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Abstract
Many successful methods for fusing language
with information from the visual modality have
recently been proposed and the topic of mul-
timodal training is ever evolving. However,
it is still largely not known what makes dif-
ferent vision-and-language models successful.
Investigations into this are made difficult by the
large sizes of the models used, requiring large
training datasets and causing long train and
compute times. Therefore, we propose the idea
of studying multimodal fusion methods in a
smaller setting with small models and datasets.
In this setting, we can experiment with different
approaches for fusing multimodal information
with language in a controlled fashion, while
allowing for fast experimentation. We illustrate
this idea with the math arithmetics sandbox.
This is a setting in which we fuse language
with information from the math modality and
strive to replicate some fusion methods from
the vision-and-language domain. We find that
some results for fusion methods from the larger
domain translate to the math arithmetics sand-
box, indicating a promising future avenue for
multimodal model prototyping.

1 Introduction

Having models learn language from text alone has
been criticised based on several aspects, from fun-
damental arguments about how language works
(Bender and Koller, 2020; Bisk et al., 2020) to find-
ings on certain information lacking in text (Gordon
and Van Durme, 2013; Paik et al., 2021). Conse-
quently, there is much interest in creating models
that learn from more than text, i.e. “multimodal
models”. Many different multimodal models that
fuse different types of information with text have
been developed, ranging from vision-and-language
models (VL models) (Zhang et al., 2020) to lan-
guage models fused with knowledge graphs (Yu
et al., 2022). In this work, we mainly focus on the
vision-and-language domain, while our results may
generalize to other multimodal domains as well.

Figure 1: An overview of the vision-and-language fu-
sion method and our proposed math-language fusion
method. The image model and the math model are back-
bones.

A standard approach for fusing information from
images with language is firstly to use a backbone, a
large neural network that has been trained to create
good representations of images. One such model is
ResNet trained on Visual Genome (Anderson et al.,
2018; Krishna et al., 2016). The training data in
this standard approach typically consists of image
samples paired with linguistic information, such as
MS COCO (Lin et al., 2014). Multimodal fusion is
then achieved by generating representations of im-
age samples using the backbone and feeding those
together with paired linguistic samples to a large
language model pre-trained on text. The language
model is then expected to learn to leverage the vi-
sual information for its linguistic usage if trained
on a sufficient amount of image-text pairs. We
illustrate this approach in Figure 1.

Significant success on several multimodal vision-
and-language tasks has been achieved with this ap-
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proach (Chen et al., 2020; Li et al., 2019, 2020; Tan
and Bansal, 2019). However, it has seldom been in-
vestigated from a methodological perspective, and
existing methodological investigations indicate that
performance on different vision-and-language tasks
may not originate from what we would expect. For
example, differences in performance for different
VL models have previously been ascribed to dif-
ferent model architectures, while Bugliarello et al.
(2021) recently showed that training data and em-
bedding layers matter more than e.g. if the model
is dual- or single-stream. Hessel and Lee (2020)
also showed that performance improvements for
some VL models on image-text classification tasks
mainly originate from unimodal signals, and not
cross-modal interactions. Additionally, Frank et al.
(2021) found that VL models are not necessarily
symmetrical in their cross-modal interactions.

Additionally, the standard approach for fusing
information from images with language does not
necessarily encourage experiments with different
methods for multimodal fusion, mainly since the
associated compute power is substantial, as a conse-
quence of large models and data sizes. For example,
the size of the Faster R-CNN visual features used
by Bugliarello et al. (2021) is approximately 1.6
TB, significantly larger than e.g. the 20.3 GB for
English Wikipedia1.

