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Abstract
Pre-trained Vision and Language Transform-
ers achieve high performance on downstream
tasks due to their ability to transfer represen-
tational knowledge accumulated during pre-
training on substantial amounts of data. In this
paper, we ask whether it is possible to com-
pete with such models using features based on
transferred (pre-trained, frozen) representations
combined with a lightweight architecture. We
take a multimodal guessing task as our testbed,
GuessWhat?!. An ensemble of our lightweight
model matches the performance of the fine-
tuned pre-trained transformer (LXMERT). An
uncertainty analysis of our ensemble shows
that the lightweight transferred representations
close the data uncertainty gap with LXMERT,
while retaining model diversity leading to en-
semble boost. We further demonstrate that
LXMERT’s performance gain is due solely to
its extra V&L pretraining rather than because
of architectural improvements. These results ar-
gue for flexible integration of multiple features
and lightweight models as a viable alternative
to large, cumbersome, pre-trained models.

1 Introduction

Current multimodal models often make use of a
large pre-trained Transformer architecture compo-
nent, which is then fine-tuned for the final task.
This setup can lead to high performance, due to
the immense amount of data embodied in the pre-
trained component, together with its large capacity
in terms of parameters. However, these models
are also extremely costly to train; even fine-tuning
requires non-negligible resources. Here we wonder
whether the need for pre-training data, and for large
and computationally costly neural networks could
be mitigated by feeding the models with richer can-
didate representations, and by using an ensemble
of lightweight models.

* Work done while at CIMeC - University of Trento.

Is it a living thing? Yes
Is it black and white? Yes
Is it in the background? Yes
Are its ears up in the air? Yes

“dog”

“pillow”

“dog”

“dog”

“dog”

Game Candidates

Figure 1: An example of a game from GuessWhat?!:
The Guesser receives the image and dialogue as input,
and has to pick the correct target (in green) from the
list of candidates. We consider different ways of repre-
senting the candidates, e.g. using category information,
visual features, and/or spatial position.

The motivation for this paper is to disentangle
the contributions to good model performance on
grounded multimodal tasks: is it due to better archi-
tecture, e.g. Transformers for text, vs LSTMs? Or
to exposure to large amounts of multimodal data
during pretraining? Or learning good representa-
tions for the task during fine-tuning?

As the task for this case study we take
a multimodal referential game, Guess
What?! (GW) (de Vries et al., 2017), specif-
ically the final guessing task. Here the aim is to
guess which object in the image is the correct
target, based on the dialogue history (the series of
questions) and the image. The model receives as
input an image and a sequence of question-answer
pairs, which are together passed to the multimodal
encoder. The final hidden layer of the encoder
is then the Guesser’s input representation. The
Guesser classifier then generates a representation
for each of the candidate objects in the image, and
selects the target based on the similarity between
the candidate representations and the input (image
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and dialogue) encoding. The creation of the
Guesser representation is the focus of this paper.
We examine both the effect of input encoding
(LXMERT vs V-LSTM) and the effect of using
different features to represent the candidate targets.
Our results show that these two factors interact: a
lightweight input encoding can be compensated
for by richer candidate targets; conversely, a heavy
encoder can work with impoverished features.

When introducing the GW task and the baseline
models, de Vries et al. (2017) run a comparative
evaluation of the Guesser model; the visual embed-
ding was shown to be not informative in selecting
the target object and better results were obtained by
using just the embedding learned from the category
label and spatial coordinates. All the following
work on the GW task retained the baseline candi-
date representations. We put the attention on this
evalution again situating it in the new context of
the pre-trained large encoders we are now familiar
with. Our motivation behind re-evaluating the fea-
tures used by the Guesser is the observation that
in GW, guessing the right target could require dif-
ferent sorts of information about the candidates.
For instance, in the game illustrated in Figure 1,
the Guesser requires candidate representations that
encode the ontological information that dogs are
living things whereas pillows are not, in order to
make sense of the dialogue. The candidate repre-
sentations also have to distinguish the target dog
from the other dogs: here, visual features encod-
ing the colour could differentiate the black and
white dogs from the other two dogs. Finally, spa-
tial information is essential to locate the target in
the background. Note that if the choice set con-
tained other distractors, other features might have
been needed to identify the target. We hypothe-
size (and our results confirm) that the combina-
tion of visual features and spatial location infor-
mation on the level of individual candidates, plus
some kind of semantic information about candidate
categories (e.g. task-specific embeddings or gen-
eral pre-trained embeddings) will lead to the best
Guesser.

