our method,
and in-depth analysis verifies its capability to
understand complex logical relations.

1 Introduction

Machine reading comprehension (MRC) is a chal-
lenging task that requires machines to answer a
question according to given passages (Hermann
et al., 2015; Rajpurkar et al., 2016, 2018; Lai
et al., 2017). A variety of datasets have been in-
troduced to push the development of MRC to a
more complex and more comprehensive pattern,
such as conversational MRC (Reddy et al., 2019;
Choi et al., 2018), multi-hop MRC (Yang et al.,
2018), and commonsense reasoning (Davis and
Marcus, 2015; Bhagavatula et al., 2020; Talmor
et al., 2019; Huang et al., 2019). In particular,

∗Corresponding author. This work was supported in part
by the Key Projects of National Natural Science Foundation
of China under Grants U1836222 and 61733011.

Example (taken from ReClor dataset)

Context: Most lecturers who are effective teachers are eccentric, 

but some non-eccentric lecturers are very effective teachers. In 

addition, every effective teacher is a good communicator.
Question: 

Which one of the following statements follows logically from the 

statements above?

Options:

A: Most lecturers who are good communicators are eccentric. 
B: Some non-eccentric lecturers are effective teachers but are 

not good communicators. 

C: All good communicators are effective teachers. 

D: Some good communicators are eccentric.✓

Figure 1: An example from Reclor dataset. The example
mainly talks about "effective teachers, non-eccentric,
eccentric, good communicator".

some recent multi-choice MRC datasets pose even
greater challenges to the logical reasoning abil-
ity of models (Yu et al., 2020; Liu et al., 2020a)
which are not easy for humans to do well, either.
Firstly, all the supporting details needed for reason-
ing are provided by the context, which means there
is no additional commonsense or available domain
knowledge. Secondly, it is a task of answer selec-
tion rather than answer retrieval, which means the
best answer is chosen according to their logical fit
with the given context and the question, rather than
retrieved directly from the context according to the
similarity between answers and context. Most im-
portantly, the relations entailed in the contexts are
much more complex than that of previous MRC
datasets owing to the complexity of logic, which
is hard to define and formulate. Without a targeted
design for those challenges, existing pre-trained
models, e.g., BERT, RoBERTa, fail to perform well
in such kind of logical reading comprehension sys-
tems (Yu et al., 2020; Liu et al., 2020a).

Logical reasoning MRC tasks are usually to find
an appropriate answer, given a set of context and
question. Figure 1 shows an example from ReClor
dataset (Yu et al., 2020) which requires logical rea-
soning ability to make the correct predictions. As
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Figure 2: An overview of our proposed holistic graph-based reasoning model.

humans, to solve such problems, we usually go
through the following steps. Firstly, we divide the
context into several fragments and figure out the
logical relations between each clause, such as tran-
sition, continuity, contrast, etc. Secondly, we ex-
tract the important elements in the context, namely,
the objects and topics described by the context, and
construct the logical graph with these significant
elements. Finally, we need to compare the answer
statement to the mentioned part in the context and
assess its logical fit with the given context.

Most existing methods of logical reasoning
MRC focus on either entity-aware or discourse-
based information but ignore the hierarchical rela-
tions that may have mutual effects (Yu et al., 2020;
Liu et al., 2020a; Wang et al., 2021; Huang et al.,
2021; Ouyang et al., 2021b). Motivated by the ob-
servation above, we model logical reasoning chains
based on a newly proposed holistic graph network
(HGN) that incorporates the information of element
discourse units (EDU) (Gao et al., 2020; Ouyang
et al., 2021a) and key phrases (KPH) extracted
from context and answer, with effective edge con-
nection rules to learn both hierarchical features and
interactions between different granularity levels.

Our contributions are summarized as follows. (1)
We design an extraction algorithm to extract EDU
and KPH elements as the critical basic for logical
reasoning. (2) We propose a novel holistic graph
network (HGN) to deal with context at both dis-
course and word level with hierarchical interaction
mechanism that yields logic-aware representation
for reasoning. (3) Experimental results show our
model’s strong performance improvements over
baselines, across multiple datasets on logical rea-
soning QA and NLI tasks. The analysis demon-

strates that our model has a good generalization
and transferability, and achieves higher accuracy
with less training data.

