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Abstract

Relative word importance is a key metric for
natural language processing. In this work, we
compare human and model relative word im-
portance to investigate if pretrained neural lan-
guage models focus on the same words as hu-
mans cross-lingually. We perform an exten-
sive study using several importance metrics
(gradient-based saliency and attention-based)
in monolingual and multilingual models, in-
cluding eye-tracking corpora from four lan-
guages (German, Dutch, English, and Russian).
We find that gradient-based saliency, first-layer
attention, and attention flow correlate strongly
with human eye-tracking data across all four
languages. We further analyze the role of word
length and word frequency in determining rela-
tive importance and find that it strongly corre-
lates with length and frequency, however, the
mechanisms behind these non-linear relations
remain elusive. We obtain a cross-lingual ap-
proximation of the similarity between human
and computational language processing and in-
sights into the usability of several importance
metrics.

1 Introduction

Large pretrained neural language models, such as
BERT (Devlin et al., 2019), have in recent years
demonstrated performance equal to that of humans
in a range of natural language understanding tasks
(Wang et al., 2019). This begs the question of
whether the processing and encoding of these mod-
els reflect language properties as described by lan-
guage experts, such as in grammar, semantics,
pragmatics and logic and, furthermore, whether
the models process language similarly to humans.
While extensive research is being done to answer
this question, such as inquiries into what linguistic
knowledge is encoded into contextual word repre-
sentations (Clark et al., 2019; Vulić et al., 2020),
how linguistic information is processed (Tenney
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et al., 2019) and the effects of architectural choices
(Rogers et al., 2020), more recent research inspired
by psycholinguistics has emerged, which directly
compares cognitive signals of language process-
ing to pretrained language models. By using tools
such as eye-tracking features and brain activity data
(Abdou, 2022; Goldstein et al., 2022; Hollenstein
et al., 2020a), this line of research skips the step of
having to collect human judgments from speech or
text data by directly comparing them to sources of
cognitive data. As such, this approach is a direct
means of testing whether models process language
similarly to humans or, in other words, of evalu-
ating the cognitive plausibility of computational
language processing.

One method leveraging cognitive data has been
to extract relative word importance, a key metric
for natural language processing, from eye-tracking
data in order to compare these to relative word im-
portance extracted from state-of-the-art pretrained
language models. This has been studied for nor-
mal English reading (Hollenstein and Beinborn,
2021; Bensemann et al., 2022), in task-specific
reading (Eberle et al., 2022), and in question an-
swering settings (Sood et al., 2020). In this work,
we continue in this line of research but apply it
across several languages to measure the extent to
which pretrained language models focus on the
same words as humans cross-lingually. We obtain
human relative word importance from eye-tracking
data (total reading time) and model relative word
importance from pretrained language models us-
ing saliency and attention-based methods. These
methods have in recent years been developed for
the purpose of explainability, however, which meth-
ods serve best for this purpose has been a point of
contention (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019).

The goal of this study is two-fold: On the one
hand, we aim to obtain a rough estimate of the sim-
ilarity between human and computational natural
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language processing and, on the other hand, from a
usability point of view, see which importance meth-
ods best approximate human relative word impor-
tance. We compare four methods for calculating
relative word importance in pretrained language
models, namely first-layer attention, last-layer at-
tention, attention flow, and gradient-based saliency.
To investigate whether the same trends hold across
multiple languages and are not particular artifacts
of one language, we use eye-tracking corpora of
four different languages (English, Dutch, German,
and Russian) and compare both monolingual and
multilingual language models. More precisely, we
make this comparison by looking at how human
and model relative word importance statistically
correlate across different languages.

Lexical properties such as word frequency and
length are known to have a large effect on eye
movements of any language (Just and Carpenter,
1980; Levy, 2008). Therefore, in an additional
investigation, we analyze their impact on the fit
between human and model relative importance.

To sum up, this work examines the following
research questions:
Q1: Do human and model relative word impor-
tance correlate across languages?
Q2: Is there a difference between language-specific
and multilingual language models?
Q3: Is there a difference between gradient-based
saliency and the attention-based methods first-layer
attention, last-layer attention, and attention flow?
Q4: To what extent is human and model relative
word importance relying on word length and word
frequency?

