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Can recurrent neural nets, inspired by human sequential data processing, learn to understand
language? We construct simplified data sets reflecting core properties of natural language as
modeled in formal syntax and semantics: recursive syntactic structure and compositionality. We
find LSTM and GRU networks to generalize to compositional interpretation well, but only in
the most favorable learning settings, with a well-paced curriculum, extensive training data, and
left-to-right (but not right-to-left) composition.

1. Introduction

Common concerns in NLP are that current models tend to be very data hungry and rely
on shallow cues and biases in the data (e.g., Geva, Goldberg, and Berant 2019), failing
at deeper, human-like generalization. In this article, we present a new task of acquiring
compositional generalization from a small number of linguistic examples. Our setup is
inspired by properties of language understanding in humans.

First, natural language exploits recursion: Natural language syntax consists of
constructions, represented in formal grammars as rewrite rules, which can recursively
embed other constructions of the same kind. For example, noun phrases can consist of
a single proper noun (e.g., Ann) but can also, among other possibilities, be built from
other noun phrases recursively via the possessive construction, as in Ann’s child, Ann’s
child’s friend, Ann’s child’s friend’s parent, and so forth.

Second, recursive syntactic structure drives semantic interpretation. The meaning
of the noun phrase Ann’s child’s friend is not the sum of the meanings of the individual
words (otherwise it would have been equivalent to Ann’s friend’s child). To interpret
a complex expression, one has to follow its syntactic structure, first identifying the
meaning of the subconstituent (Ann’s friend), and then computing the meaning of the
whole. Semantic composition, argued to be a core component of language processing
in the human brain (Mollica et al. 2020), can be formalized as function application,
where one constituent in a complex structure corresponds to an argument of a function
that another constituent encodes. For instance, in Ann’s child, we can think of Ann as
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denoting an individual and child as denoting a function from individuals to individu-
als. In formal semantics, function argument application is the basic compositionality
mechanism, extending to a wide range of constructions. The focus on recursion in
semantic composition differentiates our approach from other attempts at examining
compositional properties of neural systems (Ettinger et al. 2018; Soulos et al. 2019;
Andreas 2019; Mickus, Bernard, and Paperno 2020). Kim and Linzen (2020) include
depth of recursion as one of the many aspects of systematic semantic generalization.
The work on compositionality learning most closely related to ours relies on artificial
languages of arithmetic expressions and sequence operations (Hupkes, Veldhoen, and
Zuidema 2018; Nangia and Bowman 2018; Hupkes et al. 2020).

Third, natural language interpretation, while being sensitive to syntactic structure,
is robust to syntactic variation. For example, humans are equally capable of learning
to interpret and using left-branching structures such as NP −→ NP’s N (Ann’s child)
and right-branching structures such as NP −→ the N of NP (the child of Ann). Finally,
language processing in humans is sequential; people process and interpret linguistic
input on the fly, without much lookahead or waiting for the linguistic structure to
be completed. This property has diverse consequences for language and cognition
(Christiansen and Chater 2016), and gives a certain degree of cognitive plausibility to
unidirectional recurrent models compared to other neural architectures.

To summarize, in order to mimic human language capacities, an artificial system
must be able to 1) learn languages with compositionally interpreted recursive struc-
tures, 2) adapt to surface variation in the syntactic patterns, and 3) process its inputs
sequentially. Recurrent neural networks are promising with respect to these desiderata;
in a syntactic task (Lakretz et al. 2021), they demonstrated similar error patterns to
humans in processing recursive structures. We proceed now to define a semantic task
that allows us to directly test models on these capacities.

2. The Task

Our approach builds closely on natural language and systematically explores the factor
of syntactic structure (right vs. left branching). We define toy interpreted languages
based on a fragment of English. Data was generated with the following grammars:

Left-branching language: NP −→ NAME, NP −→ NP ’s RN

Right-branching language: NP −→ NAME, NP −→ the RN of NP

Both: NAME: Ann, Bill, Garry, Donna; RN: child, parent, friend, enemy

Interpretation is defined model-theoretically. We randomly generate a model where
each proper name corresponds to a distinct individual and each function denoted by a
common noun is total—for example, every individual has exactly one enemy, exactly
one friend, and so on. This total function interpretation simplifies natural language
patterns but is an appropriate idealization for our purposes. An example with all
relations is given in Figure 1.

