
To Augment or Not to Augment?
A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP

Gözde Gül Şahin
Koç University
Computer Science and
Engineering Department
gosahin@ku.edu.tr

Data-hungry deep neural networks have established themselves as the de facto standard for
many NLP tasks, including the traditional sequence tagging ones. Despite their state-of-the-
art performance on high-resource languages, they still fall behind their statistical counterparts
in low-resource scenarios. One methodology to counterattack this problem is text augmentation,
that is, generating new synthetic training data points from existing data. Although NLP has
recently witnessed several new textual augmentation techniques, the field still lacks a systematic
performance analysis on a diverse set of languages and sequence tagging tasks. To fill this gap,
we investigate three categories of text augmentation methodologies that perform changes on the
syntax (e.g., cropping sub-sentences), token (e.g., random word insertion), and character (e.g.,
character swapping) levels. We systematically compare the methods on part-of-speech tagging,
dependency parsing, and semantic role labeling for a diverse set of language families using
various models, including the architectures that rely on pretrained multilingual contextualized
language models such as mBERT. Augmentation most significantly improves dependency pars-
ing, followed by part-of-speech tagging and semantic role labeling. We find the experimented
techniques to be effective on morphologically rich languages in general rather than analytic
languages such as Vietnamese. Our results suggest that the augmentation techniques can further
improve over strong baselines based on mBERT, especially for dependency parsing. We identify
the character-level methods as the most consistent performers, while synonym replacement and
syntactic augmenters provide inconsistent improvements. Finally, we discuss that the results
most heavily depend on the task, language pair (e.g., syntactic-level techniques mostly benefit
higher-level tasks and morphologically richer languages), and model type (e.g., token-level aug-
mentation provides significant improvements for BPE, while character-level ones give generally
higher scores for char and mBERT based models).

Submission received: 15 January 2021; revised version received: 19 August 2021; accepted for publication:
7 October 2021.

https://doi.org/10.1162/COLI a 00425

© 2022 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:gosahin@ku.edu.tr
https://doi.org/10.1162/COLI_a_00425

Computational Linguistics Volume 48, Number 1

1. Introduction

Recent advancements in the natural language processing (NLP) field have led to models
that surpass all previous results on a range of high-level downstream applications, such
as machine translation, text classification, dependency parsing, and many more. How-
ever, these models require a huge number of training data points to achieve state-of-
the-art scores and are known to suffer from the out-of-domain problem. In other words,
they are not able to correctly label or generate novel, unseen data points. In order to
boost the performance of such systems in the presence of low data, the researchers have
introduced various data augmentation techniques that aim to increase the sample size
and also the variation of the lexical (Wei and Zou 2019; Fadaee, Bisazza, and Monz 2017;
Kobayashi 2018; Karpukhin et al. 2019) or syntactic patterns (Vickrey and Koller 2008;
Şahin and Steedman 2018; Gulordava et al. 2018). A similar line of research introduced
adversarial attack and defense mechanisms (Belinkov and Bisk 2018; Karpukhin et al.
2019) based on injecting noises with the goal of more robust NLP systems.

Even though low-resource languages are the perfect test bed for such augmentation
techniques, a large number of studies only simulate a low-resource environment by
sampling from a high-resource language like English (Wei and Zou 2019; Guo, Mao,
and Zhang 2019a). Unfortunately, methods that perform well on English may function
poorly for many low-resource languages. This is due to English being an analytic
language while most low-resource languages are synthetic. Furthermore, the majority of
the studies focus either on sentence classification or machine translation. Although these
tasks are important, the traditional sequence tagging tasks where tokens (e.g., white-Adj
cat-Noun) or the relation between tokens (e.g., white Modifier cat) are labeled are still
considered as primary steps to natural language understanding. These tasks generally
have finer-grained labels and are more sensitive to noise. In addition, previous work
mostly report single best scores that can be achieved by the augmentation techniques.

To extend the knowledge of the NLP community on text augmentation methods,
there is a need for a comprehensive study that investigates (i) different types of augmen-
tation methods on (ii) a diverse set of low-resource languages, for (iii) a diverse set of
sequence tagging tasks that require different linguistic skills (e.g., morphologic, syntac-
tic, semantic). In order to address these issues, we explore a wide range of text augmen-
tation methodologies that augment on the character level (Karpukhin et al. 2019), token
level (Kolomiyets, Bethard, and Moens 2011; Zhang, Zhao, and LeCun 2015; Wang and
Yang 2015; Wei and Zou 2019) and syntactic level (Şahin and Steedman 2018; Gulordava
et al. 2018). To gain insights on the capability of these methods, we experiment on
sequence tagging tasks of varying difficulty: POS tagging and dependency parsing
and semantic role labeling, also known as shallow semantic parsing. POS tagging and
dependency parsing experiments are performed on truly low-resource languages that
are members of various language families: Kazakh (Turkic), Tamil (Dravidian), Buryat
(Mongolic), Telugu (Dravidian), Vietnamese (Austro-Asiatic), Kurmanji (Iranian), and
Belarusian (Slavic). Due to the lack of annotated data, we simulate the low-resource
environment for semantic role labeling (SRL) on languages from a diverse set of fami-
lies, namely, Turkish (Turkic), Finnish (Uralic), Catalan (Romance), Spanish (Romance),
and Czech (Slavic). To investigate whether the augmentations are model-agnostic and
can further improve on state-of-the-art models, we experiment with distinct models
that use various subword units (e.g., character, byte-pair-encoding, and word piece),
pretrained embeddings (e.g., BPE-GloVe, multilingual BERT), and architectural designs
(e.g., biaffine, transition-based parser). We train and test each model multiple times and
report the mean and standard deviation scores along with the p-values calculated via

6

Şahin To Augment or Not to Augment?

paired t-tests. Furthermore, we investigate the sensitivity of augmentation techniques
to parameters in a separate study, and analyze the contribution of each technique to the
improvement of frequent and rare tokens and token classes.