Along with improving the candidate representa-
tions, we also investigate the effect of ensembling
multiple models. As well as potentially bringing
a boost in performance, ensembling also allows
us to inspect the uncertainty of the models un-
der a Bayesian interpretation of deep ensembles
as Bayesian model averaging (Lakshminarayanan

et al., 2017; Wilson and Izmailov, 2020; Hüller-
meier and Waegeman, 2021). Hence, after com-
paring models based on their task-success, we use
data and model uncertainty as a post-hoc analy-
sis to get an in-depth comparison of models’ be-
haviour. This allows us to better understand the
effect of richer features: for V-LSTM Guessers,
they provide key information, while for pre-trained
LXMERT they seem to be redundant with the input
encoding. However, for LXMERT without pre-
training, the Guesser is not as able to integrate the
information from the input encoding and candidate
feature representations.

To recap, we investigate whether providing infor-
mative candidate representations (which are, them-
selves, gleaned from pre-trained models) to the
Guesser model can make the task more feasible
when using lightweight input (dialogue + image)
encoders, i.e. V-LSTMs vs LXMERT. LXMERT
has the advantage of significant pretraining on a
large corpus of V&L data, as well as orders of
magnitude more parameters. Hence, we compare
V-LSTM ensembles against LXMERT, both alone
and ensembled. We also compared the LXMERT
architecture trained from scratch on the GW task,
to understand the relative contributions of pretrain-
ing vs architecture. We compare the models both
in terms of task-accuracy as well as doing an un-
certainty analysis. Our results show that

• an ensemble of lightweight models with good
candidate representations can match the per-
formance of a single LXMERT model;

• while with poor candidate representations
V-LSTM models are highly uncertain, richer
candidate representations let these models be-
have similarly to the pre-trained LXMERT in
terms of data/model uncertainty;

• better candidate representations lead to
V-LSTM ensembles with Guessers that use-
fully disagree: ensembles can combine these
disparate predictions into more accurate over-
all predictions.

2 Related Work

2.1 GuessWhat?! Guesser
GuessWhat?! (de Vries et al., 2017) is a dataset of
human dialogues collected via Amazon Mechani-
cal Turk in which two players play a guessing game.
One player (the oracle) is assigned an object in an
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image and the other player (the questioner) has to
ask Yes/No questions in order to discover the target
object. In the first GW model proposed in de Vries
et al. (2017), the questioner player is implemented
by two different models: the Question Generator
and the Guesser. The Guesser is trained to predict
the target object from a set of candidates, using
supervised learning. Candidate objects are repre-
sented by a learned object category embedding and
spatial coordinates.

This simple baseline Guesser has been used in
most of the subsequent work on GW. Shekhar et al.
(2019) proposed an alternative questioner model
(GDSE) in which the Question Generator (QGen)
and the Guesser are jointly trained, but the latter
still receives the simple candidate representations
used by de Vries et al. (2017).

The little work that has focused on the Guesser
has retained the baseline candidate representations.
Pang and Wang (2020) investigate the dynamics
of the Guesser over the course of the dialogue,
while Suglia et al. (2020) add an imagination mod-
ule to improve grounded conceptual learning within
the dialogue encoder.

Greco et al. (2021) evaluate the role of the en-
coder in the Guesser by comparing the blind LSTM
encoder, found to work best in de Vries et al.
(2017), with a multimodal LSTM (V-LSTM) and a
multimodal universal encoder (LXMERT). None
of this work has studied the effect of the candidate
representation choices within the standard model.

Most recently, Matsumori et al. (2021) propose a
new transformer-based architecture for GW, while
Tu et al. (2021) evaluate the impact of VilBERT
as encoder and design a state-estimator for the
Guesser that let it accumulate belief state incre-
mentally. While these models perform well, they
are significantly larger and more complex, and do
not permit the targeted study done in this paper.

2.2 Deep Ensembles and Uncertainties

Initial work on uncertainty estimation in deep neu-
ral networks was within the area of Bayesian Neu-
ral Networks (Gal, 2016; Kendall and Gal, 2017;
Depeweg et al., 2018). Lakshminarayanan et al.
(2017) showed that deep (non-Bayesian) ensembles
can also be used for uncertainty estimation; in fact,
in many empirical settings they work better, due to
better exploration of the parameter space (Ashukha
et al., 2020; Fort et al., 2019). Deep ensembles are
equivalent to Bayesian model averaging, where

averaging over component predictions is analo-
gous to calculating the expected predictive pos-
terior while marginalising over parameters (Wilson
and Izmailov, 2020).