Contributions We show that human and model
word importance correlate strongly in varying de-
grees across languages (English, Dutch, German
and Russian), although the observed differences
appear to be more corpus-specific than language-
specific (Q1). We observe a slightly stronger cor-
relation of monolingual models over multilingual
models, in particular for first-layer attention and
attention flow (Q2). We see that other attention-
based methods than last-layer attention, i.e., first-
layer and attention flow correlate strongly to human
eye-tracking data with attention flow being on par
with saliency for monolingual models (Q3). We
see a strong correlation with the baselines (positive
correlation to word length and negative correlation
to word frequency). When using linear regression
analysis to measure the ability of word length, word

frequency and model relative word importance to
predict human relative word importance, we see
that word frequency and word length increase the
predictive power over model relative word impor-
tance alone, indicating that these baselines are not
sufficiently accounted for by the models (Q4). The
code for our experiments is available online.1

2 Related Work

This work lies at the intersection of psycholinguis-
tics, interpretability of neural networks, and natu-
ral language processing. More specifically, there
are two current streams of research that this study
directly draws from, namely relative importance
metrics and cognitive analysis of natural language
processing. Below, we outline the related works in
these two subfields.

2.1 Relative Importance Metrics

Approaches for extracting relative word impor-
tance of Transformer-based models can be grouped
into gradient-based, propagation-based, occlusion-
based, and attention-based methods (Bastings and
Filippova, 2020, Section 3). In this work, we fo-
cus on attention-based and gradient-based methods
(see Section 4).

Attention is a key component of Transformer
models and multiple studies have analyzed how at-
tention weights are distributed across tokens. It has,
for example, been shown that attention at different
layers in Transformer models targets different lin-
guistic aspects. For instance, Vig and Belinkov
(2019) find that attention in a GPT-2 model targets
different parts of speech and depths of dependency
relations at different layers within the model and
Li et al. (2021) show that different layers of trans-
former language models perform best when detect-
ing different types of linguistic anomalies. Also,
the findings by Tenney et al. (2019) indicate that
in BERT earlier layers encode more word-level in-
formation than later layers when comparing perfor-
mance across different language-level tasks from
part-of-speech tagging to anaphora resolution.

The methodological merit of attention weights
as a measure of relative importance has, however,
been questioned. For one, the calculated attention
attends to input representations, not the input itself,
and these representations can mix in information
from other inputs, thus diluting the relative impor-

1https://github.com/felixhultin/
relative_importance.

https://github.com/felixhultin/relative_importance
https://github.com/felixhultin/relative_importance
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tance strength of the original input token (Bastings
and Filippova, 2020). Moreover, different atten-
tion distributions can lead to the same predictions,
making the relative importance of attention weights
ambiguous (Jain and Wallace, 2019). To address
the unreliability of attention weights, Abnar and
Zuidema (2020) propose attention flow, a mecha-
nism which computes maximum flow values, from
hidden embeddings to input tokens.

2.2 Cognitive Analysis of Natural Language
Processing

Using cognitive data to evaluate NLP has emerged
as a novel method for interpreting NLP systems
(Toneva and Wehbe, 2019; Ettinger, 2020; Hol-
lenstein et al., 2019). The motivation behind this
research is to assess whether models encode, pro-
cess, or output language similarly to humans and,
thus, provide measurements of their cognitive plau-
sibility (Keller, 2010).

In recent years, more eye-tracking corpora from
natural reading have become available in multiple
languages (see section 3.1). Although cognitive
data, including eye-tracking corpora, have been
available as digitized formats for a long time, only
recently have they been methodically deployed for
the cognitive analysis of NLP systems. For exam-
ple, the CMCL shared evaluation task uses ZuCo
for the modeling of eye-tracking features. In this
task, language models, such as BERT, are used to
predict eye-tracking features (number of fixations,
first fixation duration, total reading time, etc.) (Hol-
lenstein et al., 2021). This work is similar to ours,
but instead of fine-tuning the model to predict eye-
tracking features, we see if the relative word impor-
tance as extracted by different methods correlates
to mean total reading time.