Our results show that augmentation methods benefit the dependency parsing task
more significantly than part-of-speech tagging and semantic role labeling—in that
given order—independent from the parser type. The improvements are more reliably
observed in morphologically richer languages; that is, the results for Vietnamese (an
analytic language) are varied—in some cases significantly worse than the baselines. We
find that augmentation can still provide performance gains over the strong baselines
built on top of pretrained contextualized language models—especially in dependency
parsing. In general, character-level augmentation gives more consistent improvements
for the experimented languages and tasks, whereas synonym replacement and rotating
sentences mostly result in a weak increase or decrease. We find that the subword unit
choice and task requirements also have a large impact on the results. For instance, we
observe significant gains over the character-based POS tagger, but no improvement for
the BPE-based one for Tamil language. In addition, we find that token-level augmen-
tation is more effective for BPE-based models, whereas character-level augmentation
techniques provide significant gains for the rest. Furthermore, we observe that syntactic
augmentation techniques are more likely to improve the performance on morphologi-
cally richer languages as pronounced in the SRL task.

2. Related Work

Augmentation techniques for NLP tasks fall into two categories: feature space augmen-
tation (FSA) and text augmentation (TA). FSA techniques mostly focus on augmenting
the continuous representation space directly inside the model, while TA processes the
discrete variables such as raw or annotated text.

FSA. Guo, Mao, and Zhang (2019b) and Guo (2020) propose to generate a synthetic
sample in the feature space via linearly and nonlinearly interpolating the original
training samples. Although the idea originates from the computer vision field (Zhang
et al. 2018), it has been adapted to English sentence classification tasks successfully
(Guo, Mao, and Zhang 2019a). More recently Guo, Kim, and Rush (2020) proposed
a similar technique that mixes up the input and the output sequences and showed
improvements on several sequence-to-sequence tasks such as machine translation
between high-resource language pairs. Despite their success in text classification and
sequence-to-sequence tasks, they are seldom used for sequence tagging tasks. Zhang,
Yu, and Zhang (2020) use the mixup technique (Zhang et al. 2018) in the scope of
active learning, where they augment the queries at each iteration and later classify
whether the augmented query is plausible—since the resulting queries might be
noisy—and report improvements for the Named Entity Recognition (NER) and event
detection task. However, building a robust discriminator for more challenging tasks as
dependency parsing (DP) and SRL is a challenge on its own. Chen et al. (2020a) report
that direct application of the mixup techniques (Guo, Mao, and Zhang 2019b; Guo
2020) for NER introduces vast amounts of noise, therefore making the learning process
even more challenging. To address this, Chen et al. (2020a) introduce local interpolation
strategies that mixes sequences close to each other, where closeness for tokens is defined
either as (i) occurring in the same sentence (ii) occurring in the sentence within the
kth neighborhood, and show improvements over state-of-the-art NER models. Even
though NER is a sequence tagging task, it is fundamentally different from the tasks

7

Computational Linguistics Volume 48, Number 1

in this study: DP and SRL. The local context for the NER task is usually the full
sentence; however, for SRL the local context is much smaller. Imagine these sentences:
“I want to visit the USA” and “USA is trying to solve the problems”. NER would label
USA as COUNTRY in both sentences, whereas USA would have the labels ARG1: VISITED
and ARG0: AGENT/ENTITY TRYING. As can be seen, for our sequence tagging tasks, the
local context is much smaller and the labels are more fine-grained than in NER. There-
fore, Chen et al. (2020a) would have an extremely small sam ple space, whereas Chen et al.
(2020b) is likely to produce too much noise. To sum up, using these techniques for more
complicated sequence tagging tasks such as DP and SRL is not straightforward. This
is due to (i) the relations between tokens being labeled instead of the tokens themselves;
and (ii) the labels being extremely fine-grained compared to classification tasks.
Furthermore, FSA techniques require direct access to the neural architecture since they
modify the embedding space. That means they cannot be used in combination with
black-box systems, which might be a drawback for NLP practitioners. Finally, unlike
the aforementioned sequence labeling tasks, DP and SRL have a relatively complex
input layer where additional linguistic information (e.g., postags, predicate flag) is
used. That also makes the direct application of FSA techniques more challenging. For
these reasons, we focus on the other category of augmentation methods.

TA. Vickrey and Koller (2008) introduce a number of expert-designed sentence simplifi-
cation rules to augment the data set with simplified sentences, and show improvements
on English semantic role labeling. Similarly, Şahin and Steedman (2018) propose an
automated approach to generated simplified and reordered sentences using depen-
dency trees. We refer to such methods as label-preserving because they do not alter the
semantics of the original sentence. They mostly perform on syntactically annotated data
and sometimes require manually designed rules (Vickrey and Koller 2008).

Another set of techniques (Gulordava et al. 2018; Fadaee, Bisazza, and Monz 2017)
performs lexical changes instead of syntactic restructuring. Gulordava et al. (2018)
generate synthetic sentences by replacing a randomly chosen token with its syntactic
equivalent. Fadaee, Bisazza, and Monz (2017) replace more frequent words with the
rare ones to create stronger lexical-label associations. Wei and Zou (2019) and Zhang,
Zhao, and LeCun (2015) make use of semantic lexicons like WordNet to replace words
with their synonyms. Kobayashi (2018), Wu et al. (2019), and Fadaee, Bisazza, and
Monz (2017) use pretrained language models to generate a set of candidates for a
token position, while Anaby-Tavor et al. (2020), Kumar, Choudhary, and Cho (2020),
and Ding et al. (2020) take a generative approach. Most work focuses on classification
and translation, except for Ding et al. (2020), who experiment on low-resource tagging
tasks. However they assume one label per token, therefore this is not directly applicable
to relational tagging tasks such as dependency parsing and semantic role labeling. Ad-
ditionally, Wei and Zou (2019) propose simple techniques such as adding, removing, or
replacing random words and show that such perturbations improve the performance of
English sentence classification tasks. Unlike other lexical augmentation methods, these
do not require syntactic annotations, semantic lexicons, and large language models that
make them more suitable to low-resource settings.