Uncertainty estimation has not received much
attention in the multimodal NLP or grounded dia-
logue setting, with the exception of Xiao and Wang
(2021), who use uncertainty decomposition to un-
derstand the hallucination behaviour of question
generators. Abbasnejad et al. (2018) present a re-
inforcement learner for grounded dialogue which
takes uncertainty into account when learning which
questions to ask, and also for deciding when to stop
asking questions. This is an orthogonal approach to
ours, which uses uncertainty as a post-hoc analysis
method, rather than integrating it into the model.

3 Guesser Model

In this section we describe the Guesser model.
We use the same Guesser architecture introduced
in de Vries et al. (2017) which has been employed
in virtually all follow-up work on GW. The Guesser
receives as input a 512D vector, encoding the
grounded dialogue, and a vector representation of
each candidate. This vector representation is the
result of feeding the concatenated features for each
candidate through a two layer MLP with ReLU ac-
tivations, resulting in a 512D vector. The Guesser
then computes a dot product between the vector
representing the grounded dialogue and each can-
didate representation (processed by the MLP de-
scribed above). The resulting scores are combined
into a softmax layer, resulting in a probability dis-
tribution over the candidates. Note that the MLPs
share parameters between candidates.

In our experiments, we use as encoder LXMERT
or V-LSTM, and study the impact of using an en-
semble of encoders together with the enrichment
of candidate embeddings.

3.1 Grounded Dialogue Encoder
The encoder generates a grounded dialogue repre-
sentation from the image and the set of questions
and answers. In our experiments, we use two dif-
ferent multimodal encoders following (Greco et al.,
2021):

LXMERT is a transformer-based multimodal en-
coder (Tan and Bansal, 2019). It represents an
image by the set of position-aware object embed-
dings for the 36 most salient regions detected by
a Faster R-CNN (Ren et al., 2016) and the text



4

by position-aware word embeddings. LXMERT
is pre-trained on five vision-and-language tasks
whose images come from MS-COCO and Visual
Genome (Krishna et al., 2017). In our experiments,
we fine-tune the pre-trained LXMERT model on
GW. We generate our 512D vector representing the
grounded dialogue by taking the 768D vector from
the [CLS] initial token of LXMERT and by giving
it to a feedforward layer with Tanh activation.

We also experimented with LXMERT trained
from scratch. In this case, the encoding of the im-
age is still provided by Faster R-CNN (pre-trained
on Visual Genome) but the language encoding, as
well as the combined representations of L&V, are
learned from the GW dataset only.

V-LSTM is a relatively lightweight encoder that
represents the dialogue history as the 1024D last
hidden state from a LSTM receiving the dialogue,
concatenates that vector with a 2048D representa-
tion of the image extracted from the penultimate
layer of a ResNet-152 pre-trained on ImageNet (He
et al., 2016), and gives the concatenation to a feed-
forward layer with Tanh activation to generate a
512D vector representing the grounded dialogue.

We consider the V-LSTM lightweight because
it has ∼ 18× fewer parameters and thus requires
much less training (data and time) than LXMERT.

3.2 Candidate representation
In de Vries et al. (2017) and following papers
(e.g. Pang and Wang (2020); Greco et al. (2021)),
each candidate is represented by a spatial embed-
ding, encoding its bounding box location, and a
category embedding learned during training, based
on the candidate’s MS-COCO (Lin et al., 2014)
label. We question this representation, which could
be lacking important information about the candi-
date with respect to the dialogue and that cause the
need of a powerful universal multimodal encoder.
According to Shekhar et al. (2019), questions about
category and location make up about 65% of the hu-
man questions: the baseline model might be suffi-
cient for these cases. However, 15.5% of questions
include colour, which the baseline Guesser cannot
see. Nearly as many (14.5%) mention an object’s
super category (‘animal’, ‘utensil’), which also is
information not necessarily included in the embed-
dings learned from the training games. Hence, we
build richer candidate representations starting from
the following components:

https://github.com/airsplay/lxmert

Spatial information spatial is represented
by a 8D vector that encodes the location of the
candidate’s bounding box. Since the Guesser does
not have direct access to the image but only sees
it via the encoded grounded dialogue embedding,
the spatial coordinates locate the object in the im-
age. Hence, they are very informative for the se-
lection task, especially when multiple candidates
look the same at a type/category level and share the
most salient visual attributes (like the two black and
white dogs in Figure 1.) Moreover, dialogues often
refer to objects using their location (e.g. “the dog
on the right”) that the Guesser can exploit better by
having access to the spatial coordinates.