2 Methodology

Logical reasoning MRC tasks aim to find the
best answer among several given options based
on a piece of context that entails logical rela-
tions. Formally, given a natural language con-
text C, a question Q, and four potential answers
A={A1, A2, A3, A4}. We concatenate them as
{C,Q, Ai} pairs. To incorporate the principle of
human inference into our method, we propose a
holistic graph network (HGN) as shown in Fig-
ure 2. Our model works as follows. First, we use
EDU and KPH extraction algorithm to get neces-
sary KPH nodes ({Pj}) and EDU nodes ({Ej})
from the given pairs. They contain information
with different granularity levels and complement
each other. Based on the extracted KPH-EDU inter-
action information and pre-defined rules, we con-
struct the holistic graph. The process of construct-
ing the holistic graph is shown in Figure 3. Then
we measure the interaction between {Ej} and {Pj}
to obtain logic-aware representations for reasoning.

2.1 Logical Chain Construction

Element Discourse Units (EDU) We use clause-
like text spans delimited by logical relations
to construct the rhetorical structure of texts.
These clause-like discourses can be regarded
as element units that reveal the overall logic
and emotional tone of the text. For exam-
ple, conjunctions like "because” indicate a
causal relation which means the following dis-
course is likely to be the conclusion we need to
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Question: Which one of the following statements follows logically from the statements above?

E6 E7 E8
Answer: Most lecturers who are good communicators are eccentric. 

E1 E2 E3 E4
Context: Most lecturers who are effective teachers are eccentric, but some non-eccentric lecturers are very effective 
teachers. In addition, every effective teacher is a good communicator.

E5

Figure 3: Process of constructing the holistic graph, using KPH-EDU Interaction information and pre-defined rules.

pay attention to. Parenthesis and clauses like
"who are effective teachers" in Fig-
ure 3 play a complementary role in context. Also,
punctuation indicates a pause or an end of a sen-
tence, containing semantic transition and turning
point implicitly. We use an open segmentation
tool, SEGBOT (Li et al., 2018), to identify the
element discourse units (EDUs) from the con-
catenation of context and answer, ignoring
the question whose structure is simple. Conjunc-
tions (e.g., "because", "however"), punctua-
tion and the beginning of parenthesis and clauses
(e.g., "which", "that") are usually the segment
points. They are considered as explicit discourse-
level logical relations.

To get the initial embedding of EDUs, we in-
sert an external [CLS] symbol at the start of each
discourse, and add a [SEP] symbol at the end of
every type of inputs. Then we use RoBERTa to en-
code the concatenated tokens. The encoded [CLS]
token represents the following EDU. Therefore, we
get the initial embedding of EDUs.

Key Phrase (KPH) Key Phrases, including key-
words here, play an important role in context. They
are usually the object and principle of a context. We
use the sliding window to generate n-gram word
list, filtering according to the Stopword list, POS
tagging, the length of the word, and whether it con-
tains any number.1 The filtering process is based

1The stop list is derived by the open-source toolkit Gen-
sim: https://radimrehurek.com/gensim/. The
POS tagging is derived by the open-source toolkit NLTK:

on the following two main criteria:
(1) If the n-gram contains a stop word or a num-

ber, then delete it.
(2) If the length of word is less than the threshold

value m, delete it, and if the n-gram length is 1,
then only the noun, verb, and adjective are retained.

Then, we calculate the TF-IDF features of each
n-gram, and select the top-k n-gram as key phrases.
k is a hyper-parameter to control the number of
KPHs. We restore the selected tokens and retrieve
the original expressions containing the key phrase
from the original text. For example, as in Figure
3, "eccentric" is one of the KPHs, while we
retrieve the original expression "eccentric" and
"non-eccentric" from the original text. 2

Given the token embedding sequence Ki =
{t1, . . . , tn} of a KPH with length n, its initial
embedding is obtained by

Pi =
1

|Ki|
∑
tl∈Ki

tl. (1)

Holistic Graph Construction Formally, every
input sample is a triplet that consists of a context, a
question and a candidate answer. EDU and KPH
nodes are extracted in the above way. As shown
in Figure 3, we construct a holistic graph with two
types of nodes: EDU Nodes (in blue) and KPH
Nodes (in green). For edge connections, there are
four distinct types of edges between pairs of nodes.

https://www.nltk.org/.
2The complete algorithm is given in Appendix A.

https://radimrehurek.com/gensim/
https://www.nltk.org/
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• EDU-EDU continue: the two nodes are contex-
tually associated in the context and answer. This
type of edge is directional.
• EDU-EDU overlap: the two nodes contain the

same KPH. This type of edge is bidirectional.
• EDU-KPH mention: the EDU mentions the

KPH. This type of edge is bidirectional.
• KPH-KPH relate: the two nodes are seman-

tically related. We define two types of semantic
relations. One is that the two KPHs are retrieved by
the same n-gram as described above. The other one
is that the Cosine similarity between the two KPH
nodes is greater than a threshold. This type of edge
is bidirectional and can capture the information of
word pairs like synonyms and antonyms.