There also exist sentence-level techniques such as back-translation (Sennrich,
Haddow, and Birch 2016a) that aim to generate a paraphrase by translating back and
forth between a pair of languages. However, such techniques are mostly not applicable
to sequential tagging tasks like semantic parsing while they cannot guarantee the
token-label association. Furthermore, training an intermediate translation model for
paraphrasing purposes may not be possible for genuinely low-resource languages. In

8

Şahin To Augment or Not to Augment?

a similar line, Yoo et al. (2021) leverage a pretrained large language model to generate
text samples and report improvements on English text classification tasks.

Another category of TA uses noising techniques that are closely associated with
adversarial attacks to text systems. Belinkov and Bisk (2018) attack machine translation
systems by modifying the input with synthetic (e.g., swapping characters) and natu-
ral noise (e.g., injecting common spelling mistakes). Similarly Karpukhin et al. (2019)
defend the machine translation system by training on a set of character-level synthetic
noise models. Han et al. (2020) introduce an adversarial attack strategy for structured
prediction tasks including dependency parsing. They first train a seq2seq generator
via reinforcement learning where they design a special reward function that evaluates
whether the generated sequence could trigger a wrong output. The evaluation is carried
out by two other reference parsers—that is, if both parsers are tricked then it is likely that
the victim parser would also be misled. Han et al. (2020) then use adversarial training
as a defense mechanism and show improvements. In the same line of research, Zheng
et al. (2020) propose replacing a token with a “similar” token, where similarity is defined
as having a similar log likelihood of being generated by pretrained BERT (Devlin
et al. 2019) given the context and having the same POS tag (in the black-box setting).
The tokens are chosen in a way that the parser’s error rate is maximized. The attack
is called a “sentence-level attack” when the chosen tokens’ positions are irrelevant. On
a “phrase-level attack,” the authors first choose two subtrees and then maximize the
error rate on the target subtree by modifying the tokens in the source subtree. Even
though the adversarial example generation techniques (Zheng et al. 2020; Han et al.
2020) could be used to augment data in theory, the requirements—such as a separate
seq2seq generator, a BERT-based scorer (Zhang et al. 2020), reference parsers that are
of certain quality, external POS taggers, and high quality pretrained BERT (Devlin
et al. 2019) models—make them challenging to apply on low-resource languages.
Besides, most of the aforementioned adversarial attacks are optimized to trigger an
undesired change in the output with minimal modifications, while data augmentation
is only concerned about increasing the generalization capacity of the model.

Surveys. Due to the growing number of data augmentation techniques and interest
in them, a couple of survey studies have been recently published (Hedderich et al.
2021; Feng et al. 2021; Chen et al. 2021). Hedderich et al. (2021) give a comprehen-
sive overview of recent methods that are proposed to tackle low-resource scenarios.
The authors overview a range of techniques both for low-resource languages and
domains, discussing their limitations, requirements, and outcomes. Apart from data
augmentation methods, the authors discuss more general approaches such as cross-
lingual projection, transfer learning, pretraining (of large multilingual models) and
meta-learning, which are not in scope of this work. Feng et al. (2021) provide a more
focused survey, zooming in on data augmentation techniques rather than other common
approaches such as transfer learning. They categorize data augmentations into three
categories as (i) rule-based, (ii) example interpolation, and (iii) model-based techniques.
Rule-based techniques are referred to as easy-to-compute methods such as EDA (Wei
and Zou 2019) and dependency tree morphing (Şahin and Steedman 2018), which
are also covered in this study. Example interpolation techniques are used to define
the FSA type of methods that we have discussed earlier in this section. Model-based
techniques refer to augmentation techniques that rely on large models trained on large
texts (e.g., backtranslation and synonym replacement using BERT-like models) that
either don’t preserve the labels or require a strong pretrained model—which is mostly
not available for low-resource languages. Both Feng et al. (2021) and Hedderich et al.

9

Computational Linguistics Volume 48, Number 1

(2021) provide a taxonomy and a structured bird’s eye view on the topic without any
empirical investigation as in this study. The closest work to ours is by Vania et al. (2019),
who explore two of the augmentation techniques along with other approaches (e.g.,
transfer learning) for low-resource dependency parsing, which is limited in numbers
of tasks, languages, and augmentation techniques. Finally, Chen et al. (2021) provide
an empirical survey covering a wide range of NLP tasks and augmentation approaches
where most of them exist for English only. Hence, the experiments are performed only
on English, providing no insights for low-resource languages or sequence tagging tasks.
Unlike previous literature, our work (i) focuses on sequential tagging tasks that require
various linguistic skills: part-of-speech tagging, dependency parsing, and semantic role
labeling; (ii) experiments on multiple low-resource languages from a diverse set of
language families; and (iii) compares and analyzes a rich compilation of augmentation
techniques that are suitable for low-resource languages and the focused tasks.

3. Augmentation Techniques

As discussed in Section 2, we categorize the augmentation techniques as textual (TA)
and feature-space augmentation (FSA). In this article, we focus on textual augmentation
techniques rather than FSA for several reasons. First of all, existing FSA techniques have
only been implemented and tested for simple sequence tagging tasks where the task is to
choose the best tag for the token from a quite limited number of labels. However, in our
sequence tagging tasks, the labels are quite fine-grained, and the relation between tokens are
labeled rather than the tokens themselves. Second, FSA techniques require direct access
to the neural architecture because they modify the embedding space, which means that
they cannot be used in combination with black-box systems. Finally, for some of the
sequence tagging tasks, namely, as dependency parsing and semantic role labeling,
the models might have relatively complex input layers (e.g., incorporate additional
features such as postags or predicate flags), which makes the direct application of FSA
techniques more challenging.

Textual augmentation techniques, that is, augmentation techniques that alter the
input text, can be applied on many different levels such as character, token, sentence,
or document. Because we focus on sentence-level tagging tasks, document-level aug-
mentation techniques are simply ignored in this study. Furthermore, the focus of this
article is to investigate techniques that are suitable for low-resource languages and are able
to preserve the task labels up to some degree. For instance, sentence-level augmentation
techniques like backtranslation are not suitable since they would not preserve the
token labels. Similarly, genuinely low-resource languages do not have associated strong
pretrained language models due to lack of raw data. Therefore sophisticated techniques
that make use of such models are also left out in this article.