In such a model, each well-formed expression of the language is an individual
identifier. The denotation of any expression regardless of its complexity (= number of
content words) can be calculated by recursive application of functions to arguments,
guided by the syntactic structure.

The task given to the models is to identify the individual that corresponds to each
expression; for example Ann’s child’s enemy (complexity 3) is the same person as Bill
(complexity 1). Because there is just a finite number of individuals in any given model,
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Ann Donna Garry Bill

parent parent

parent

enemies

friends enemies

parent

friends

Figure 1
An example of a toy universe with relations indicated by arrows. The child relation is the inverse
of parent.

the task formally boils down to string classification, assigning each expression to one of
the set of individuals in the model. For examples of strings and individuals they refer
to, see Table 1.

By its nature, solving the task presumes (implicitly) mastering parsing and semantic
composition at the same time. Parsing is deciding what pieces of information from
different points in the input string to combine in what order, for example, in the father
of the friend of Garry one starts by combining friend and Garry, then the result with
father. Semantic composition is performing the actual combination, in this case by
recursively applying functions to arguments: father(friend(garry)). Because of how
the relations in the universe are randomly generated every time, there is no consistent
bias for the model to exploit. So without a compositional strategy, the value of a
held-out complex example cannot be reliably determined. Therefore, if a system maps
unseen complex expressions (the father of the friend of Garry) to their referents with high
accuracy, it must have approximated a compositional solution of the task.

3. Data Sets

We use languages with four individuals and four relation nouns. The interpretations
of the relation nouns were generated randomly while making sure that “friend” and
“enemy” are symmetric and “parent” and “child” are antisymmetric and inverse of
each other. The interpretation of the four function elements was randomly assigned

Table 1
Some examples from a data set with top complexity 3 illustrating the targeted semantic
generalization.

Example Referent Complexity Partition

Garry Garry 1 train
Bill’s enemy Ann 2 train
Ann’s friend Donna 2 train
Donna’s parent Garry 2 train
Ann’s child Donna 2 train
Garry’s enemy’s parent Ann 3 train

Ann’s friend’s parent Garry 3 validation

Bill’s enemy’s child Donna 3 test
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Table 2
Data set sizes for each maximal complexity value.

Test ex. complexity: 3 4 5 6 7

Train 71 288 1,159 4,640 18,567
Dev 7 28 112 451 1,802
Test 6 24 93 369 1,475

Total 84 340 1,364 5,460 21,844

for model initialization. We used all expressions of the language up to complexity n
as data; validation and testing data was randomly selected among examples of the
maximal complexity n. Expressions of complexity 1 and 2 were always included in
the training partition because they are necessary to learn the interpretation of lexical
items. For example, the simplest set of training data (up to complexity 3) contained
all names (examples of complexity 1), required to learn the individuals; all expressions
with 2 content words like Ann’s child, necessary for learning the meanings of functional
words like child; and a random subset of three content word expressions like Ann’s child’s
friend, which might guide the systems to learning recursion. To further simplify the task,
each data set contained either only left branching or only right branching examples
in all three partitions (training/validation/testing). Data set sizes are given in Table 2,
which reports the default setup with 80% examples of maximum complexity included
in training data and the rest distributed between validation and test data. In this setup,
the proportions of data partitions are approximately 85% training, 8% validation, and
7% testing.

4. Models and Training

We tested the learning capacities of standard recurrent neural models on our task: a
vanilla recurrent neural network (SRN; Elman 1991), a long short-term memory net-
work (LSTM; Hochreiter and Schmidhuber 1997), and a gated recurrent unit (GRU;
Cho et al. 2014).1 The systems were implemented in PyTorch and used a single
hidden layer of 256 units. Using more layers or fewer units did not substantially
improve, and sometimes dramatically deteriorated, the performance of the models.
Models were trained from a randomly initialized state on tokenized input (e.g.,
["Ann","s","child"]). The training used the Adam optimizer and negative log like-
lihood loss for sequence classification. Each model was run repeatedly with different
random initializations. Data sets were randomly generated for each initialization of
each model.