In this work, we hypothesize that methods for
multimodal fusion can be developed in a smaller
domain for more efficient investigations. We exper-
iment with a sandboxed experimental setting for
investigating different multimodal fusion methods.
It is based on synthetic multimodal data, in a very
constrained math-and-language domain consisting
of simple arithmetic math statements, as illustrated
in Figure 1. Using this setup, we are free to investi-
gate different multimodal fusion methods like the
one seen in Figure 1 in silico, using models that are
easier to work with, with faster training times and
full control of the data since we can synthetically
generate it. The sandbox is described in Section 2
and we release the corresponding code to enable
other researchers to build on it.2

We reason that results in the math-and-language
domain could generalize to more complex domains,
such as the vision-and-language domain (Section 2)
and provide empirical support for this with a few

1Provided by Huggingface via https://
huggingface.co/datasets/wikipedia

2Available at https://github.com/lovhag/
small-math-language-multimodal-fusion

experiments (Section 3).
To summarize, our contributions are two, 1) pro-

posal of idea in using smaller domains for easier
investigations of vision-and-language fusion meth-
ods, and 2) demonstration of idea in the math arith-
metics sandbox set in the math-and-language do-
main. We couple this demonstration with validating
experiments that compare against recent results in
the vision-and-language domain.

2 The math arithmetics sandbox

Similarly to how images are described with pixel
values over some grid, equations can be described
with numerical values over potential positions in
an equation. Also similarly to how we use image
specific models to generate representations of im-
ages for language fusion, we can use math specific
models to generate representations of equations for
language fusion, illustrated in Figure 1.

In the math arithmetics sandbox we limit our-
selves to two-digit numbers and equations describ-
ing sums of these numbers. An example of a data
sample in the math modality of the sandbox is
then 54 + 21 = 75, with the corresponding string
“fifty-four plus twenty-one is equal to seventy-five”.
We can work with a total of 104 = 10, 000 dif-
ferent such math-language pairs in our sandbox.
This number of possible samples is much smaller
than e.g. the corresponding number for image data,
for which the size of the support is (V 3)32×32 for
32 × 32-pixel images with V possible values for
each RGB channel, with underlying probability
distributions of the pixel values.

An example of a potential task in the math arith-
metics sandbox is to predict the continuation of the
string “fifty-four plus twenty-one is equal to” given
the math information 54 + 21 = 75. This task can
be compared to the task of visual question answer-
ing in the vision-and-language domain, for which
a question could be “What is the color of the fruit?”
provided with an image of a yellow lemon. The
underlying format of the two tasks is essentially
the same, a text prompt is provided together with
information from another modality that encodes
the information necessary to answer the prompt.

We hypothesize that results from experiments in
the math arithmetics sandbox can give intuitions
about the vision-and-language domain, since the
difference between the math arithmetics sandbox
and more complex multimodal domains mainly lies
in the size of the support, while the underlying for-

https://huggingface.co/datasets/wikipedia
https://huggingface.co/datasets/wikipedia
https://github.com/lovhag/small-math-language-multimodal-fusion
https://github.com/lovhag/small-math-language-multimodal-fusion
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mat for the multimodal tasks are similar. Thus, it
is interesting to investigate whether we can acquire
valuable knowledge in the math arithmetics sand-
box and exploit it in more complex multimodal
domains, such as the vision-and-language domain.

3 Experiments

To investigate whether insights gained in the math
arithmetics sandbox are comparable to other multi-
modal domains, we perform a set of experiments.

3.1 Setup
We validate our math arithmetics sandbox by com-
paring findings from Huang et al. (2021) and
Bugliarello et al. (2021) with findings we obtain on
the same, but sandboxed, cases. The findings we
investigate and aim to reproduce are:

1. Adding information to a model from a modal-
ity with a sufficient amount of train sam-
ples improves on the performance of a model
(Huang et al., 2021).

2. Training with an additional modality with
too few training samples weakens the perfor-
mance of a model compared to not adding the
extra modality (Huang et al., 2021).