Further work using other sources than eye-
tracking corpora is for example Ettinger (2020),
who proposed a psycholinguistic test suite to di-
agnose language models’ predictions in context
using electroencephalogram (EEG). Moreover, Ab-
nar et al. (2019) use functional magnetic reso-
nance imaging (fMRI) and representational sim-
ilarity analysis (RSA) to compare representations
of the brain and pretrained language models.

In terms of using relative importance metrics,
previous studies have shown that attention weights
do not correspond to human relative word impor-
tance. For example, Sood et al. (2020) compare at-
tention weights from the last layer of Transformer

models to human gaze data. They show that a
higher correlation between model attention and hu-
man attention does not necessarily yield better per-
formance in downstream NLP tasks. Hollenstein
and Beinborn (2021) also find that attention has
a weak correlation to human gaze data. Recently,
Eberle et al. (2022) have found that attention flow
from transformer models correlates strongly with
human fixation times in task-specific English read-
ing.

Finally, gradient-based methods have been pro-
posed as a better method than attention weights
at approximating the relative importance of input
words in neural networks (Bastings and Filippova,
2020). Hollenstein and Beinborn (2021) addition-
ally show that gradient-based saliency might be a
cognitively more plausible interpretability metric
than attention weights.

We follow these results and provide a large cross-
lingual comparison of human eye-tracking data to
a range of relative importance metrics, including
gradient-based saliency, first and last-layer atten-
tion, and attention flow.

3 Data

3.1 Eye-tracking Corpora

We use eye-tracking data collected from native
readers of the following corpora to extract the hu-
man relative importance metrics based on the mean
total reading time of each word (see Table 1). For
English, we use the GECO corpus, which contains
eye tracking data from English monolinguals read-
ing an entire novel (Cop et al., 2017), and the ZuCo
corpus (Hollenstein et al., 2018, 2020b), which
includes eye-tracking data of full sentences from
movie reviews and Wikipedia articles.2 For Dutch,
we also use the GECO corpus, which additionally
contains eye tracking data from Dutch readers that
were presented with the same novel in their na-
tive language (Cop et al., 2017). For German, we
leverage the Potsdam Textbook Corpus, which con-
tains 12 short passages from college-level biology
and physics textbooks, which are read by expert
and laymen German native speakers (Jäger et al.,
2021). We also use the Russian Sentence Corpus
which includes naturally occurring sentences ex-
tracted from the Russian National Corpus (Lauri-
navichyute et al., 2019).3 We exclude a small set

2We use Tasks 1 and 2 from ZuCo 1.0 and Task 1 from
ZuCo 2.0.

3https://ruscorpora.ru

https://ruscorpora.ru
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Language Corpus Subjs. Sents. Sent. length Tokens Types Word length

English GECO 14 4,559 10.5 (1–69) 56,410 5,916 4.6 (1–33)
ZuCo 30 853 19.5 (1–68) 20,545 5,560 5.0 (1–29)

Dutch GECO 19 4,863 11.6 (1–60) 59,716 5,575 4.5 (1–22)
German PoTeC 75 89 19.5 (5–51) 1,895 847 6.5 (2–33)
Russian RSC 103 143 9.4 (5–13) 1,357 993 5.7 (1–18)

Table 1: Descriptive statistics of all eye-tracking datasets. Sentence length and word length are expressed as the
mean with the min-max range in parentheses. Sents. is the number of the subset of sentences we process for this
work, while sentence length and word length are calculated from all sentences in the corpora.

of sentences from the original corpora because of
token alignment issues.

3.2 Language Models

All monolingual models and the multilingual model
are based on the BERT architecture (Devlin et al.,
2019). We use the pretrained checkpoints from the
HuggingFace repository of the multilingual base
model and language-specific monolingual base
models. See Table 3 in the Appendix for the com-
plete list of models and references.