We also set a curriculum whereby the system is given training examples of mini-
mal complexity first, with more complex examples added gradually in the process of
training. The best curriculum settings varied by model and test example complexity,
but on average, the most robust results were obtained by adding examples of the next
complexity level after every ten epochs (gentle curriculum). A curriculum very consis-
tently led to an improvement over the alternative training whereby training examples

1 Code used in the article is available at https://github.com/dpaperno/LSTM_composition.
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Table 3
Accuracy of gated architectures as a function of the language and input data complexity. Results
averaged over 10 random initializations of an LSTM and 10 random initializations of a GRU
model. Training data in each run includes examples of complexity up to and including n, with
testing data (disjoint from training) of complexity exactly n. Random baseline is 0.25. For more
details, see Appendix, Section 1.

Test ex. complexity: 3 4 5 6 7

Right branching 0.09 0.35 0.16 0.3 0.17
Left branching 0.94 0.92 0.88 0.92 0.92
Left, no curriculum 0.34 0.25 0.29 0.3 0.28

of all complexity levels were available to the models at all epochs. For more details on
alternative curricula, see the Appendix, Section 1.

5. Results

To treat complex expressions, the successful model needs to generalize by learning to
compose the representations of simple expressions recursively. But representations of
simple expressions (complexity 1 and 2) have to be memorized in one form or another
because their interpretation is arbitrary; without such memorization, generalization to
complex inputs is impossible.

As in related studies (e.g., Liska, Kruszewski, and Baroni 2018), SRN was behind the
gated architectures in accuracy, with a dramatic gap for longer examples. Accuracies of
gated models are summarized in Table 3; for more details, see Appendix, Section 1. We
find that gated architectures learn compositional interpretation in our task only in the
best conditions. A curriculum proved essential for recursive generalization. Informally,
the system has to learn to interpret words first, and recursive semantic composition has
to be learned later.

All recurrent models generalized only to left-branching structures; the accuracy
in the right branching case is much lower. This means that the systems only learn to
apply composition following the linear sequence of the input and fail when the order
of composition as determined by the syntactic structure runs opposite to the linear
order. In other words, the system manages to learn composition when the parse trivially
corresponds to the default processing sequence, but fails when nontrivial parsing is
involved. Therefore, semantic composition is mastered, but not simultaneously with
the independent task of parsing (cf. discussion in Section 2).

6. Zero-shot Compositionality Testing

How much recursive input does a successful system need to master recursive interpre-
tation? Ideally, learners with a strong bias toward languages with recursive syntactic
structure (not an implausible assumption when it comes to human language learners)
could acquire them in a zero-shot fashion, without any training examples that feature
recursive structures. For example, assume that such a learner knows that the name
Donna and the phrase Ann’s child refer to the same individual, and that Donna’s enemy
refers to Bill. Without any exposure to examples longer than Donna’s enemy, the learner
could still infer that Ann’s child’s enemy of unseen length 3 is also Bill. In a recurrent
neural network, the expectation can be interpreted as follows: Both Donna and the
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Table 4
LSTM’s data hungriness in learning recursion. Percentage of complexity 3 data included in
training vs. test accuracy. We report average accuracy over 10 runs (each with a random
initialization of the model and data generation) as well as the share of runs with perfect
accuracy. Random baseline for accuracy is 0.25.

Share of recursive examples included in training 0.0 0.2 0.4 0.6 0.8

Training/testing examples 20/29 32/24 45/18 58/12 71/6

Share of training examples that are recursive 0.0 0.375 0.556 0.655 0.718

Average accuracy 0 0.61 0.76 0.89 0.98
Perfect accuracy 0 0 0 0.4 0.9

phrase Ann’s child are expected to be mapped to similar hidden states, and because
one of those hidden states allow the system to identify Bill after processing ’s enemy
in Donna’s enemy, the same can be expected for the phrase Ann’s child’s enemy. To test
whether such zero-shot (or few-shot) recursion capacity actually arises, we train the
model while varying the amount of recursion examples available as training data from
0% to 80% of all examples of complexity 3. As shown in Table 4, the LSTM needs to be
trained on a vast majority of recursive examples to be able to generalize. Similar results
for GRU and SRN are reported in the Appendix, Section 2.