To provide more details, the overview of the DA techniques investigated in Feng
et al. (2021) is given in Table 1 to justify our selection of techniques. Here, the first
category refers to the techniques that are included in this study. They modify the data
on the input level, are task agnostic, can preserve the token and relation labels—hence
suitable for our sequence tagging tasks—and do not require large amounts of text or
models. The methods in the second category (Sennrich, Haddow, and Birch 2016a;
Vaibhav et al. 2019; Nguyen et al. 2020; Wieting and Gimpel 2017; Feng, Li, and Hoey
2019; Singh et al. 2019; Anaby-Tavor et al. 2020) are not able to preserve the labels. For
instance, Semantic Text Exchange (STE) (Feng, Li, and Hoey 2019) aims to replace an
entity in a given sentence while modifying the rest of the sentence accordingly. Given
the input “great food , large portions ! my family and i really enjoyed our saturday morning

10

Şahin To Augment or Not to Augment?

Table 1
Comparison of selected DA methods adapted from Feng et al. (2021). Level denotes the depth at
which data is modified by the DA. Task refers to whether the DA method can be applied to
different tasks (i.e., task-agnostic), or specifically designed for a task. The Reason column
provides the reason why the method is not included in this article.

DA Method Level Task Reason
SYNONYM REPLACEMENT (Wang and
Yang 2015) Input Agnostic included in study
RANDOM DELETION (Wei and Zou 2019) Input Agnostic included in study
RANDOM SWAP (Wei and Zou 2019) Input Agnostic included in study
DTREEMORPH (Şahin and Steedman 2018) Input Agnostic included in study
SYNTHETIC NOISE (Karpukhin et al. 2019) Input Agnostic included in study
NONCE (Gulordava et al. 2018) Input Agnostic included in study

BACKTRANSLATION (Sennrich, Haddow,
and Birch 2016a) Input Agnostic labels not preserved
UBT & TBT (Vaibhav et al. 2019) Input Agnostic labels not preserved
DATA DIVERSIFICATION (Nguyen et al. 2020) Input Agnostic labels not preserved
SCPN (Wieting and Gimpel 2017) Input Agnostic labels not preserved
SEMANTIC TEXT EXCHANGE (Feng, Li,
and Hoey 2019) Input Agnostic labels not preserved
XLDA (Singh et al. 2019) Input Agnostic labels not preserved
LAMBADA (Anaby-Tavor et al. 2020) Input classification labels not preserved

CONTEXTUALAUG (Kobayashi 2018) Input Agnostic requires strong pretrained model
SOFT CONTEXTUAL DA (Gao et al. 2019) Emb/Hidden Agnostic requires strong pretrained model
SLOT-SUB-LM (Louvan and Magnini 2020) Input slot filling requires strong pretrained model

WN-HYPERS (Feng et al. 2020) Input Agnostic requires WordNet
UEDIN-MS (DA part) (Grundkiewicz,
Junczys-Dowmunt, and Heafield 2019) Input Agnostic requires spell checker

SEQMIXUP (Guo, Kim, and Rush 2020) Input seq2seq not suitable
EMIX (Jindal et al. 2020a) Emb/Hidden classification not suitable
SPEECHMIX (Jindal et al. 2020b) Emb/Hidden Speech/Audio not suitable
MIXTEXT (Chen, Yang, and Yang 2020b) Emb/Hidden classification not suitable
SWITCHOUT (Wang et al. 2018) Input machine translation not suitable
SIGNEDGRAPH (Chen, Ji, and Evans 2020) Input paraphrase not suitable
DAGA (Ding et al. 2020) Input+Label sequence tagging not suitable
SEQMIX (Zhang, Yu, and Zhang 2020) Input+Label active sequence labeling not suitable
GECA (Andreas 2020) Input Agnostic not suitable

breakfast” and the entity to be replaced as pizza, STE generates a new sentence “80%
great pizza, chewy crust ! nice ambiance and i really enjoyed it .”. Because the generated
sentence is both syntactically and semantically different from the original sentence, such
techniques cannot be used for any of our tasks. Furthermore most of these techniques
are tested on English language only and require large amounts of data to generate
meaningful paraphrases. The next category of techniques (Kobayashi 2018; Gao et al.
2019; Louvan and Magnini 2020) benefit from large pretrained language models to
replace a token/phrase. Even though such models might exist for some of the low-
resource languages, the quality of the models are low due to insufficient training data.
Therefore using these models introduces more noise than expected. The next category
contains techniques (Feng et al. 2020; Grundkiewicz, Junczys-Dowmunt, and Heafield
2019) that require external tools/lexicons such as WordNet and spell checkers that are
only available for high resource languages. The final category consists of the techniques
that are tuned for a specific NLP task. Therefore they can only be used for the specific
task, and not for the tasks we focus on in this study. One exception is GECA (Andreas
2020), which can be used for parsing low-resource languages. One issue with GECA is
that the boundary of extracted fragments can exceed the constituency span, hence there
is no guarantee that the fragment would be a subtree.

This section includes a detailed discussion on three main categories of tex-
tual augmentation techniques that are used in our experiments, namely, syntactic,

11

Computational Linguistics Volume 48, Number 1

Table 2
Comparison of augmentation methods by means of their task viability. x: Can be used for the
task; o: Cannot be used for the task. Augmentations are generated on: “I wrote him a letter”.

POS DEP SRL Generated

C
ha

r

Char Insert (CI) x x x I wrrotle him a legtter
Char Substitute (CSU) x x x I wyote him a lettep
Char Swap (CSW) x x x I wtore him a lteter
Char Delete (CD) x x x I wote him a leter

To
ke

n

Synonym Replacement (SR) x x x I wrote him a message
RW Delete (RWD) x o o I him a letter
RW Swap (RWS) x o o I him wrote a letter
RW Insert (RWI) o o o I wrote him a her letter

Sy
nt

ac
ti

c

Crop x x x I wrote a letter
Rotate x x x Him a letter I wrote
Nonce x x o I wrote him a flower

token level, and character level. A summary of the techniques under each category and
their suitability to our downstream tasks can be found in Table 2. Finally, it discusses
the parameters associated with each technique in Section 3.4.