The construction of the graph is based on in-
tuitive rules, which will not introduce extra pa-
rameters or increase model complexity. A further
parameter comparison is given in Table 4.

2.2 Hierarchical Interaction Mechanism

Considering a specific node in the holistic graph,
neighboring nodes in the same type may carry more
salient information, thus affecting each other in a
direct way. In the process, the neighboring nodes
in the different types may also interact with each
other. To capture both the node-level and type-
level attention, we apply a Hierarchical Interaction
Mechanism to the update of the graph network’s
representations.

Graph Preliminary Formally, consider a graph
G = {V,E}, where V and E represent the sets
of nodes and edges respectively. A is the adja-
cency matrix of the graph. Aij > 0 means there
is an edge from the i-th node to the j-th node.
We introduce A′ = A + I to take self-attention
into account. In order to avoid changing the orig-
inal distribution of the feature when multiplying
with the adjacency matrix, we normalize A′, set
Ã = D− 1

2A′D− 1
2 where D is the degree matrix

of the graph. D = diag{d1, d2 . . . , dn}, di is the
number of edges attached to the i-th node.

Now, we calculate the attention score from node
v′ to node v in the following steps.

Type Attention Vector We use T (τ) to represent
all nodes that belong to type τ , and N(v) to repre-
sent all neighboring nodes that are adjacent to v. T
is the set of types. Assume that node v belongs to
T (τ), hµ is the feature of node µ, hτ is the feature

of type τ which is computed by

hτ =
∑

µ∈T (τ)

ÃvµWhµ. (2)

Using the feature of type and node v, we compute
the attention score of type τ as:

eτ = σ(µT
τ · [Whv ∥ Wτhτ ]). (3)

Then, type-level attention weights ατ is obtained
by normalizing the attention scores across all the
types T with the softmax function. σ is an activate
function such as leaky-ReLU.

ατ =
exp(σ(µT

τ · [Whv ∥ Wτhτ ]))∑
τ ′∈T exp(σ(µT

τ ′ · [Whv ∥ Wτhτ ′ ]))
.

(4)

Node Attention Vector ατ shows the importance
of nodes in type τ to node v. While computing the
attention score of node v′ that is adjacent to node
v, we multiply that by the type attention weights
ατ (assume v′ belongs to type τ ). Similarly, node
attention weights are obtained by the softmax func-
tion across all neighboring nodes.

evv′ = σ(νT · ατ [Whv ∥ Whv′ ]), (5)

αvv′ =
exp(evv′)∑

i∈N(v) exp(evi)
, (6)

where ∥ is the concatenation operator and αvv′ is
the attention weight from node v′ to v.

Update of Node Representation Let h(l)v be the
representation of the node v at the l-th layer. Then
the layer-wise propagation rule is as follows:

h(l+1)
v = σ(

∑
v′∈N(v)

αvv′Wh
(l)
v′ ). (7)

2.3 Answer Selector
To predict the best answer that fits the logic entailed
in the context, we extract the node representations
of the last layer of the graph network and feed them
into the downstream predictor. For EDU nodes,
since the node order implies the occurrence order
in the context, we align them with the output of
sequence embedding and add to it as a residual part.
Therefore, we feed them into a bidirectional gating
recurrent unit (BiGRU).

H̃E = BiGRU(HE +Hsent) ∈ Rl×d, (8)
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where HE = [hv′1 , hv′2 , . . . , hv′l ] ∈ Rl×d, v′i be-
longs to type EDU. l and d are the sequence length
and the feature dimension respectively. Hsent is
the output of sequence embedding.

For KPH nodes, we first expand the embed-
ding of the first [CLS] token to size 1 × d, de-
noted as Hc. Then, we feed the embedding of
[CLS] token and features of KPH nodes HK =
[hv1 , hv2 , . . . , hvn ] ∈ Rn×d (vi is of KPH type)
into an attention layer.

αi = wT
α [Hc ∥ hvi ] + bα ∈ R1,

α̃i = softmax(αi) ∈ [0, 1],

H̃c = Wc

∑
i

α̃ihvi + bc ∈ R1×d,
(9)

where α̃i is the attention weight of node feature hvi .
wα, bα, Wc, and bc are parameters.

The output of BiGRU and the output of attention
layer are concatenated and go through a pooling
layer, followed by an MLP layer as the predic-
tor. We take a weighted sum of the concatenation
as the pooling operation. The predictor is a two-
layer MLP with a tanh activation. Specially, coarse-
grained and fine-grained features are further fused
here to extract more information.