3. The design of the embedding layers matters
for VL models (Bugliarello et al., 2021).

4. Dual- and single-stream VL model architec-
tures perform on par (Bugliarello et al., 2021).

Task The task of the validating experiments is
to accurately predict the answer to a text version
of a sum equation xT , given the corresponding
complete math equation xM . An input example for
this task is xT = “one plus two is equal to”, xM =
1+2=3 and with the correct answer y = “three”.

During validation, the multimodal model is to
generate the continuation of an incomplete string
equation given the corresponding complete math
equation. For simplicity, we use a greedy decoding
scheme and measure the k = 1 accuracy.

Models As illustrated in Figure 1 our problem
setup firstly consists of a math model MM that gen-
erates a representation MM (xM ) of a math input
xM . This representation is then given to a language
model ML together with the incomplete text input
xT to get a prediction y′ = ML(xT ,MM (xM )).

We model MM with a small version of GPT23

3Embedding dimension of 64, 4 Transformer layers, inner
dimension of 256 and 8 attention heads.

Name Embedding Stream Backb
GPT2text
VisualBERT VisualBERT Single 99%
UNITER UNITER Single 99%
LXMERTs LXMERT Single 99%
LXMERTd LXMERT Dual 99%
LXMERTb LXMERT Single 5%

Table 1: Backb denotes the backbone, which was trained
on either 99% or 5% of the math data. GPT2text is a
standard unimodal GPT2 model only taking text input,
serving as a unimodal baseline.

(Radford et al., 2019) with a vocabulary restricted
to only include the tokens in the math equations.
The output of MM (xM ) is then a set of vector
representations, one for each token in xM .

ML is also modelled with a model similar to
GPT2. The difference here is that we need to adapt
the model to accept a multimodal input (xT and
MM (xM )). For this, we design a special embed-
ding layer and choose between a single- or dual-
stream architecture for the model.

Since one goal of this article is to investigate
the effect of different embedding layer designs and
dual- versus single-stream model architectures, we
create and evaluate four different model variations,
seen in Table 1. The embedding designs essentially
determine how the multimodal model input xT and
MM (xM ) is processed before being passed to the
encoder of ML. The dual- or single-stream archi-
tectures essentially determine how early linguistic
information and visual information is fused while
being processed in ML. We name the model vari-
ations after their embedding design, stream type
and amount of training data for the math model
(backbone). The embedding designs are named af-
ter the VL model that incorporates the same design.
Detailed descriptions of how we create the model
variations can be found in Appendix A.

Data The data we have available are the 10,000
math-language pairs. We train the math model
MM on 9,900 (99%) of the pure math equations
samples such that it attains a validation accuracy
of 0.99, to ensure that the model is able to gener-
ate information-rich math features. We then train
the language model ML on math-text pairs. We
experiment with different sizes of training data and
evaluate on the remaining data samples, to inves-
tigate the effect of having access to many or few
text samples. We train the models until they have
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(b) 500 samples

GP
T2

te
xt

Vi
su

al
BE

RT
U

N
IT

ER
LX

M
ER

Ts
LX

M
ER

Tb
LX

M
ER

Td

0.00

0.20

0.40

0.60

0.80

1.00

Single Dual

(c) 1000 samples

GP
T2

te
xt

Vi
su

al
BE

RT
U

N
IT

ER
LX

M
ER

Ts
LX

M
ER

Tb
LX

M
ER

Td

0.00

0.20

0.40

0.60

0.80

1.00

Single Dual

(d) 2000 samples

Figure 2: The validation accuracies for the different sandboxed models trained on 100, 500, 1000 and 2000 math-text
samples respectively. The validation task was to predict the answer to a string version of a sum equation. Each
configuration was trained 5 times.

converged in performance on the validation set and
report their accuracy score on the same set.

We also train a math model on only 500 samples
(5%) of the pure math equations to a validation ac-
curacy of 0.67. We use this backbone to investigate
2) the effect of training with too few samples for
the additional modality and train a single-stream
model with LXMERT embeddings with this back-
bone, denoted ‘LXMERTb‘.