4 Method

For each sentence in the eye-tracking corpora, we
calculate human and model relative word impor-
tance values. The same sentences are, however,
tokenized differently by the built-in tokenizers of
the pretrained language models, resulting in longer
sequences of relative word importance values than
those obtained from humans. To remedy this, we
align human and model importance values by dis-
carding the importance values of special tokens
(e.g. [SEP] and [CLS]) and merging subtokens
and adding their values. Once aligned, we calcu-
late Spearman’s correlation coefficient ρ between
human and model relative word importance for
each sentence. Finally, we calculate an average
Spearman’s ρ across all sentences for each eye-
tracking corpus (human relative word importance)
and model, corpus, and importance metric tuple
(model relative word importance). Additionally, us-
ing the same procedure, we explore the correlation
of human and model relative word importance to
word length and frequency baselines.

We analyze the following importance metrics:

Human relative importance In this work, we
use the total reading time per word in the eye track-
ing corpora as the source for defining human rel-
ative word importance. It refers to the sum of all
fixation durations for each word including regres-

sions (i.e. when a subject goes back to the same
word after the first pass). We use the average total
reading time across all subjects and normalize the
resulting values such that each word is assigned an
importance value between 0 and 1, and all values
within a sentence sum up to 1. These values are
calculated sentence by sentence.

Gradient-based saliency As described in Hol-
lenstein and Beinborn (2021), we define a saliency
vector for a masked token to indicate the impor-
tance of each of the tokens in the context of cor-
rectly predicting the masked token (Madsen, 2019).
The saliency sij for input token xj for the pre-
diction of the correct token ti is calculated as the
Euclidean norm of the gradient of the logit for xi:

sij = ∥∇xjfti(Xi)∥2 (1)

Last-layer attention We approximate relative
importance using the attention values from the last
layer and calculate the mean of all heads of each
Transformer model as Sood et al. (2020).

First-layer attention Previous work has indi-
cated that earlier layers encode information closer
to word-level than later layers (Tenney et al., 2019).
Therefore, we also include the first-layer attention
weights by averaging over all heads to approximate
relative word importance.

Attention flow Finally, we compute attention
flow (Abnar and Zuidema, 2020), which has been
shown to correlate stronger with human gaze than
raw attention weights (Eberle et al., 2022). Atten-
tion flow considers the attention graph as a flow
network and computes maximum flow values from
later attention layers to the input embedding layer.
Unlike raw attention weights, which consider to-
ken importance at layers in isolation, attention flow
computes importance scores that account for mix-
ing of information across layers and, thus, identifies
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Figure 1: Upper: Spearman’s correlation ρ between
human (total reading time) and model relative word im-
portance (BERT monolingual models). Lower: Spear-
man’s correlation ρ between human (total reading time)
and model relative word importance (BERT multilin-
gual model).

the important tokens for the model prediction. Be-
cause of the high computational resources needed
to calculate attention flow, we do not calculate at-
tention flow of the BERT multilingual model for
English (GECO).

Baselines We compare human and model rela-
tive word importance to two word-level baselines:
word length (the number of characters in a word)
and word frequency (the proportion of times a word
occurs in a corpus). To obtain the word frequencies,
we use the wordfreq Python package (Speer
et al., 2018) (version 2.3.2), which calculates to-
ken frequencies based on corpora from different
Internet text resources, such as Wikipedia, Google
Books, and Reddit.

Regression Analysis In addition, we use a mixed
linear regression analysis (ordinary least squares)
to measure the extent to which, model relative word
importance, word frequency, and word length can
predict human relative word importance. We let
human relative word importance be the dependent
variable and fit multiple linear regression models
with different combinations of model word impor-
tance, word frequency and word length as indepen-
dent variables. This is done to measure each and
every variable’s effect in isolation. We analyze the
resulting coefficient of determination R2.

In the Spearman correlation analysis outlined
above, the correlations were calculated per sen-

tence and then averaged. In contrast, we now fit
the model to tokens which means that all relative
word importance values and all word lengths and
frequencies are fitted into the same model.4.