3.1 Character-Level Augmentation

The idea of adding synthetic noise to text applications is not new; however, it has mostly
been used for adversarial attacks or to develop more robust models (Belinkov and Bisk
2018; Karpukhin et al. 2019). Previous work by Karpukhin et al. (2019) introduces four
types of synthetic noise on orthographic level: character deletion (CD), insertion (CI),
substitution (CSU), and swapping (CSW). Additionally, they introduce a mixture of all
noise types by sampling from a distribution of 60% clean (no noise) and 10% from each
type of noise, which we refer to as Character All (CA). They show that adding synthetic
noise to training data improves the performance on test data with natural noise, that is,
text with real-world spelling mistakes, while not hurting the performance on clean data.
The authors experiment on neural machine translation where the source languages are
German, French, Czech, and the target language is English. We hypothesize that adding
the right amount of synthetic noise might as well improve the performance on low-
resource languages for our set of downstream tasks. For CI, we first build a character
vocabulary out of the most commonly used characters in the training set. We do not
add noise to one-letter words and do not apply CSW to the first and last characters of
the token.

The advantages of character-level synthetic noise are two-fold: First, the output of
the augmentation mostly preserves the original syntactic and semantic labels. This is
because the resulting tokens are mostly out of vocabulary words that are quite close
to the original word—like a spelling mistake. Second, they are trivial to generate, not
requiring any external resources like large language models or syntactic annotations.
Finally, they are only constrained by the number of characters, which results in the

12

Şahin To Augment or Not to Augment?

ability of generating huge numbers of augmented sentences—this, can be an advantage
for most downstream tasks.

3.2 Token-Level Augmentation

This category includes methods that perform token-level changes such as adding, re-
placing, or removing certain tokens. While some preserve the syntax or semantics of the
original sentence, the majority does not.

Synonym Replacement. As one of the earliest techniques (Kolomiyets, Bethard, and
Moens 2011; Zhang, Zhao, and LeCun 2015; Wang and Yang 2015; Wei and Zou
2019), synonym replacement aims to replace words with their synonyms. A lexicon
containing synonymity, like WordNet, or a thesaurus is generally required to retrieve
the synonyms. Because most languages do not have such a resource, some researchers
(Wang and Yang 2015) exploit special pretrained word embeddings and use k-nearest
neighbors (by means of cosine similarity) of the queried word as the replacement. As
discussed in Section 2, more recent studies (Kobayashi 2018; Wu et al. 2019; Fadaee,
Bisazza, and Monz 2017; Anaby-Tavor et al. 2020; Kumar, Choudhary, and Cho 2020)
use contextualized language models such as bidirectional LSTMs or BERT (Devlin
et al. 2019) to find related words such that the class of the sentence is still preserved.
However, these methods require strong pretrained language models that are gener-
ally not available for truly low-resource languages. Furthermore, these methods are
mostly applied to sentence classification tasks, where the labels are considered coarse-
grained compared with our downstream tasks. Considering these, we use a simplified
approach similar to Wang and Yang (2015) and query the randomly chosen token on
non-contextualized pretrained embeddings. Most languages we experiment on are mor-
phologically productive, having the out-of-vocabulary word problem. To circumvent
this issue we use the subword-level fastText embeddings (Grave et al. 2018).

Random Word. Similar to character-level noise, one can inject a higher level of noise
by randomly inserting (RI), deleting (RD) or swapping (RS) tokens. The EDA frame-
work by Wei and Zou (2019) shows the efficiency of these techniques—despite their
simplicity—on multiple text classification benchmarks. Following Wei and Zou (2019),
we experiment with all techniques except RI. Because our downstream tasks require
contextual annotation of tokens, we cannot insert a random word without annotation.
Similar to character-level methods, random word augmentation techniques are easy to
apply and can produce an extensive amount of synthetic sentences as they are only
constrained with the number of tokens. One disadvantage is the inability to preserve
the syntactic and semantic labels. For instance, deleting a word may yield an ungram-
matical sentence without a valid dependency tree. Therefore random word techniques
are not eligible for two of our tasks: dependency parsing and semantic role labeling.

3.3 Syntactic Augmentation

This category consists of more sophisticated methods that benefit from syntactic prop-
erties to generate new sentences. The main disadvantages of this category are (i) the
need for syntactic annotation, and (ii) being more constrained, namely, not being able
to generate as many data points as previous categories.

13

Computational Linguistics Volume 48, Number 1

Nonce. This technique, introduced by Gulordava et al. (2018), aims to produce dummy
sentences by replacing some of the words in the original sentence, such that the pro-
duced sentence is the syntactic equivalent of the original, while not preserving the
original semantics. In more detail, randomly chosen content words (i.e., noun, adjective,
and verb) are replaced with words that have the same part of speech tag, morphological
tags, and dependency label. Given the sentence “Her sibling bought a cake”, the following
sentences can be generated: “My sibling saw a cake” or “His motorbike bought a island”.
As can be seen, the generated sentences mostly do not make any sense, however
syntactically equivalent. For this reason, it can only be utilized for syntactic tasks and
not for SRL.

Crop. This augmentation algorithm by Şahin and Steedman (2018) morphs the depen-
dency trees to generate new sentences. The main idea is to remove some of the depen-
dency links to create simpler, shorter, but still (mostly) meaningful sentences. In order to
do so, Şahin and Steedman (2018) define a list of dependency labels, which is referred
to as Label Of Interest (LOI), that attaches subjects and direct and indirect objects to
the predicates. Then a simpler sentence is created by retaining only one LOI at a time.
Following Şahin and Steedman (2018), we only consider the dependency relations that
attach subjects and objects to predicates as LOIs, and ignore other adverbial dependency
links involving predicates. We keep the augmentation non-recursive, that is, we only
reorder the first level of flexible subtrees; hence the flexible chunks inside these subtrees
are kept fixed. The idea is demonstrated in Figure 1.