H̃ = Wp[H̃E ∥ H̃c], p = MLP(H̃) ∈ R, (10)

where Wp is a learnable parameter, ∥ is the con-
catenation operator. For each sample, we get
P = [p1, p2, p3, p4], pi is the probability of i-th
answer predicted by model.

The training objective is the cross entropy loss:

L = − 1

N

N∑
i

log softmax(pyi), (11)

where yi is the ground-truth choice of sample i. N
is the number of samples.

3 Experiment

3.1 Dataset
Our evaluation is based on logical reasoning MRC
benchmarks (ReClor (Yu et al., 2020) and LogiQA
(Liu et al., 2020a)) and natural language infer-
ence benchmarks (SNLI (Bowman et al., 2015) and
ANLI (Nie et al., 2020)). ReClor contains 6,138
multiple-choice questions modified from standard-
ized tests. LogiQA has more instances (8678 in
total) and is derived from expert-written questions
for testing human logical reasoning ability (Liu

et al., 2020a). To assess the generalization of mod-
els on NLI tasks, we test our model on the Stanford
Natural Language Inference (SNLI) dataset, which
contains 570k human annotated sentence pairs. The
Adversarial Natural Language Inference (ANLI) is
a new large-scale NLI benchmark dataset, where
the instances are chosen to be difficult for the state-
of-the-art models such as BERT and RoBERTa.
It can be used to evaluate the generalization and
robustness of the model.3

Implementation details and parameter selection
are reported in Appendix C for reproduction.4

3.2 Main Result

3.2.1 Results on Logical QA
Table 1 presents the detailed results on the devel-
opment set and the test set of both ReClor and
LogiQA datasets. We observe consistent improve-
ments over the baselines. HGNROBERTA(B) reaches
51.4% of test accuracy on ReClor, and 35.0% of
test accuracy on LogiQA, outperforming other ex-
isting models. HGNROBERTA(L) reaches 58.7% of
test accuracy on ReClor, therein 77.7% on Easy
subset and 43.8% on Hard subset, and 39.9% on
LogiQA. HGNDEBERTA achieves 72.3% on the test
set of ReClor and 44.2% on LogiQA. If using
the same pre-trained language models as the back-
bones, our proposed model achieves the state-of-
the-art results on both ReClor and LogiQA, without
extra human annotations. Our model shows great
improvement over this task by better utilizing the
interaction information , which is ignored by most
existing methods.

3.2.2 Results on general NLI tasks
To verify the generality of our model, we con-
duct experiments on two widely used entailment
datasets for NLI: SNLI and ANLI, in which exist-
ing models rarely emphasized the modeling of log-
ical relations. Table 2 compares the performances
of HGN and baseline models on the SNLI dataset
with the same proportion of training data for fine-
tuning. We observe that when given a limited num-
ber of training data, our HGN has faster adaptation
than baseline models as evidenced by higher perfor-
mances in low-resource regimes (e.g., 0.1%, 1%,
and 10% of the training data used). HGN also out-
performs BERTBASE by 0.3% and RoBERTaLARGE

3The statistics information of these datasets are given in
Appendix B.

4Our source codes is available at https://github.
com/Cather-Chen/Logical-Reasoning-Graph.

https://github.com/Cather-Chen/Logical-Reasoning-Graph
https://github.com/Cather-Chen/Logical-Reasoning-Graph
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Model
ReClor LogiQA

Dev Test Test-E Test-H Dev Test

Human ♢ - 63.0 57.1 67.2 - 86.0

RoBERTaBASE
♢ 55.0 48.5 71.1 30.7 33.3⋆ 32.7⋆

HGNROBERTA(B) 56.3(↑1.3) 51.4(↑2.9) 75.2(↑4.1) 32.7(↑2.0) 39.5(↑6.2) 35.0(↑2.3)

RoBERTaLARGE
♢ 62.6 55.6 75.5 40.0 35.0 35.3

DAGN ♢ 65.2 58.2 76.1 44.1 35.5 38.7
DAGN (Aug) ♢ 65.8 58.3 75.9 44.5 36.9 39.3
LReasoner♠ROBERTA 66.2 62.4 81.4 47.5 38.1 40.6

- data augmentation ♠ 65.2 58.3 78.6 42.3 - -
HGNROBERTA(L) 66.4(↑3.8) 58.7(↑3.1) 77.7(↑2.2) 43.8(↑3.8) 40.1(↑5.1) 39.9(↑4.6)