Recursive compositionality does not come for free and has to be learned from
extensive data. This observation goes in line with negative findings in literature on
compositionality learning (Liska, Kruszewski, and Baroni 2018; Hupkes et al. 2018;
Lake and Baroni 2018; Ruis et al. 2020). Contrary to some of those findings, we do
observe generalization to bigger structures after substantial evidence for a compositional
solution is available to the system. GRU and LSTM models trained on examples of
complexities 1–3 perform well on examples of unseen greater lengths (96% and 99%
accuracy on complexity 4, respectively; 95% and 98% on complexity 5 etc.). Only on
complexity 7 did the trained LSTM show somewhat degraded performance (77% accu-
racy), with GRU maintaining robust generalization (96% accuracy). For detailed results,
see Appendix, Section 3. Interestingly, models trained on complexities 1–3 and general-
izing recursively to unseen lengths sometimes performed better than the same models
exposed to more complex inputs during training (Table 3). This further strengthens
our conclusions above about the importance of curriculum: Complex training examples
might be detrimental for recursive generalization at late as well as early learning stages.

What drives generalization success in these settings? We hypothesize that the RNNs
are good at approximating a finite state solution to the interpretation problem, which
could run as follows: When processing the token Ann, an automaton would transition
to the state ‘Ann’; after processing ’s child, they transition from ‘Ann’ to the state
‘Donna’; and so forth. The state of the automaton after processing the whole sequence
corresponds to the referent of the phrase. This particular finite state solution relies on
left-to-right processing and only applies to left-branching structures (Ann’s child’s friend)
but not to right-branching ones (the friend of the child of Ann).

7. Discussion: The Left-Branching Asymmetry of Recurrent Models

In our experiments, recurrent models generalize reliably only to left-branching struc-
tures. This suggests that RNNs, despite greater theoretical capacities, remain well-suited
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to sequential, left-to-right processing and do not learn a fully recursive solution to
the interpretation problem. As literature suggests, recurrent models can generalize to
non-left-branching data patterns if the language allows for a simpler interpretation
strategy that minimizes computation over recursive structures, such as the “cumu-
lative” strategy of Hupkes, Veldhoen, and Zuidema (2018). However, a cumulative
interpretation strategy might not be an easy solution to learn for natural language or
artificial languages. Even in Hupkes et al., where a GRU model showed reasonable
average performance for mixed-directionality structures, a much lower error level is
reported for left branching examples and a much higher error level for right branching
examples.

The left-to-right branching asymmetry of recurrent models is doubtlessly related
to their natural representational structure. When processing a left-branching structure
left to right, at any point the system needs to “remember” only one element, the inter-
mediate result of computation (an individual in our toy language, or a number in the
arithmetic language). In the case of our language, the incremental interpretation of the
left-branching model keeps track of the current individual (e.g., “Ann”) and switches
to the next individual according to the next relation term encountered (e.g., “friend”).
For a universe with k individuals, a sequential model must distinguish only k states.
If, however, one interprets right-branching examples (the father of the friend of Ann),
one has to keep a representation of a function to be applied to the individual whose
name follows (example of such a function: the father of the friend). There are kk U→ U
functions over the domain of individuals U, so the intermediate representation space
must be significantly richer than in the left-branching case where only k states suffice.
The number of states is a problem not only from the viewpoint of model expressiveness,
but also from the learning point of view: It is not realistic to observe all kk functions at
training time.

The brute force approach to left-to-right parsing or interpretation consists in keep-
ing a stack of representations to be integrated at a later step; but in practice learned
recurrent neural models are known to be too poor representationally to emulate stacks
even if they are more powerful in practice than finite state machines (Weiss, Goldberg,
and Yahav 2018; Bernardy 2018). As Hupkes et al.’s analysis suggests, GRUs can em-
ulate stack behavior to a restricted degree. The cumulative strategy that they argue
the GRU learns makes use of stacks of binary values, but generalizing stack behavior
to an unseen situation that required novel stack values apparently fails, as evidenced
by the dramatically low performance on right branching examples of unseen com-
plexity. Hupkes et al.’s models thus probably learn to operate only over small stacks
by memorizing specific stack states and transitions between them (for their task, the
relevant stack states are few in number). Their recurrent models can therefore be inter-
preted as finding “approximate solutions by using the stack as unstructured memory”
(Hao et al. 2018).

