@inproceedings{sha-etal-2022-bigger,
title = "Bigger Data or Fairer Data? Augmenting {BERT} via Active Sampling for Educational Text Classification",
author = "Sha, Lele and
Li, Yuheng and
Gasevic, Dragan and
Chen, Guanliang",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2022.coling-1.109/",
pages = "1275--1285",
abstract = "Pretrained Language Models (PLMs), though popular, have been diagnosed to encode bias against protected groups in the representations they learn, which may harm the prediction fairness of downstream models. Given that such bias is believed to be related to the amount of demographic information carried in the learned representations, this study aimed to quantify the awareness that a PLM (i.e., BERT) has regarding people`s protected attributes and augment BERT to improve prediction fairness of downstream models by inhibiting this awareness. Specifically, we developed a method to dynamically sample data to continue the pretraining of BERT and enable it to generate representations carrying minimal demographic information, which can be directly used as input to downstream models for fairer predictions. By experimenting on the task of classifying educational forum posts and measuring fairness between students of different gender or first-language backgrounds, we showed that, compared to a baseline without any additional pretraining, our method improved not only fairness (with a maximum improvement of 52.33{\%}) but also accuracy (with a maximum improvement of 2.53{\%}). Our method can be generalized to any PLM and demographic attributes. All the codes used in this study can be accessed via \url{https://github.com/lsha49/FairBERT_deploy}."
}