DeBERTa♠ 74.4 68.9 83.4 57.5 44.4 41.5
LReasoner♠DEBERTA 74.6 71.8 83.4 62.7 45.8 43.3
HGNDEBERTA 76.0(↑1.6) 72.3(↑3.4) 84.5(↑1.1) 62.7(↑5.2) 44.9(↑0.5) 44.2(↑2.7)

Table 1: Experimental results (Accuracy: %) of our model compared with baseline models on ReClor and LogiQA
datasets. Test-E and Test-H denote Test-Easy and Test-Hard subclass of the ReClor dataset respectively. The results
in bold are the best performance of all models. ♢ indicates that the results are given by Huang et al. (2021), ♠
indicates the results are given by Wang et al. (2021), ⋆ means that the results come from our own implementation.
ROBERTA(L) and ROBERTA(B) denotes RoBERTa-large and RoBERTa-base, respectively.

% data used
0.1% 1% 10% 100%

Dev Test Dev Test Dev Test Dev Test

BERTBASE 73.2 70.4 77.9 76.8 84.2 83.9 90.8 90.7
RoBERTaLARGE 84.8 82.0 87.6 87.0 89.5 88.8 92.2 91.0
HGNBERT(B) 75.8(↑2.6) 75.4(↑5.0) 81.1(↑3.2) 80.3(↑3.5) 85.4(↑1.2) 83.9(↑0.0) 91.3(↑0.5) 91.0(↑0.3)

HGNROBERTA(L) 85.4(↑0.6) 83.5(↑1.5) 87.6(↑0.0) 87.3(↑0.3) 90.2(↑0.7) 89.4(↑0.6) 92.3(↑0.1) 91.5(↑0.5)

Table 2: Experimental results (Accuracy: %) on the SNLI dataset. We randomly generate the training dataset with
limited size, without changing the size of Dev. and Test set. BERT(B) and ROBERTA(L) denote BERT-base and
RoBERTa-large respectively.

by 0.5% on the full SNLI. We assess the model’s
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Figure 4: Dev. accuracy on the ReClor dataset as the
number of KPH nodes changes.

robustness against adversarial attacks, using a stan-
dard adversarial NLP benchmark: ANLI, as shown
in Table 3. A1, A2 and A3 are three rounds with in-

creasing difficulty and data size. ANLI refers to the
combination of A1, A2 and A3. HGNROBERTA(L)
gains a 15.2% points in test accuracy of ANLI over
RoBERTaLARGE, creating state-of-the-art results on
all rounds. Results show that our model has a com-
prehensive improvement over baseline models, in
aspects of faster adaption, higher accuracy and bet-
ter robustness.

3.3 More Results

Interpretation of k In this part, we investigate
the sensitivity of parameter k, which is the number
of KPH node. Figure 4 shows the accuracies on
the development set of our proposed model with
different numbers of KPH nodes, which are ex-
tracted according to TF-IDF weights. We observe
that k = 2 or k = 3 is an appropriate value for our
model. This is consistent with our intuition that a
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Model
Dev Test

A1 A2 A3 ANLI A1 A2 A3 ANLI

RoBERTaLARGE 74.1 50.8 43.9 55.5 73.8 48.9 44.4 53.7
ALUM♠ 73.3 53.4 48.2 57.7 72.3 52.1 48.4 57.0
InfoBERT♢ 76.4 51.7 48.6 58.3 75.5 51.4 49.8 58.3
HGNROBERTA(L) 76.7(↑2.6) 69.3(↑18.5) 74.5(↑30.6) 71.3(↑15.8) 79.5(↑5.7) 63.4(↑14.5) 76.3(↑31.9) 68.9(↑15.2)

Table 3: Experimental results (Accuracy: %) on the ANLI dataset. Both ALUM and InfoBERT take RoBERTa-large
as the backbone model. ♠ means the results from Liu et al. (2020b). ♢ means the results from Wang et al. (2020).

Model RoBERTa DAGN HGN
Params 356.4M 396.2M 373.4M

Table 4: Statistics of models’ parameters

paragraph will have 2 to 3 key phrases as its topic.
When k is too small or large, the accuracy of the
model does not perform well.

Model Complexity With well-defined construc-
tion rules and an appropriate architecture, our
model enjoys the advantage of high performance
with fewer parameters. We display the statistics
of model’s parameters in Table 4. Compared with
the baseline model (RoBERTaLARGE), the increase
of our model’s parameters is no more than 4.7%.
Particularly, our model contains fewer parameters
and achieves better performance than DAGN.

3.4 Ablation

We conduct a series of ablation studies on Graph
Construction, Hierarchical Interaction Mechanism
and Answer Selector. Results are shown in Table 5.
All models use RoBERTa-base as the backbone.