Since all independent variables (word frequency,
word length and model relative word importance)
and the dependent variable (human relative word
importance) are intrinsically skewed, we log-
transform all data. Furthermore, we use an ex-
tended version of linear regression (mixed linear re-
gression (Gałecki and Burzykowski, 2013)) to deal
with dependency between samples (i.e., one word
appearing more than twice) which otherwise would
break the assumption of linear regression models
that each observation is independent of each other.

5 Results

5.1 Human vs. Model Word Importance
Figure 1 shows the Spearman correlation between
human relative word importance and model relative
word importance of importance methods for each
eye-tracking corpus. The results show a strong cor-
relation (ρ > .5) between human and model word
importance across all languages. There are, how-
ever, considerable differences between languages.
For example, German reaches a Spearman’s ρ of
.8, while Russian, English (GECO) and Dutch
(GECO) only reach .5 (Q1). When comparing
the multilingual BERT model to language-specific
BERT models, we observe for some importance
metrics, attention flow and first-layer attention, a
slightly stronger correlation to monolingual models.
In the German and English (ZuCo) monolingual
models, in particular, first-layer attention and flow
are equally strong as saliency while in the multi-
lingual model they all have more than .1 weaker
correlation. Attention first-layer seems even more
strongly correlated to monolingual models, where
we see +.11 and +.17 for the language-specific
BERT model of Dutch (GECO), English (GECO)
and ZuCo (English), respectively. Russian, how-
ever, is a slight outlier in that it has a +.3 difference
in favor of the multilingual BERT model (Q2).

When comparing importance methods, we see
similar results to previous findings on English data.
Saliency shows a strong correlation to human rel-
ative word importance, while last-layer attention
shows a weaker correlation. Furthermore, attention
flow and, surprisingly first-layer attention in most

4Most sentences are too short for the number of indepen-
dent variables we use to fit a linear regression model.
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Figure 2: Upper: Spearman’s correlation ρ between
word length and human (total reading time) and model
(BERT monolingual) relative word importance. Lower:
Spearman’s correlation ρ between word length and hu-
man (total reading time) and model (BERTmonolingual)
relative word importance.

cases, show similar strength than saliency, albeit
slightly weaker for multilingual models (Q3).

Finally, though not specifically defined in the
goals and research questions of this study, we make
the separate, but important, observation that the
most impactful variable for correlation strength
seems to be the size and text domain of the eye-
tracking corpora. This becomes apparent when
comparing Dutch (GECO), English (GECO) and
English (ZuCo). Even though English (GECO) and
English (ZuCo) are of the same language, the per-
formance on English (GECO) and Dutch (GECO)
are quite similar, while not very similar to English
(ZuCo). While the language-specific impact on the
results is difficult to grasp due to the differences
between the eye-tracking corpora, we, nonetheless,
see the same trends hold for all four languages.

5.2 Corpus Statistical Baselines

Figures 2 and 3 show the correlation of word fre-
quency and length baselines to human and model
relative word importance. We see a strong cor-
relation between models of all languages and the
two baselines word length and word frequency: A
strong positive correlation to word length and a
strong negative correlation to word frequency, as
also observed by Hollenstein and Beinborn (2021).

For the baselines, however, we see considerable
differences between languages. German shows the
strongest correlation for word length with 0.85 for

Figure 3: Upper: Spearman’s correlation ρ between
word length and human (total reading time) and model
(BERT multilingual) relative word importance . Lower:
Spearman’s correlation ρ between word length and hu-
man (total reading time) and model (BERT multilingual)
relative word importance.

humans and 0.82 and 0.85 for mono- and multilin-
gual BERT, respectively, and also the strongest neg-
ative correlation for word frequency with -0.78 for
humans and -0.85 as well as -0.87 for mono- and
multilingual BERT, respectively. Russian shows
the weakest human correlation to the baselines,
0.61 for word length and -0.51 for word frequency,
while having a relatively strong saliency baseline
correlation of 0.72 and 0.67 for word length as well
as -0.78 and -0.82 for word frequency.