What solutions do recurrent models learn when they fail to generalize composi-
tionally in the right branching case? To find out, we analyzed the predictions of SRN,
GRU, and LSTM models for right branching languages, and found a consistent pattern.
They do learn names correctly (e.g., Ann), but struggle when it comes to anything more
complex. In a right branching input language, all models tend to “forget” long distance
information and ignore anything but the suffix, assigning the same referent to the enemy
of Ann, the friend of the enemy of Ann, the child of the enemy of Ann, and so forth. Often, but
not always, models also overfit, predicting for complex examples the referent which
occurred more often than others in the training data, even by a small margin. None of
these observations pertain to learning left-branching patterns, which are essentially a
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mirror image of right branching ones, although for them an RNN could just as easily
fall back on suffix matching or the majority class. Instead, a converged model for left-
branching data proceeds incrementally as per the expectations outlined above, correctly
classifying Donna as Donna, Donna’s parent as Garry, Donna’s parent’s friend as Bill, and so
on for longer inputs. Crucial earlier parts of the string affect the output, and the majority
class of the training data does not tend to come up as a prediction.

8. Conclusion

The results reported in this squib both are encouraging and point to limitations of
recurrent models. RNNs do learn compositional interpretation from data of small ab-
solute size and generalize to more complex examples; certain favorable conditions are
required, including a curriculum and a left branching language. Our findings are cau-
tiously optimistic compared to claims in the literature about neural nets’ qualitatively
limited generalization capacity (Baroni 2019). In the future, we plan to further explore
the capacities of diverse models on our task. Indeed, other architectures might contain
reasonable biases toward processing recursive languages not limited to the left branch-
ing case. Would it be beneficial, for instance, to augment the recurrent architecture with
stack memory (Joulin and Mikolov 2015; Yogatama et al. 2018), add a chart parsing
component (Le and Zuidema 2015; Maillard, Clark, and Yogatama 2017), or switch from
sequential to attention-based processing altogether (Vaswani et al. 2017)? Or would this
be possible only at the cost of the remarkable data efficiency we observed in recurrent
models?

One idea seems especially appealing: If unidirectional RNN models can handle
left recursive branching while right recursion is its mirror image, could bidirectional
RNNs offer a general solution? There are, however, reasons for skepticism. Bidirec-
tional models showed mixed results in our preliminary experiments, although further
hyperparameter tuning and stricter regularization might lead to improvement. Further,
even if biRNNs master both branching directions separately, they may still struggle with
mixed structures which are common in natural language.

Lastly, whether human language learning has similar properties to those of
RNNs presents an interesting area for exploration. Do humans, like our RNNs, re-
quire substantial data to learn recursion? And do humans, like our RNNs, have
a bias toward left branching structures, which are easy for recursive sequential
processing? (e.g., Garry’s father, rather than the father of Garry). Suggestive evi-
dence for the latter: Left-branching possessive constructions emerge in infant speech
even in languages that don’t have them, for example, Yael sefer ‘Yael’s book’ (He-
brew, Armon-Lotem 1998) or zia trattore ‘aunt’s tractor’ (Italian, Torregrossa and
Melloni 2014).

Appendices

1. Recurrent Architectures and Alternative Curricula

LSTM, GRU, and Elman’s Simple Recurrent Network (SRN) were implemented in
Python 3.7.0 using built-in functions of PyTorch 1.5.0. Each model was trained for 100
epochs or until no improvement on the validation set was observed for 22 epochs.
A number of curricula was compared. The default “gentle” curriculum consisted in
adding examples of the next complexity level after every 10 epochs. No curriculum
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Table A.1
Accuracy of LSTM as a function of the language and input data complexity. Training data in
each run includes examples of complexity up to and including n; testing data (disjoint from
training) contained examples of complexity exactly n. Random baseline is 0.25.

Test ex. complexity: 3 4 5 6 7

Right branching 0.02 0.29 0.12 0.23 0.1
Left branching 0.9 0.9 0.76 0.93 0.9
Left, no curriculum 0.23 0.2 0.24 0.26 0.25
Left, steep curriculum 0.95 0.68 0.71 0.33 0.33
Left, slow curriculum 0.42 0.73 0.55 0.69 0.61

Table A.2
Accuracy of GRU as a function of the language and input data complexity. Training data in each
run includes examples of complexity up to and including n; testing data (disjoint from training)
contained examples of complexity exactly n. Random baseline is 0.25.