Holistic Graph Construction The Holistic
Graph in our model contains two types of nodes
and four types of edges. We remove the nodes of
EDU and KPH respectively and the results show
that the removal hurts the performance badly. The
accuracies drop to 55.8% and 53.9%. Furthermore,
we delete one type of edge respectively. The re-
moval of edge type destroys the integrity of the
network and may ignore some essential interac-
tion information between EDUs and KPHs, thus
causing the drop of the performance.

Hierarchical Interaction Mechanism Hierar-
chical Interaction Mechanism helps to capture
the information contained in different node types.
When we remove the type-level attention, the
model is equivalent to a normal Graph Attention

Model Accuracy (%)

HGNBASE 56.3

Graph Construction
- EDU 55.8 (↓0.5)
- KPH 53.9 (↓2.4)
- edge type: E-E continue 53.0 (↓3.3)
- edge type: E-E overlap 54.0 (↓2.3)
- edge type: E-K mention 54.2 (↓2.1)

Hierarchical Interaction
- type-level attention (i.e. GAT) 54.8 (↓1.5)
- both (i.e. GCN) 55.7 (↓0.6)

Answer Selector
- BiGRU 53.2 (↓3.1)
- Attention layer 55.0 (↓1.3)

Table 5: Ablation results on the dev set of ReClor.

Network (GAT), ignoring the heterogeneous in-
formation. As a result, the performance drops to
54.8%. When we remove both types of attention,
the performance drops to 55.7%.

Answer Selector We make two changes to the
answer selector module: (1) deleting the BiGRU,
(2) deleting the attention layer. For (1), the output
of EDU features concatenates with the output of
the attention layer directly and then are fed into the
downstream pooling layer. For (2), we ignore the
attention between the KPH features and the whole
sentence-level features. The resulting accuracies of
(1) and (2) drop to 53.2% and 55%, which verify
that the further fusion of features with different
granularity is necessary in our proposed model.

We further analysed the examples that are pre-
dicted correctly by our model but not by baselines,
and found that the powerful pre-trained language
models, such as RoBERTa, would bias for answers
with higher similarity to the context or those con-
taining more overlapping words. The model itself
does not understand the logical relations, but only
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compares their common elements for prediction.
Instead, our model can not only match synonymic
expressions, but also make logical inferences by
separating sentences into EDUs and extracting key
phrases and establishing logical relations between
them. An example is shown in Appendix D.

4 Related Work

4.1 Machine Reading Comprehension

MRC is an AI challenge that requires machines
to answer questions based on a given passage,
which has aroused great research interests in the
last decade (Hermann et al., 2015; Rajpurkar et al.,
2016, 2018; Lai et al., 2017). Although recent
systems have reported human-parity performance
on various benchmarks (Zhang et al., 2020a; Back
et al., 2020; Zhang et al., 2021) such as SQuAD
(Rajpurkar et al., 2016, 2018) and RACE (Lai
et al., 2017), whether the machine has necessar-
ily achieved human-level understanding remains
controversial (Zhang et al., 2020b; Sugawara et al.,
2021). Recently, there is increasing interest in im-
proving machines’ logical reasoning ability, which
can be categorized into symbolic approaches and
neural approaches. Notably, analytical reasoning
machine (AMR) (Zhong et al., 2021) is a typical
symbolic method that injects human prior knowl-
edge to deduce legitimate solutions.

4.2 Logical Reasoning

Neural and symbolic methods have been studied
for logical reasoning (Garcez et al., 2015; Besold
et al., 2017; Chen et al., 2019b; Ren and Leskovec,
2020; Huang et al., 2021). Compared with the
neural methods for logical reasoning, symbolic ap-
proaches like (Wang et al., 2021) rely heavily on
dataset-related predefined patterns which entails
massive manual labor, greatly reducing the gener-
alizability of models. Also, it could introduce prop-
agated errors since the final prediction depends on
the intermediately generated functions. Even if one
finds the gold programs, executing the program is
quite a consuming work as the search space is quite
large and not easy to prune. Therefore, we focus on
the neural research line in this work, to capture the
logic clues from the natural language texts, without
the rely on human expertise and extra annotation.