Rotate. This uses a similar idea to image rotation, where the sentence is rotated around the
root node of the dependency tree. The method uses the same LOIs as cropping and cre-
ates flexible chunks that can be reordered in the sentence. A demonstration of rotation
is shown in Figure 1. Both the cropping and rotation operations may cause semantic
shifts and ill-formed sentences, mostly depending on the morphological properties of
the languages. For instance, languages that use case marking to mark subjects and
objects can still generate valid sentence forms via the rotation operation simply because

I wrote him a letter

root

nsubj iobj det

obj

(a) Original sentence

I wrote a letter

root

nsubj det

obj

(b) Cropped sentence

him a letter I wrote

root

nsubj

iobj

det

obj

(c) Rotated sentence

Figure 1
Demonstration of the syntactic augmentation techniques Crop and Rotate.

14

Şahin To Augment or Not to Augment?

word order is more flexible (Futrell, Mahowald, and Gibson 2015). However, most valid
sentences may still sound strange to a native speaker, since there is still a preferred
order and the generated sentence may have an infrequent word order. Furthermore, for
languages with a strict word order, like English, rotation may introduce more noise
than desired. Finally, the augmented sentences may still be beneficial for learning, since
they would provide the model with more examples of variations in semantic argument
structure and in the order of phrases.

3.4 Parameters

All of the aforementioned augmentatiom methods are parametric. As we show later in
Section 5, the choice of parameters may have a substantial impact on the success of the
methods. The parameters and their value range are defined as below:

Ratio. This parameter is used to calculate the number of new sentences to be generated
from one original sentence. To ensure that more sentences are generated from longer
sentences, it is simply calculated as ratio ∗ |sentence|; thus, for a sentence of length 10,
only 1 extra sentence will be produced with ratio = 0.1. It is only used for orthographic
methods because syntactic methods are constrained in other ways (e.g., number of
tokens that share morphological features and dependency labels). The values we ex-
periment with are as follows: [0.1, 0.2, 0.3, 0.4].

Probability. This determines the probability of a token-level augmentation, namely, the
ratio of the augmented tokens to sentence length. For word insertion, deletion, and all
character-based methods (CI, CD, CSU, CSW, CA), it can be interpreted as the ratio
of tokens that undergo a change to the number of total tokens; whereas for the word
swapping operation, it refers to the ratio of swapped token pairs to total number of
tokens. Moreover, it determines the number of characters to which the augmentation
is applied in cases of character-level augmentation. Similar to ratio, we experiment
with the value range: [0.1, 0.2, 0.3, 0.4]. For the syntactic methods CROP and ROTATE,
probability is associated with the operation dynamics, that is, when the operation
probability is set to 0.2, the expected number of additional sentences produced via
cropping would be #LOI/5, where #LOI indirectly refers to the number of valid subtrees
for the operation. Because the number of additional sentences are already constrained
with #LOI, we also experiment with higher probabilities for Crop and Rotate. The range
is then [0.1, 0.3, 0.5, 0.7, 1.0].

Max Sentences. In cases of considerably long sentences or a substantial number of avail-
able candidates, the number of augmented sentences can grow rapidly. This sometimes
causes an undesired level of noise in the training data. To avoid this, the number of
maximum sentences, namely, sentence threshold parameter, is commonly used. Follow-
ing Gulordava et al. (2018) and Vania et al. (2019), we experiment with 5 and 10 as the
threshold values.

4. Experimental Setup

First we provide detailed information on the downstream tasks and the languages we
have experimented on. Next we discuss the data sets that are used in our experiments.

15

Computational Linguistics Volume 48, Number 1

4.1 Tasks

We focus on three sequence tagging tasks that are central to NLP: POS-tagging (POS),
dependency parsing (DEP), and semantic role labeling (SRL). POS and DEP require
processing at the morphological and syntactic level and are considered crucial steps
toward understanding natural language. Furthermore, the performance on POS and
DEP tasks are likely to repeat for other tasks that require syntactic and morphological
information such as data-to-text generation. On the other hand, SRL is more useful to
gain insights on the augmentation performance where preserving the semantics of the
original sentence is essential. Therefore it can serve as a proxy for higher-level tasks
that necessitate semantic knowledge such as question answering or natural language
inference.

The aim of this study is to analyze the performance of various augmentation
techniques for low-resource languages in a systematic way, rather than implementing
state-of-the art sequence taggers, which would generally require additional resources
and engineering effort. Furthermore, this study involves a large number of experiments
comparing 11 augmentation techniques across three tasks and several languages in
a multi-run setup. For these reasons, we have chosen models that are not heavily
engineered and are modular, but also with proven competence on a diverse set of
languages. For all tasks, we use neural models that operate on a subword level rather
than a word level. This is necessary to tackle the out-of-vocabulary problem, which
is inevitable for languages with productive morphology, especially in low-resource
scenarios. Furthermore, we do not use any additional features (e.g., POS tags, pretrained
word embeddings), external resources, or ensemble of multiple models. Considering
these facts, for our POS tagging experiment, we use the subword-level sequence tagging
model (Heinzerling and Strube 2019) that is both modular and provides results on par
with state-of-the-art on many languages. The model uses an autoregressive architecture
(e.g., RNN or bi-LSTM) for random or non-contextual subwords, and uses a fine-
tuning paradigm for large pretrained language models. For our dependency parsing
experiments, we use the transition-based Uppsala parser v2.3 (de Lhoneux, Stymne, and
Nivre 2017; Kiperwasser and Goldberg 2016), which achieved the second best average
LAS performance1 on low-resource languages on the CoNLL 2018 shared task (Zeman
et al. 2018). Additionally, we experiment with a biaffine dependency parser built on
top of large pretrained contextualized word representations (Glavas and Vulic 2021),
since fine-tuning such models on downstream tasks has recently achieved state-of-the-
art results on many tasks and languages. Finally, we use a character-level bidirectional
LSTM model (Şahin and Steedman 2018) to conduct SRL experiments.2 More details on
the models and their configuration are given in the following subsections.

4.1.1 POS Tagging. The goal is to associate each token with its corresponding lexical
class, that is, syntactic label (e.g., noun, adjective, verb). Although it is a token-level
task, disambiguation using contextual knowledge is mostly necessary as one token
may belong to multiple classes (e.g., to fly [Verb] or a fly [Noun]). For languages with

1 The best performing model (Rosa and Marecek 2018) is a crosslingual model that trains a single model
together using multiple treebanks, which was not applicable to our scenario.