Category information cat is given by a 256D
category embedding, representing the candidate’s
category according to the MS-COCO label. This
learned embedding encodes the conceptual rep-
resentation of the object emerging from its co-
occurrences with dialogue and image features
within the GW training data.

GloVe embeddings glove representations
are the 300D pre-trained word embeddings
(GloVe (Pennington et al., 2014)) of the word
corresponding to the category label, scaled down
to 256D using a feedforward layer with ReLU
activation. (When the label is a multi-world label,
e.g. “dining table” we take the mean over the
words in the expression). glove embeddings,
despite some limitations, are shown to be effective
at object-property tasks (Lucy and Gauthier, 2017;
Forbes et al., 2019) and at capturing taxonomic
relations (Da and Kasai, 2019).

Visual information visual representations are
obtained from a ResNet-152, pre-trained on Im-
ageNet, which receives as input the crop of the
object. This visual vector is input to a feed-forward
layer with ReLU activation, in order to obtain a
256D vector. This embedding should provide the
visual attributes of the entity it represents, which
are expected to play a crucial role in games in
which there are distractors of the same category
of the target objects. For instance, the dialogue
identifies the target as a “black and white dog” in
Figure 1, but without visual features the dogs are
indistinguishable – in contrast with the results re-
ported in the original GW paper (de Vries et al.,
2017) about the lower performance obtaiend by the
Guesser when given the visual embedding of the
candidates bounding boxes.
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We experiment with different combinations of
these basic components. We evaluate models with
all the 2-input combinations, apart from glove +
cat, which cannot be sufficiently discriminative in
games that contain distractors of the same category
of the target object. The spatial and visual embed-
dings provide token specific complementary infor-
mation, whereas the cat and glove embeddings
are both meant to encode concept representations.
Hence, we experiment only with the following 3-
input representations: cat+visual+spatial
and glove+visual+spatial. Finally, to
check the degree to which cat and glove provide
redundant information, we try the 4-input embed-
ding containing all the basic components above,
cat+glove+visual+spatial.

3.3 Training procedure

We minimize the cross-entropy error with respect
to the ground-truth annotation during training, us-
ing the Adam optimizer (Kingma and Ba, 2014) for
V-LSTM and Adam with a linear-decayed learning-
rate schedule for LXMERT (Devlin et al., 2018).
We perform early stopping with ten epochs of pa-
tience.

3.4 Guesser ensembles

We follow the standard deep ensemble setup (Lak-
shminarayanan et al., 2017) of training independent
Guessers by training them with different random
seeds. All our Guesser ensembles consist of five
Guessers of the same type (i.e., having the same
encoder and set of candidate representation input
information). Different random seeds mean the
Guessers differ in their random initialisations (ex-
cept for the weights of the pre-trained LXMERT en-
coder) and the order in which they see the data. An
ensemble of Guessers generates predictions using
the average of the Guesser prediction distributions.

4 Measuring Uncertainties

The uncertainty of a model, parameterised as θ, is
commonly measured by the entropy of the predic-
tive distribution pθ(y|x), averaged over a test set.
For each example x, a confident model will put
most probability mass on a single choice y, lead-
ing to low entropy, while an uncertain model will
spread its bets, leading to higher entropy.

Within an ensemble, the ensemble total uncer-
tainty is the entropy of its predictive distribution,
which combines the distributions of the N ensem-

ble components:

H[p(y|x)] = H[1/N
N∑
n=1

pθn(y|x)]. (1)

(This is the sample-based approximation to
marginalising over θ.) Note that an ensemble can
have high uncertainty (high entropy) either because
of noisy or ambiguous data leading to an inability
to make a confident decision, or because its compo-
nents disagree (Depeweg et al., 2018; Hüllermeier
and Waegeman, 2021).

We can also measure the average uncer-
tainty of each ensemble component on its own:
1/N

∑N
n=1H[pθn(y|x)]. This factor is known as

data uncertainty: it measures whether the datapoint
is sufficiently informative for each model to make
a confident decision. If x is inherently ambiguous,
then all models should have high uncertainty. Total
ensemble uncertainty will also be high, due to the
combination of uncertain predictions.

The difference between total uncertainty and
data uncertainty is model uncertainty, which mea-
sures the extent to which the models disagree (i.e.,
the extent to which the ensemble’s predictive distri-
bution does not match the average ensemble com-
ponent). Model uncertainty is always non-negative.