Looking at the relative word importance metrics,
which had the strongest correlation to human im-
portance, namely saliency and attention flow, we
see that their correlation strength with respect to
the baselines correlate equally strong or stronger
than their human counterparts. This indicates that
the more similar their baselines are to the human
baselines, the stronger they correlate in terms of
relative word importance (see previous section).
This is especially the case when looking at (1) at-
tention last-layer, where there weaker correlation
to human relative word importance is also reflected
in its weaker correlation to word frequency and
word length, which are much lower than its hu-
man counterpart and (2) word frequency, where the
model relative word importance of Dutch (GECO),
English (GECO) and Russian have a weaker cor-
relation to human relative word importance but a
considerable stronger negative correlation to word
frequency than human relative word importance
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Table 2: Linear regression (R2) fitted to predict human
relative word importance from word frequency and/or
word length.

freq length freq+length

Dutch 0.08 0.15 0.16
English (GECO) 0.07 0.12 0.14
German 0.31 0.38 0.41
Russian 0.22 0.49 0.49
English (ZuCo) 0.13 0.26 0.30

has to word frequency. This effect does not, how-
ever, seem to be as pronounced with word length.

These results show that word length and word
frequency are powerful indicators of word impor-
tance and support the presumption that they play
an important role in determining the correlation
strength between human and model relative word
importance (Q4). In the next subsection, we will try
and quantify how much these baselines account for
this relation, by measuring the explanatory power
word length, word frequency and model relative
word importance have in predicting human relative
word importance.

5.3 Word Length & Frequency Regression
Analysis

We fitted linear mixed models to predict human
word importance using either word frequency, word
length, model relative word importance, or com-
binations of the features. Table 2 shows the R2

results for using word frequency and word length
as independent variables, and Figure 4 shows the
results for using model relative word importance as
an independent variable in combination with word
frequency and word length. See Figure 5 and Table
4 in the Appendix for full results.

In Table 2 we see a weak R2 score or in other
words a weak linear relationship between human
relative word importance and word frequency and
word length. Word frequency, however, appears to
have a weaker R2 than word length and differences
are large between corpora. Russian, for example,
has four times stronger R2 for word length than
English (GECO). Using both word frequency and
word length (freq+length) appears only to be as
strong as the strongest word length value (length),
such that a combination of word frequency and
word length (freq+length) does not make the rela-
tionship stronger.

Comparing Figure 4 to Table 2 we see a much
stronger linear relationship (R2) when model rel-

ative word importance is used as an independent
variable. When combined with word frequency
(model+freq) we see a considerable increase of R2,
but combined with word length (model+length and
model+freq+length) we see an even stronger linear
relationship. Similarly to Table 2, combining word
frequency and word length (freq+length) only gives
as much benefit as adding length to model word im-
portance (model+length and model+freq+length).

Comparing the R2 of model importance, we see
different scores than that of the results in section
5.1 and section 5.2. Here, we see saliency achiev-
ing the lowest R2 across all models and corpora,
meanwhile the attention-based metrics (attention
first/last layer and flow) show a much larger R2.
Although comparing the R2 and Spearman’s ρ is
not equal due to the methodological differences
outlined in Section 4, this difference nevertheless
suggest that relation between saliency and human
relative word importance is less linear in nature
than attention-based ones.

6 Discussion

6.1 Findings on Human vs. Model Relative
Word Importance

This cross-lingual study shows that model relative
word importance has a strong correlation to human
relative word importance. We confirm the findings
of other English-based studies that saliency (Hol-
lenstein and Beinborn, 2021), first-layer attention
(Bensemann et al., 2022) and attention flow (Eberle
et al., 2022) show a strong correlation to human rel-
ative word importance as well as last-layer attention
showing a weak correlation (Q1 & Q3). This re-
search, thus, from a usability perspective supports
the critique against using attention weights for ex-
planation, while providing supporting evidence for
the use of attention flow. Comparing monolingual
and multilingual models, we see slightly stronger
results for monolingual models, in particular for
attention first-layer and attention flow, indicating
that some importance-bearing information are more
readily available in the attention weights of mono-
lingual models. However, given that these results
are not vastly different, there is still a strong argu-
ment for training multilingual models over mono-
lingual models because of their resource-efficiency
and saving of computational resources (Q2).