2 To the best of our knowledge, there does not exist an open-source dependency-based SRL model built on
top of large contextualized language models with proven competence on a diverse set of languages, and
implementing such a model is beyond the scope of this article.

16

Şahin To Augment or Not to Augment?

rich morphology, it is generally referred to as morphological disambiguation, while
the correct morphological analysis—including the POS tag—is chosen among multiple
analyses. For analytic languages like English, it is mostly performed as the first step in
the traditional NLP pipeline. For this task, we inherit the universal POS tag set that is
shared among languages and defined within the scope of the Universal Dependencies
project (Zeman, Nivre, and Abrams 2020).

Subword Units. We experiment with three subword units: characters, BPEs, and Word
Pieces. Characters and character n-grams have been one of the most popular sub-
word units (Ling et al. 2015), because they (i) don’t require any preprocessing, (ii) are
language-agnostic, and (iii) are computationally cheap due to the small vocabulary size.
Byte Pair Encoding (BPE) (Sennrich, Haddow, and Birch 2016b) is a simple segmentation
algorithm that learns a subword vocabulary by clustering the frequent character pairs
together for a predefined number of times. The algorithm only requires raw text—hence
is language-agnostic, and computationally simple. Furthermore, it has been shown
to improve the performance of various NLP tasks, especially machine translation.
Heinzerling and Strube (2018) trained BPE embeddings using the GloVe (Pennington,
Socher, and Manning 2014) word embedding objective and made it available for 275
languages with multiple vocabulary sizes. However, neither randomly initialized char-
acter embeddings nor GloVe-BPE embeddings are aware of context. Therefore, we also
experiment with contextualized embeddings (i.e., different embeddings for the same
subword depending on the context) that operate on Word Pieces. For this study we
choose BERT (Devlin et al. 2019), a transformer (Vaswani et al. 2017) based contextual-
ized language model that recently led to state-of-the-art results for many languages and
tasks. We use the publicly available multilingual BERT (mBERT)3 that has been trained
on the top 100 languages with the largest Wikipedia using a shared vocabulary across
languages. Some of the low-resource languages we use in our experiments are not part
of mBERT’s languages.

The Model. The overall architecture of the sequence tagging model used in this study
(Heinzerling and Strube 2019) is given in Figure 2. Even though the modular architec-
ture enables combining different subwords, we experiment with the units separately
for the sake of measuring the individual effect. For the character- and BPE-level model,
first each word is split into a sequence of subwords produced by the ρ function. For
characters, each subword unit is randomly initialized, whereas for BPE, pretrained
embeddings are looked up.

ρ(w) = sub0, sub1, .., subn (1)

For character- and BPE-level models, the sequence is encoded via an RNN and a bi-
LSTM network, respectively. For the BERT-based model, the encoder is simply the pre-
trained transformer that is fine-tuned during training; therefore no additional encoding
is performed. For the character-level model, the final hidden states are used to represent

3 https://github.com/google-research/bert/blob/f39e881/multilingual.md.

17

https://github.com/google-research/bert/blob/f39e881/multilingual.md

Computational Linguistics Volume 48, Number 1

Figure 2
General architecture of the sequence tagger taken from Heinzerling and Strube (2019).

the token, whereas for BPE and mBERT, only the states of the first subword at each
token are used.

~hsf , ~hsb = Encoder(ρ(w)) (2)

~w = [~hsf ; ~hsb] (3)

Next, the token embeddings, ~w, are passed onto another bi-LSTM layer, where i denotes
the index of the word.

~hf , ~hb = bi-LSTM(~wi) (4)

Then the concatenated hidden states from forward, hf , and backward directions, hb, are
fed to a classification layer to project the feature space onto the label space. Finally, the
probability distribution of each POS tag is calculated via a softmax function. The label
with the highest probability is assigned to the input token as follows, where S represents
the sentence and ~L denotes the POS tag sequence.

~p(Li|S) = softmax(Wl · [~hf ; ~hb] + ~bl) (5)

BERT is fine-tuned during training, that is, the model’s weights are updated by back-
propagating through all layers. For each language, we use the best vocabulary size re-
ported in previous work (Heinzerling and Strube 2019). For each subword-level model,
we use the parameters from the original work (Heinzerling and Strube 2019).

4.1.2 Dependency Parsing. Dependency parsing aims to provide a viable structural or
grammatical analysis of a sentence by finding the links between the tokens. It assumes

18

Şahin To Augment or Not to Augment?

that the dependent word is linked to its parent, that is, head word, with one of the de-
pendency relations such as modifier, subject, or object. The resulting grammatical analysis
is called a dependency graph, shown in Figure 1. We use the universal dependency
label sets defined by the Universal Dependencies project (Zeman, Nivre, and Abrams
2020) and report the Labeled Attachment Score (LAS) as the performance measure. For
the experiments, we use two different models: uuparser (Kiperwasser and Goldberg
2016; de Lhoneux, Stymne, and Nivre 2017) and the biaffine parser fine-tuned on large
contextualized language models (Glavas and Vulic 2021).

uuparser. The parser is based on the transition-based one of Kiperwasser and Goldberg
(2016) that uses bi-LSTMs to create features. Here c refers to character and e refers to
embedding. First, a character-based representation is generated via bi-LSTMs. Next, the
non-contextual representation for a token is created by concatenating an embedding for
the token itself, which we initialize randomly.