3.2 Results

The results from the validating experiments are
shown in Figure 2.

Does adding multimodal information improve
model representations? Yes, for all cases in
which the language data is more scarce (<2000
samples), adding multimodal information leads to
a better model performance than only using text.

Does training with insufficient data for the ad-
ditional modality weaken model performance?
Predominantly yes, when there is more text data
(500< samples) adding information from the “bad”
math backbone has a deteriorating impact on the
model performance and the multimodal model even
performs worse than the unimodal version. When
there is less paired math-text data, additional in-
formation from the backbone trained on little data
leads to a better performance than in the pure-text
case. Potentially, this is due to the pure text case
also having too little data, such that additional in-
formation, despite bad quality, still is helpful.

Do embeddings matter for our models? No,
we do not observe significantly different perfor-

mances for the models with different embedding
layers. Potentially, this is due to the features from
the math modality being so simple that the embed-
ding does not really matter, compared to the case
of e.g. features from an object detector that also
encode locations of bounding boxes.

Do dual- and single-stream architectures per-
form on par? Yes, despite the fact that the sand-
boxed dual-stream model is larger than the single-
stream models, the model performs on par with the
single-stream models. This is in agreement with
results found on the vision-and-language domain.

4 Conclusions

We propose the idea of studying vision-and-
language fusion methods from a smaller domain.
We reason that it would be easier and less resource
demanding to develop performant multimodal fu-
sion methods if we could investigate them using
small models and domains. We exemplify this with
the math arithmetics sandbox and get promising
results. However, more experiments on other small
domains are necessary to evaluate the potential of
our proposed idea. It would also be beneficial to
investigate small domains that are more similar to
e.g. the vision-and-language domain.
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of these in the model ML in the math-and-language
domain.

A.1 Design of embedding layers
We wish to investigate the effect of different em-
bedding layer designs for text xT and math fea-
tures MM (xM ). The embedding designs essen-
tially determine how the multimodal model input
xT and MM (xM ) is processed before being passed
to the encoder of ML. Similarly to the work by
Bugliarello et al. (2021), we switch between differ-
ent embedding designs, for which we test designs
similar to those used in VisualBERT, UNITER and
LXMERT (Li et al., 2019; Chen et al., 2020; Tan
and Bansal, 2019). The embedding designs we
use mainly differ in how layer normalization and
dropout are applied to the xT and MM (xM ) inputs.

In the vision-and-language domain the embed-
ding designs are more differentiated since they pro-
cess positional information differently. As a conse-
quence of not having any extra positional informa-
tion in the math-and-language domain we cannot
imitate this positional embedding design difference
in the math arithmetics sandbox.

A.2 Dual- and single-stream models
We also wish to investigate dual- and single-stream
multimodal models. The single-stream model is
already provided by the standard GPT2 architecture
in the sense that we give it the concatenation of the
math and linguistic features of an math-text pair as
input, to allow for information fusion from the start.
This design is similar to that of the single-stream
VisualBERT model.

The dual-stream architecture we use is based on
the dual-stream LXMERT architecture, in which
we switch BERT specific layers for the correspond-
ing GPT2 layers, such that the math and linguistic
features are first processed by two independent
stacks of Transformer layers before they are fed
into cross-modal Transformer layers. Dual-stream
models are typically larger, where e.g. LXMERT
with 228M trainable parameters is two times larger
than the 110M parameters of single-stream Visual-
BERT. For our sandboxed dual-stream model, we
go by the same principle and set the number of
linguistic Transformer layers to three, the number
of relational layers to two and the number of cross-
attention layers to two, such that we get a sand-
boxed dual-stream model that is approximately two
times larger than the sandboxed single-stream mod-
els, corresponding to the size difference between

VisualBERT and LXMERT.
The number of trainable parameters for the sand-

boxed single-stream models is approximately 211K.
For the sandboxed dual-stream model the number
of trainable parameters is 495K.