Since the logical reasoning MRC task is a new
task that there are only a few latest studies, we
broaden the discussion to scope of the related tasks
that require reasoning, such as commonsense rea-

soning (Davis and Marcus, 2015; Bhagavatula et al.,
2020; Talmor et al., 2019; Huang et al., 2019),
multi-hop QA (Yang et al., 2018) and dialogue rea-
soning (Cui et al., 2020). Similar to our approach of
discovering reasoning chains between element dis-
course and key phrases, Fang et al. (2020) proposes
a hierarchical graph network (HGN) that helps to
multi-hop QA. Our method instead avoids the in-
corporation of external knowledge and designs the
specific pattern for logical reasoning. Discourse-
aware graph network (DAGN) proposed by Huang
et al. (2021) also uses discourse relations to help
logical reasoning. However, only modeling the
relation between sentences will ignore more fine-
grained information. Focal Reasoner proposed by
Ouyang et al. (2021b), covering global and local
knowledge as the basis for logic reasoning, is also
an effective approach. In contrast, our work is more
heuristic and has a lighter architecture.

Previous approaches commonly consider the
entity-level, sentence-level relations, or heavily rely
on external knowledge and fail to capture important
interaction information, which are obviously not
sufficient to solve the problem (Qiu et al., 2019;
Ding et al., 2019; Chen et al., 2019a). Instead,
we take advantages of inter-sentence EDUs and
intra-sentence KPHs, to construct hierarchical in-
teractions for reasoning. The fine-grained holistic
features are used for measuring the logical fitness
of the candidate answers and the given context. As
our method enjoys the benefits of modeling rea-
soning chains from riddled texts, our model can
be easily extended to other types of reasoning and
inference tasks, especially where the given con-
text has complex discourse structure and logical
relations, like DialogQA, multi-hop QA and other
more general NLI tasks. We left all the easy empir-
ical verification of our method as future work.

5 Conclusion

This paper presents a novel method to guide the
MRC model to better perform logical reasoning
tasks. We propose a holistic graph-based system to
model hierarchical logical reasoning chains. To our
best knowledge, we are the first to deal with context
at both discourse level and phrase level as the basis
for logical reasoning. To decouple the interaction
between the node features and type features, we
apply hierarchical interaction mechanism to yield
the appropriate representation for reading compre-
hension. On the logical QA benchmarks (ReClor,
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LogiQA) and natural language inference bench-
marks (SNLI and ANLI), our proposed model has
been shown effective by significantly outperform-
ing the strong baselines.
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A KPHs Extraction Algorithm

Algorithm 1 Key Phrases (KPH) Extraction Algo-
rithm
Require: Input C = {S1, S2, . . . , SI}, n-gram length n,

min word length m, number of Key Phrases k
Ensure: Set of Key phrases with top-k TF-IDF weights K =

{g1, g2, . . . , gk}
1: Obtain the TF-IDF dictionary F = TF-IDF(C)
2: Generate n-gram dictionary G = n-GRAM(C, n)
3: Filter n-gram dictionary G, G̃=FILTER(G,m)
4: Retrieve the original expressions K = RE-

TRIEVE(C,F , G̃, k)
5: procedure TF-IDF(C)
6: for each sentence in C do
7: Filter stop-words in the sentence
8: Calculate the TF-IDF weight for each word
9: end for

10: return TF-IDF dictionary F
11: end procedure
12: procedure n-GRAM(C, n)
13: for each sentence in C do
14: Select all gram g with length n in the sentence
15: Add g to the dictionary G
16: end for
17: return n-gram dictionary G
18: end procedure
19: procedure FILTER(G,m)
20: for each n-gram g in G do
21: if stopwords in g or length(g) is less than m or

there is any number in g then
22: Delete g
23: end if
24: if length(g) is 1 and POStag(g) is not noun, verb,

or adjective then
25: Delete g
26: end if
27: end for
28: return n-gram dictionary G̃
29: end procedure
30: procedure RETRIEVE(C,F , G̃, k)
31: for each g in G̃ do
32: Calculate the sum of the TF-IDF weights of each

word in g, add to a dictionary z = {g : w(g)}
33: end for
34: Rank the top-k n-gram g by TF-IDF weight sum.

Construct key phrases set K = {g1, g2, . . . , gk}
35: if n=1 then
36: for each g in K do
37: gs= STEM(g)
38: Retrieve all the original words from C con-

taining gs, add to K
39: end for
40: end if
41: return Set of Key phrases K = {K1,K2, . . . ,Kk}
42: end procedure

B Dataset Information

ReClor The Reading Comprehension dataset re-
quiring logical reasoning (ReClor) is extracted
from standardized graduate admission examina-
tions (Yu et al., 2020). It contains 6,138 multiple-
choice questions modified from standardized tests
such as GMAT and LSAT and is randomly split into

train/dev/test sets with 4,638/500/1,000 samples
respectively. Multiple types of logical reasoning
question are included.