The secondary finding of this study that corpus-
specific differences have a big impact on correla-
tion strength, indicates the need to control the size
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Figure 4: Linear regression (R2) fitted to predict human
relative word importance from model word importance
(model), word frequency (freq), word length (length) or
combinations thereof (+) (BERT monolingual). A1, Al,
Af , and S are short for first-layer attention, last-layer
attention, attention flow, and saliency, respectively.

and text domain for cross-lingual comparison. A
promising avenue for future work could be to apply
our analyses to the recent multilingual eye-tracking
corpus MECO (Siegelman et al., 2022).

6.2 The Role of Word Length And Word
Frequency

Measuring the effect of word length and word fre-
quency using Spearman’s ρ and linear regression
we find that they play an important role in deter-
mining relative word importance. First, we see that
similarity in correlation strength to the word length
and especially word frequency baseline mirrors
a stronger correlation between model and human
relative word importance (Q4). Secondly, we see
that when using linear regression to quantify the
linear relationships between the two lexical base-
lines, model relative word importance, and human
relative word importance, stronger predictions can
be made when model relative word importance is
combined with word frequency or word length, es-
pecially the latter (see Figure 4). This suggests that
word frequency and especially word length might
not be sufficiently accounted for by the language
models. Furthermore, the discrepancy between the
lower impact of word frequency and the higher
impact of word length has several potential expla-
nations. Firstly, word frequency might be better ap-
proximated by the model than word length (which
is supported by the fact that word length is not

explicitly processed in Transformer-based architec-
tures). Secondly, the relationship between word
frequency and relative word importance is proba-
bly less linear than that of word length and relative
word importance (as suggested by the results in
Table 2) and could, therefore, not be as adequately
fitted by linear regression. The nature of the re-
lationships between word length, word frequency,
and human relative word importance, thus, remains
elusive. To gain clarity on this, future work could
control for word length and frequency more ex-
plicitly, by, for example, grouping and comparing
relative word importance by length and frequency
in isolation as well as using probing tasks to test
the extent to which contextual word representations
themselves can predict word length and frequency.

7 Conclusion

In this work, we show that the strong correlation
between relative word importance of neural lan-
guage models and humans holds across several
languages, namely, English, German, Dutch, and
Russian. This is the case for both monolingual as
well as multilingual pretrained Transformer models,
which yield similar performance in our correlation
analyses.

We also find that several relative importance met-
rics for pretrained language models, both first-layer
attention and attention flow as well as saliency,
perform similarly well and that these importance
values, as their human counterparts, strongly corre-
late to word length and word frequency. However,
as expected, we have found that last-layer attention
correlates more weakly.

Comparing the correlations of relative word im-
portance is a simple, easily interpretable metric for
evaluating the similarity of human and computa-
tional language processing. Using this metric, we
can evaluate the extent to which the model’s at-
tention compares to approximate human language
processing and, thus, get a gauge of their cogni-
tive plausibility. In addition to the BERT-based
architectures we studied, looking at more recent
cross-lingual models such as GPT, T5 and XLNet
as well as multimodal language models would give
further insights into the role of pre-training tasks
as well as non-textual modalities.
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Appendix

A Limitations

The results and conclusions of this paper should
be read with the following limitations in mind: (1)
Differences between human subjects can be quite
significant, thus, the results will also reflect this
uncertainty (Kidd et al., 2018). (2) Comparing
model relative word importance of saliency-based

https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.23915/distill.00016
https://doi.org/10.23915/distill.00016
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/2020.conll-1.2
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/2020.emnlp-main.586
https://doi.org/10.18653/v1/2020.emnlp-main.586
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002


21

and attention-based methods to that of human rel-
ative word importance only reflects these meth-
ods’ ability to mimic human behavior, but does not
say anything about their ability to accurately rep-
resent the inner workings, i.e., the faithfulness of
pretrained language models (Jacovi and Goldberg,
2020).
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Table 3: List of models used for each corpora. Hugging Face path refers to the model path used to identify the model
in Hugging Face repository. For models without explicit paper reference, we refer to the Hugging Face website.