In this paper we compare different models, dif-
fering in their choice representations, as ensembles.
Within the GW Guesser, the choice representation
should be considered part of the input x. Inade-
quate choice representation will thus lead to high
data uncertainty, since the representation is not
sufficient to make confident decisions. Since the
humans playing the original GW game, generating
the test and training data, guessed correctly, overly
high “data uncertainty” values point to problems
with data representations, rather than inherently
ambiguous data.

Formally, within a Bayesian framework, it is the mu-
tual information between y and the ensemble parame-
ters θ estimated from data D, derived from the differ-
ence between entropy and crossentropy: H[p(y, |x,D)] =
Eθ|DH[p(y|x, θ)]−MI[y, θ|x,D], where the left hand term
is total uncertainty (marginalising over θ) and the first term on
the right is data uncertainty.

We note here that, while ‘data uncertainty’ has been iden-
tified with ‘aleatoric uncertainty’ (Kendall and Gal, 2017; De-
peweg et al., 2018; Malinin and Gales, 2018), namely the true
uncertainty of the example in the world (Der Kiureghian and
Ditlevsen, 2007), this doesn’t hold inasmuch as the represen-
tation of the data is a modelling decision (see also Hüllermeier
and Waegeman (2021), Sec 2.3). Comparing different data
representations doesn’t change the true aleatoric uncertainty,
which is an lower bound on data uncertainty.
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Whether model uncertainty should also be min-
imised is a different question. In theory, if all
ensemble components have found the global op-
timum, model uncertainty will be zero. In practice,
not being able to find the global optimum, we use
ensembles to approximate a distribution over good
local optima. Ensemble ‘boost’ (the improvement
in performance over the component average) also
requires model diversity. It is thus more useful to
have a collection of strong but different opinions
(low data, high model uncertainty) than homoge-
neous equivocal opinions (high data, low model
uncertainty).

5 Experiments

Prior work has shown that LXMERT outperforms
V-LSTM when using the standard candidate rep-
resentation, which uses only spatial and category
embeddings: LXMERT accuracy is 69.2% while V-
LSTM reaches just 64.5% (Greco et al., 2021). Be-
low we ask whether V-LSTM accuracy can reach
LXMERT’s if provided with different candidate
representations. Improved candidate representa-
tions should make it easier for the fine-tuned model
to learn to match the correct target with the image
and dialogue encoding, by facilitating the match
between features of the candidates and the features
discussed in the dialogue.

Secondly we experiment with ensembling our
models. We find that ensembling the V-LSTM
models leads to a larger boost in accuracy, while
ensembling the LXMERT models helps less. This
is a very convenient result, since training ensembles
of lightweight V-LSTMs is fast and computation-
ally cheap, compared to fine-tuning even a single
LXMERT. Analysing ensemble uncertainty con-
firms that V-LSTM encodings allow the Guesser to
make better use of improved candidate representa-
tions, while they have less of an effect on LXMERT.
Furthermore, we see that an ensemble of V-LSTM
Guessers contains sufficient diversity, in terms of
model uncertainty, to make ensembling worth it.

5.1 Task success

Candidate representations In this experiment,
we evaluate the effect of different candidate rep-
resentations on Guessers based on V-LSTM en-
coders. We combine the candidate representations
described in Section 3.2: cat, glove, visual,
and spatial, in various configurations.

The results in Table 1 show that the rep-

Candidate rep. Guessers Ens.

cat+sp 64.49±0.12 66.40
cat+vis 59.17±0.23 61.07
glove+sp 64.84±0.18 67.21
glove+vis 58.08±0.52 61.03
vis+sp 55.19±0.55 60.58
cat+vis+sp 66.45±0.25 69.61
gl+vis+sp 66.72±0.19 70.12
cat+gl+vis+sp 66.58±0.26 69.58

Table 1: Test set accuracies for Guessers with different
candidate representations, individually and in an en-
semble. cat, gl, vis, and sp stand for category,
glove, spatial, and visual. LXMERT with
cat+sp obtains 69.2% (Greco et al., 2021).

resentation of the candidates has a large ef-
fect on Guesser performance. The worst
combination, visual+spatial, is ten per-
centage points worse than the best combina-
tion, glove+visual+spatial (55.19% vs.
66.72%). Models with three or four types of
candidate representations outperform models with
only two types; however there is not a bene-
fit of combining all four types over only three.
Category/type information is crucial for success:
the model with only token-level information,
visual+spatial, clearly underperforms all the
others. The category representations, namely cat
and glove, lead to similar results when combined
with other representations, and do not benefit from
being combined together (unlike the token repre-
sentations). glove representations do seem to be
slightly more beneficial than cat representations,
indicating that the additional world knowledge that
they contain can be useful. (See Figure 2 for an
example where glove representations allow the
model to guess correctly.)