Test ex. complexity: 3 4 5 6 7

Right branching 0.17 0.42 0.21 0.37 0.25
Left branching 0.98 0.95 1 0.92 0.94
Left, no curriculum 0.45 0.3 0.34 0.34 0.31
Left, steep curriculum 1 0.99 0.81 0.43 0.43
Left, slow curriculum 1 1 0.997 1 0.997

Table A.3
Accuracy of SRN as a function of the language and input data complexity. Training data in each
run includes examples of complexity up to and including n; testing data (disjoint from training)
contained examples of complexity exactly n. Random baseline is 0.25.

Test ex. complexity: 3 4 5 6 7

Right branching 0.13 0.28 0.09 0.28 0.15
Left branching 0.82 0.4 0.39 0.34 0.33
Left, no curriculum 0.89 0.28 0.33 0.23 0.32
Left, steep curriculum 0.8 0.36 0.42 0.36 0.34
Left, slow curriculum 0.77 0.64 0.47 0.45 0.38

means that all training examples were used at all epochs. A slow curriculum consisted in
adding examples of the next complexity level after every 20 epochs. A steep curriculum
consisted in adding training examples of complexity 2 after 10 epochs and all other
training examples after another 10 epochs. Results of the three architectures for all
curricula are given in Tables A.1, A.2, and A.3.

2. Data Hungriness for Different Architectures

Tables A.4, A.5, and A.6 report the few-shot compositional generalization of different
recurrent models. The models were trained on examples of complexity 1 and 2 and
some proportion of examples of complexity 3 (i.e., minimal recursive examples). The
proportion of recursive examples ranged from 0.0 to 0.8.
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Table A.4
Data hungriness for learning recursion by an LSTM at complexity 3; percentage of data
complexity 3 included in training data vs. test accuracy. The results are based on 10 runs with
different random seeds. We report average accuracy as well as the share of runs with perfect
accuracy. Random baseline for accuracy is 0.25.

Rec. in train 0.0 0.2 0.4 0.6 0.8

Average accuracy 0 0.61 0.76 0.89 0.98
Perfect accuracy 0 0 0 0.4 0.9

Table A.5
Data hungriness for learning recursion by a GRU at complexity 3; percentage of data complexity
3 included in training data vs. test accuracy. The results are based on 10 runs with different
random seeds. We report average accuracy as well as the share of runs with perfect accuracy.
Random baseline for accuracy is 0.25.

Rec. in train 0.0 0.2 0.4 0.6 0.8

Average accuracy 0.69 0.9 0.83 0.98 1
Perfect accuracy 0.3 0 0.2 0.9 1

Table A.6
Data hungriness for learning recursion by an SRN at complexity 3; percentage of data
complexity 3 included in training data vs. test accuracy. The results are based on 10 runs with
different random seeds. We report average accuracy as well as the share of runs with perfect
accuracy. Random baseline for accuracy is 0.25.

Rec. in train 0.0 0.2 0.4 0.6 0.8

Average accuracy 0.75 0.66 0.61 0.88 0.78
Perfect accuracy 0 0 0 0.6 0.6

3. Generalization to Unseen Lengths

To illustrate generalization to unseen (high) lengths, we report the performance of
different models when trained on data of complexity 1 through 3 and tested on higher
complexities (Table A.7) or when trained on data of complexity 1 through n and tested
on data of complexity n + 1 (Table A.8).

Table A.7
Generalization of recurrent models from training examples of complexity 1–3 to examples of
higher complexity. Accuracy averaged over 10 runs. Random baseline is 0.25.

Test ex. complexity: 4 5 6 7

LSTM 0.99 0.98 0.93 0.77

GRU 0.96 0.95 0.95 0.96

SRN 0.76 0.53 0.67 0.77
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Table A.8
Generalization of recurrent models from training examples of previous levels of complexity to
the next level of complexity absent from training data. Accuracy averaged over 10 runs. Random
baseline is 0.25.

Test ex. complexity: 4 5 6 7

LSTM 0.99 0.95 0.8 0.7

GRU 0.96 0.996 0.98 0.94

SRN 0.76 0.4 0.38 0.33
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