Corpus Model name Hugging Face path Reference
GECO (en) BERT bert-base-uncased Devlin et al. (2019)
GECO (en) BERT Multilingual bert-base-multilingual-cased Devlin et al. (2019)
GECO (nl) BERT GroNLP/bert-base-dutch-cased de Vries et al. (2019)
GECO (nl) BERT Multilingual bert-base-multilingual-cased Devlin et al. (2019)
ZuCo BERT bert-base-uncased Devlin et al. (2019)
ZuCo BERT Multilingual bert-base-multilingual-cased Devlin et al. (2019)
Potsdam BERT dbmdz/bert-base-german-uncased https://huggingface.

co/dbmdz/
bert-base-german-uncased
(accessed 2022-03-15)

Potsdam BERT Multilingual bert-base-multilingual-cased Devlin et al. (2019)
Russsent BERT DeepPavlov/rubert-base-cased Kuratov and Arkhipov (2019)
Russsent BERT Multilingual bert-base-multilingual-cased Devlin et al. (2019)

Figure 5: Linear regression (R2) fitted to predict human relative word importance from model word importance
(model), word frequency (freq), word length (length) or combinations thereof (+) (BERT multilingual). A1, Al, Af ,
and S are short for attention (first-layer), attention (last-layer), attention flow, and saliency, respectively.

https://huggingface.co/dbmdz/bert-base-german-uncased
https://huggingface.co/dbmdz/bert-base-german-uncased
https://huggingface.co/dbmdz/bert-base-german-uncased
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Table 4: Linear regression models R2 measuring impact of word length, word frequency and word importance.

Language Model Importance model model+freq model+length model+freq+length

Dutch

BERT

Attn (1st) 0.53 0.58 0.64 0.64
Attn (last) 0.51 0.58 0.63 0.64
Flow 0.52 0.58 0.64 0.64
Saliency 0.27 0.31 0.37 0.37

mBERt

Attn (1st) 0.52 0.58 0.63 0.64
Attn (last) 0.52 0.58 0.63 0.64
Flow 0.52 0.58 0.63 0.64
Saliency 0.33 0.35 0.39 0.38

English (Geco)

BERT

Attn (1st) 0.6 0.65 0.71 0.72
Attn (last) 0.59 0.65 0.71 0.72
Flow 0.59 0.64 0.71 0.72
Saliency 0.28 0.32 0.39 0.39

mBERT
Attn (1st) 0.6 0.65 0.71 0.72
Attn (last) 0.6 0.64 0.71 0.71
Saliency 0.36 0.38 0.45 0.44

English (ZuCo)

BERT

Attn (1st) 0.4 0.49 0.58 0.6
Attn (last) 0.39 0.49 0.58 0.6
Flow 0.4 0.49 0.58 0.6
Saliency 0.17 0.26 0.38 0.39

mBERT

Attn (1st) 0.4 0.49 0.58 0.6
Attn (last) 0.4 0.49 0.58 0.6
Flow 0.4 0.49 0.58 0.6
Saliency 0.22 0.27 0.41 0.41

German

BERT

Attn (1st) 0.47 0.69 0.78 0.79
Attn (last) 0.43 0.67 0.76 0.77
Flow 0.46 0.69 0.78 0.79
Saliency 0.17 0.39 0.5 0.5

mBERT

Attn (1st) 0.46 0.72 0.78 0.8
Attn (last) 0.46 0.72 0.78 0.8
Flow 0.47 0.72 0.78 0.8
Saliency 0.23 0.46 0.53 0.54

Russian

BERT

Attn (1st) 0.1 0.27 0.51 0.51
Attn (last) 0.09 0.28 0.52 0.52
Flow 0.09 0.26 0.51 0.51
Saliency 0.08 0.24 0.5 0.5

mBERT

Attn (1st) 0.1 0.28 0.51 0.51
Attn (last) 0.11 0.28 0.51 0.51
Flow 0.11 0.27 0.5 0.51
Saliency 0.13 0.25 0.49 0.49