Ensembling The results of ensembling five ver-
sions of each V-LSTM Guesser are reported in
Table 1. We compare them against the accuracy
reached by the guesser based on LXMERT, viz.
69.2% (Greco et al., 2021). Surprisingly, the accu-
racy reached by the simple but well informed en-
semble model, V-LSTM with the spatial, visual and
glove embeddings, is as high as the task-accuracy
reached by the guesser based on LXMERT. Indeed,
ensembling V-LSTM brings in a boost of 3.4 points
from 66.72% to 70.12% accuracy.

We believe this to be a remarkable result, given
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category+spatial (failure) vs. 
glove+spatial (success)

do you hold it in your hand? No
is it human? No

does it have numbers on it? Yes

glove+spatial (failure) vs. 
glove+spatial+vision (success)

a phone? Yes
one of the three? No

the top blue? Yes

Figure 2: Representative examples of the contribution
of different features. On the left: contribution of Glove
embeddings on common sense reasoning (cars have
numbers on them – plates). On the right: contribution
of visual features (colors).

the difference in number of parameters (V-LSTM
ensemble: 11M vs. LXMERT: 209M) between the
two models and that training a single LXMERT
takes significantly longer than training an en-
semble of V-LSTM Guessers (V-LSTM Ensem-
ble: 45m×5=3h54m; one LXMERT: 21hrs).

We interpret these results as showing that indeed
LXMERT has better visual representations of the
input image and better lexical grounded informa-
tion gained through the pretraining on multimodal
corpora, but that such gain acquired through its
heavy pretraining phase, can be easily reached by
simply enriching the candidate representations.

Next, we check whether LXMERT could also
benefit from ensembling and from the richer candi-
date representations. We evaluate both pre-trained
LXMERT and LXMERT-scratch trained only on
GW. When ensembling pre-trained LXMERT, the
only source of randomness is in the order of the
training data, while for LXMERT-scratch, the ran-
dom initializations also differ between ensemble
components. For both LXMERT and LXMERT
scratch, training an ensemble for GW requires
21hrs × 5 = 4.3 days, 27 times more compute
than the V-LSTM Ensemble.

As shown in Table 2, ensembling the pre-trained
LXMERT brings only a minimal increase in accu-
racy, while it does provide a boost for LXMERT-
scratch. Both the individual models and the en-
sembled LXMERT-scratch perform only on par
with V-LSTM. Interestingly, ensembling LXMERT-
scratch shows a similar pattern to V-LSTM, where
using improved glove+visual+spatial rep-
resentations leads to a larger ensemble boost than
the cat+spatial representations.

Together these results indicate that LXMERT’s

improved performance hinges on being able to
use the information seen during pretraining, rather
than architectural improvements. Furthermore, for
LXMERT, adding candidate representations (like
glove and visual) that are extracted from pre-
trained models, and thus incorporate similar kinds
of pretraining knowledge to the LXMERT encoder,
does not help over the weaker candidate represen-
tations (cat+spatial). We presume this is due
to the pre-trained LXMERT model already hav-
ing learned the relevant ontological information, as
well as the ability to localise visual information,
and thus not needing it to be provided explicitly.
This hypothesis is strengthened by the weaker per-
formance of LXMERT-scratch, which has not been
able to learn the relevant features from additional
pretraining data.

5.2 Uncertainty analysis

As described in Section 4, we can distinguish be-
tween model and data uncertainty in the ensem-
ble. Data uncertainty measures the average uncer-
tainty of each ensemble component on an exam-
ple. In our setting, we expect improved candidate
representations to lead to lower data uncertainty,
since models should be better informed. As we
can see from Figure 3, V-LSTM models show this
pattern, with glove+visual+spatial candi-
dates leading to lower data uncertainty compared to
the cat+spatial baseline. However, LXMERT
models do not: regardless of candidate representa-
tions, they show the same level of data uncertainty.
LXMERT-scratch shows a reduction of data uncer-
tainty with glove+visual+spatial but to a
lesser degree than V-LSTM. In this case the trans-
former architecture is actually preventing the best
use of the information from the candidate features.