LogiQA LogiQA is sourced from expert-written
questions for testing human Logical reasoning. It
contains 8,678 QA pairs, covering multiple types
of deductive reasoning. It is randomly split into
train/dev/test sets with 7,376/651/651 samples re-
spectively.

SNLI The Stanford Natural Language Inference
(SNLI) dataset contains 570k human annotated sen-
tence pairs, in which the premises are drawn from
the captions of the Flickr30 corpus and hypotheses
are manually annotated. The full dataset is ran-
domly split into 549k/9.8k/9.8k. This is the most
widely used entailment dataset for natural language
inference. It requires models to take a pair of sen-
tence as input and classify their relation types, i.e.,
ENTAILMENT,NEUTRAL, or CONTRADICTION.

ANLI The Adversarial Natural Language Infer-
ence (ANLI) is a new large-scale NLI bench-
mark dataset, collected via an iterative, adversarial
human-and-model-in-the-loop procedure. Specif-
ically, the instances are chosen to be difficult
for the state-of-the-art models such as BERT and
RoBERTa. A1, A2 and A3 are the datasets col-
lected in three rounds. A1 and A2 are sampled
from Wiki and A3 is from News. It requires models
to take a set of context, hyperthesis and reason clas-
sify the label (ENTAILMENT,NEUTRAL, or CON-
TRADICTION). A1 has 18,946 in total and is split
into 16,946/1,000/1,000. A2 has 47,460 in total and
is split into 45,460/1,000/1,000. A3 has 102,859 in
total and is split into 100,459/1,200/1,200. ANLI
refers to the combination of A1, A2 and A3.

C Parameter Selection

Our model is implemented based on the Transform-
ers Library (Wolf et al., 2020). Adam (Kingma and
Ba, 2015) is used as our optimizer. The best thresh-
old for defining semantic relevance is 0.5. We run
10 epochs for ReClor and LogiQA, 5 epochs for
SNLI and ANLI, and select the model that achieves
the best result in validation. Our models are trained
on one 32G NVIDIA Tesla V100 GPU. The train-
ing time is around half an hour for each epoch. The
maximum sequence length is 256 for ReClor and
SNLI, 384 for LogiQA and 128 for ANLI. The
weight decay is 0.01. We set the warm-up propor-
tion during training to 0.1. We provide training
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Example (taken from ReClor dataset, id: val_214)

Context: Almost all dogs that are properly trained are housebroken in 

three weeks. In fact, it only takes more than three weeks to housebreak 
properly trained dogs if the dogs have been previously spoiled by their 
owners. In general, however, most dogs take more than three weeks to 
housebreak.
Question: If all the statements above are true, which of the following 
must also be true?
A: Most dogs take longer than four weeks to be housebroken if they have 
been previously spoiled by their owners.
B: A large proportion of dogs are not properly trained. Our Prediction ✓
C: Most dogs that are housebroken in three weeks have been properly 
trained. RoBERTa Prediction ✗
D: A large proportion of properly trained dogs have been previously 
spoiled by their owners.

P1:properly trained    P2:housebroken     P3:three weeks     P4:dogs

Figure 5: An example showing the logical reasoning capability of our model (Left) and the corresponding attention
map (Right). EDUs are shown in different colors alternately, corresponding to E1-E9 in the attention map.

Dataset PrLM batchsize learning rate

ReClor
RoBERTa-base 24 1e-5
RoBERTa-large 32 8e-6
DeBERTa-xlarge 8 8e-6

LogiQA
RoBERTa-base 2 4e-6
RoBERTa-large 2 8e-6
DeBERTa-xlarge 2 8e-6

SNLI
BERT-base 32 2e-5
RoBERTa-large 32 2e-5

ANLI RoBERTa-large 32 2e-05

Table 6: Parameter Selection

configurations used across our experiments in Ta-
ble 6.

D Case Study

To intuitively show how our model works, we se-
lect an example from ReClor as shown in Figure 5,
whose answer is predicted correctly by our model
but not by baseline models (RoBERTa). The ex-
ample shows that powerful pre-trained language
models such as RoBERTa may be better at deal-
ing with sentence pairs that contain overlap parts
or similar words. For example, the wrong answer
chosen by RoBERTa is another expression of the
first sentence in the given context. The words are
basically the same, only the order changes. The
model itself does not understand the logical relation
between sentences and phrases, but only compares
their common elements for prediction, failing in
logical reasoning task. In contrast, our model can

not only match synonymic expressions, but also
make logical inferences by separating sentences
into EDUs and extracting key phrases and establish-
ing logical relations between them. The importance
of those elements are interpreted by the attention
distribution as shown in the right part, which is
derived from the last layer of our model.