The model uncertainty measures the extent to
which the models disagree (i.e., the extent to which
the ensemble’s predictive distribution does not
match the average ensemble component). Here
again, the pre-trained LXMERTs show no effect of
candidate representations. However, for V-LSTM,
and again to a lesser extent LXMERT-scratch, the
improved representations increase the model un-
certainty, indicating an increase in model diver-
sity (and subsequently leading to a larger ensem-
ble boost). This again demonstrates the impor-
tance of good candidate representations for this
model: with cat+spatial, all ensemble com-
ponents were uncertain in the same way, while
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Model Candidate Rep. Guessers Ensemble Boost

V-LSTM cat+sp 64.49±0.12 66.40 1.9
V-LSTM gl+vis+sp 66.72±0.19 70.12 3.4
LXMERT-scratch cat+sp 64.70±0.41 66.50 1.8
LXMERT-scratch gl+vis+sp 66.3 ±0.39 68.90 2.6
LXMERT cat+sp 69.73±0.46 71.55 1.8
LXMERT gl+vis+sp 69.56±0.27 71.57 2.0

Table 2: Average guesser performance vs Ensemble performance: Boost is improvement in performance due to
ensembling. Ensembling benefits V-LSTM with good candidate representations most.

Figure 3: Total, data, and model uncertainty for different ensembles considering games with 5 candidate objects.
Improved candidate representations decreases data uncertainty for V-LSTM, but not for LXMERT or LXMERT-
scratch.

glove+visual+spatial representations lead
to useful diversity.

6 Conclusion

In this paper, we re-evaluated the need for a deep
pre-trained multimodal encoder on a testbed multi-
modal guessing task (GW). We demonstrated that
a lightweight V-LSTM model was able to achieve
matching performance, given useful features and
the reduction in uncertainty enabled by ensembling.

We show that for GuessWhat?!, the candidate
representations that lead the V-LSTM ensemble to
reach higher accuracy are those encoding ontologi-
cal (glove), visual and spatial information. The
pre-trained model does not profit from either of the
richer representation, or the ensemble. The uncer-
tainty analysis of the ensemble models shows that
while with poor candidate representations V-LSTM
models are highly uncertain, richer candidate repre-
sentations let these models behave more similarly
to the pre-trained LXMERT in terms of both data
and model uncertainty.

The richer candidate representations effectively

transfer information from other corpora (glove)
or visual recognition models (visual). These
features do not match exactly what LXMERT sees
during pretraining, but given that LXMERT does
not benefit from them, they do not seem to add
crucial information for LXMERT. Conversely, V-
LSTM benefits from these ‘cheap’ features to the
extent of matching deep contextual model perfor-
mance, indicating a continuing role for these types
of representations in grounded language tasks.

Hence, we conclude that the good performance
obtained by the Guesser when based on the pre-
trained multimodal Transformer is not due to its
architecture or to the representation learned during
fine-tuning, but rather to the exposure to a large
amount of multi-modal data during pre-training.
Our results may help mitigate environmental issues
given by the training of large models. It remains to
be seen whether these results hold for other tasks
and other unimodal and multimodal models.



9

References
Ehsan Abbasnejad, Qi Wu, Javen Shi, and Anton

van den Hengel. 2018. What’s to know? Uncertainty
as a guide to asking goal-oriented questions.

Arsenii Ashukha, Alexander Lyzhov, Dmitri Molchanov,
and Dmitry Vetrov. 2020. Pitfalls of in-domain un-
certainty estimation and ensembling in deep learning.
In ICLR.

Jeff Da and Jungo Kasai. 2019. Cracking the contextual
commonsense code: Understanding commonsense
reasoning aptitude of deep contextual representations.
CoRR, abs/1910.01157.

Harm de Vries, Florian Strub, Sarath Chandar, Olivier
Pietquin, Hugo Larochelle, and Aaron C. Courville.
2017. GuessWhat?! Visual object discovery through
multi-modal dialogue. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, pages
5503–5512.

Stefan Depeweg, José Miguel Hernández-Lobato, Fi-
nale Doshi-Velez, and Steffen Udluft. 2018. Decom-
position of uncertainty in Bayesian deep learning for
efficient and risk-sensitive learning. In ICML.

Armen Der Kiureghian and Ove Ditlevsen. 2007.
Aleatory or epistemic? Does it matter? In Special
Workshop on Risk Acceptance and Risk Communica-
tion.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Maxwell Forbes, Ari Holtzman, and Yejin Choi. 2019.
Do neural language representations learn physical
commonsense? In Proceedings of the 41th Annual
Meeting of the Cognitive Science Society, CogSci
2019: Creativity + Cognition + Computation, Mon-
treal, Canada, July 24-27, 2019, pages 1753–1759.
cognitivesciencesociety.org.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan.
2019. Deep ensembles: A loss landscape perspective.

Yarin Gal. 2016. Uncertainty in deep learning. Ph.D.
thesis, University of Cambridge.

Claudio Greco, Alberto Testoni, and Raffaella Bernardi.
2021. Grounding dialogue history: Strengths and
weaknesses of pre-trained transformers. In Advances
in Artificial Intelligence AIxIA 2020, volume 12414
of Lecture Notes in Computer Science, pages 263–
279. Springer Nature Switzerland AG.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Eyke Hüllermeier and Willem Waegeman. 2021.
Aleatoric and epistemic uncertainty in machine learn-
ing: an introduction to concepts and methods. Ma-
chine Learning, 110(3):457–506.

Alex Kendall and Yarin Gal. 2017. What uncertainties
do we need in Bayesian deep learning for computer
vision? In Advances in Neural Information Process-
ing Systems.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International journal of computer vision, 123(1):32–
73.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
In NeurIPS.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Li Lucy and Jon Gauthier. 2017. Are distributional
representations ready for the real world? evaluat-
ing word vectors for grounded perceptual meaning.
In Proceedings of the First Workshop on Language
Grounding for Robotics, RoboNLP@ACL 2017, Van-
couver, Canada, August 3, 2017, pages 76–85. Asso-
ciation for Computational Linguistics.

Andrey Malinin and Mark Gales. 2018. Predictive un-
certainty estimation via prior networks. In NeurIPS.

Shoya Matsumori, Kosuke Shingyouchi, Yuki Abe,
Yosuke Fukuchi, Komei Sugiura, and Michita Imai.
2021. Unified questioner transformer for descrip-
tive question generation in goal-oriented visual di-
alogue. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
1898–1907.

Wei Pang and Xiaojie Wang. 2020. Guessing state
tracking for visual dialogue. In ECCV.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2016. Faster r-cnn: towards real-time object
detection with region proposal networks. IEEE trans-
actions on pattern analysis and machine intelligence,
39(6):1137–1149.

http://arxiv.org/abs/1910.01157
http://arxiv.org/abs/1910.01157
http://arxiv.org/abs/1910.01157
https://mindmodeling.org/cogsci2019/papers/0311/index.html
https://mindmodeling.org/cogsci2019/papers/0311/index.html
http://arxiv.org/abs/1912.02757
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
http://arxiv.org/abs/1612.01474
http://arxiv.org/abs/1612.01474
https://doi.org/10.18653/v1/w17-2810
https://doi.org/10.18653/v1/w17-2810
https://doi.org/10.18653/v1/w17-2810


10

Ravi Shekhar, Aashish Venkatesh, Tim Baumgärtner,
Elia Bruni, Barbara Plank, Raffaella Bernardi, and
Raquel Fernández. 2019. Beyond task success: A
closer look at jointly learning to see, ask, and Guess-
What. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2578–2587, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alessandro Suglia, Antonio Vergari, Ioannis Konstas,
Yonatan Bisk, Emanuele Bastianelli, Andrea Vanzo,
and Oliver Lemon. 2020. Imagining grounded con-
ceptual representations from perceptual information
in situated guessing games. In Proceedings of the
28th International Conference on Computational Lin-
guistics, pages 1090–1102, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5103–5114.

Tao Tu, Qing Ping, Govindarajan Thattai, Gokhan Tur,
and Prem Natarajan. 2021. Learning better visual
dialog agents with pretrained visual-linguistic repre-
sentation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 5622–5631.

Andrew Gordon Wilson and Pavel Izmailov. 2020.
Bayesian deep learning and a probabilistic perspec-
tive of generalization.

Yijun Xiao and William Yang Wang. 2021. On hal-
lucination and predictive uncertainty in conditional
language generation. In ACL.

https://doi.org/10.18653/v1/N19-1265
https://doi.org/10.18653/v1/N19-1265
https://doi.org/10.18653/v1/N19-1265
https://doi.org/10.18653/v1/2020.coling-main.95
https://doi.org/10.18653/v1/2020.coling-main.95
https://doi.org/10.18653/v1/2020.coling-main.95
http://arxiv.org/abs/2002.08791
http://arxiv.org/abs/2002.08791