~ec = bi-LSTM(c0, c1, .., cn) (6)

~w = [~ew; ~ec] (7)

Then we create a context-aware representation for the token at index i using an addi-
tional bi-LSTM layer:

~hi = bi-LSTM(~wi) (8)

We use the arc-hybrid transition-based parser that is later extended with partially
dynamic oracle and SWAP transition to be able to create non-projective dependency
graphs. A typical transition-based parser consists of so-called configurations and a
set of transitions, that is, actions, which can be applied to a configuration to create
a new configuration. Parsing starts with a predefined initial configuration. At each
iteration, a classifier chooses the best transition given the features extracted from the
configuration, and updates the configuration. This step is repeated until a predefined
terminal configuration. The arc-hybrid parser used in this work defines configuration
as a stack, a buffer, and a set of dependency arcs. Then the feature for the configuration is
created by concatenating the representations of a fixed number of tokens calculated via
Equation 8 from the top of the stack and the first element of the buffer. Finally, a scoring
function that is implemented as a multilayer perceptron assigns scores to transitions
and dependency labels, given the extracted feature. The transition and the label with
the highest score is then used to create the next configuration. We train separate models
for each treebank, using only randomly initialized character and word features.

biaffine. The parser consists of an attention layer on top of the outputs from a
transformer-based language model, as shown in Figure 3. If a token consists of multiple
subword segments, one token representation is created by averaging the transformer
outputs for each segment, denoted with X. X ∈ RN×H is then used as the representation
of syntactic dependents, where N and H refer to the number of tokens in the sentence
and the transformer hidden state size. To represent the root node, the transformer
representation for the [CLS]: xCLS, that is, the sentence start token, is used. To represent
the dependent heads, X′ = [xCLS; X] ∈ R(N+1)×H is defined. The arc and relation scores
are then calculated as biaffine products as following:

Yarc = XWarcX′
>
+ Barc; Yrel = XWrelX′

>
+ Brel

19

Computational Linguistics Volume 48, Number 1

Figure 3
Transformer based architecture of the biaffine parser taken from Glavas and Vulic (2021).

where W and B refer to the weight and bias parameters for the arc and relation classi-
fiers. The correct dependency head is selected simply as the row corresponding to the
maximum score in Yarc. The arc and relation classification losses are defined as cross-
entropy losses, respectively, over the sentence tokens and gold arcs.

4.1.3 Semantic Role Labeling. SRL, that is, shallow semantic parsing, is defined as analyzing
a sentence by means of predicates and the arguments attached to them. A wide range of
semantic formalisms and annotation schemes exist; however the main idea is labeling
the arguments according to their relation to the predicate.

[I]A0: buyer [bought]buy.01: purchase [a new headphone]A1: thing bought from [Amazon]A2: seller

The example given above shows a labeled sentence with English Proposition Bank
(Palmer, Dan, and Paul 2005) semantic roles, where buy.01 denotes the first sense of the
verb “buy”, and A0, A1, and A2 are the numbered arguments defined by the predicate’s
semantic frame. For this study, we perform dependency-based SRL, which means that
only the head word of the phrase (e.g., headphone instead of a new headphone) will be
detected as an argument and will be labeled as A1. To evaluate SRL results, we used
the official CoNLL-09 evaluation script on the official test split. The script calculates the
macro-average F1 scores for the semantic roles available in the data.

The Model. Similar to previous models, each token is segmented into subwords. For SRL,
we only use characters as the subword unit, because it provides competitive results for
many languages (Şahin and Steedman 2018).

ρ(w) = sub0, sub1, .., subn (9)

Afterwards, following Ling et al. (2015), a weighted composition of the hidden states,
hsf from forward and hsb from backward direction, are calculated and used as the token

20

Şahin To Augment or Not to Augment?

embedding, as given in Equation 11.

~hsf , ~hsb = bi-LSTM(sub0, sub1, .., subn) (10)

~w = Wf · ~hsf + Wb · ~hsb + b (11)

In order to mark the predicate of interest, we concatenate a predicate flag pfi to ~w
calculated as in Equation 11. It is simply defined as 1 for the predicate of interest and 0
for the rest. Next, ~xis, are passed onto another bi-LSTM layer, where i denotes the index
of the word.

~xi = [~w; pfi] (12)

~hf , ~hb = bi-LSTM(~xi) (13)

The probability distribution of each semantic role label is finally calculated via a softmax
function, given the final bidirectional hidden states, hf and hb, and the label with the
highest probability is assigned to the input token.

~p(Ai|S, P) = softmax(Wl · [~hf ; ~hb] + ~bl) (14)

We use the default model parameters reported in Şahin and Steedman (2018).

λy λx add(x, y) (15)

λy λx add(x, y)(shoppinglist) (16)

λx add(x, shoppinglist)(ingredient) (17)

4.2 Languages

We set the definition of low-resource language based on the number of training sentences
available in UD v2.6 (Zeman, Nivre, and Abrams 2020). First we calculate the quartiles
via ordering the treebanks with respect to their training data size. We then define the
languages under the first quartile as low-resource languages, as shown in Figure 4.
According to this definition, the list of low-resource languages are as follows: Kazakh,
Tamil, Welsh, Wolof, Upper Serbian, Buryat, Swedish sign language, Coptic, Gaelish,
Marathi, Telugu, Vietnamese, Kurmanji, Livvi, Belarusian, Maltese, Hungarian, and
Afrikaans.

Finally we choose a subset of languages that are from diverse language families:
Kazakh (Turkic), Tamil (Dravidian), Buryat (Mongolic), Telugu (Dravidian), Vietnamese
(Austro-Asiatic), Kurmanji (Indo-European [IE], Iranian), and Belarusian (IE, Slavic).
Although this list of languages can be experimented on for the tasks of POS tagging
and dependency parsing, there are no data available for any of these languages for se-
mantic role labeling. Semantically annotated data sets are only available for a handful of
languages such as Turkish (Turkic), Finnish (Uralic), Catalan (IE, Romance), Spanish (IE,
Romance), and Czech (IE, Slavic). Therefore, we simulate a low-resource environment
by sampling for SRL. We provide a summary of languages in Table 3 and discuss the
relevant properties of each language family below.

21

Computational Linguistics Volume 48, Number 1

Figure 4
#Training sentences per UD treebank v2.6. Languages are represented with ISO codes. The first
line marks the first quartile and second marks the median. Languages with more than 10K
training sentences are not shown.

Table 3
The list of languages together with their corresponding language and typological families.

Language Family Typology
Belarusian Indo-European (IE), Slavic Fusional
Buryat Mongolic Agglutinative
Catalan Indo-European (IE), Romance Fusional
Czech Indo-European (IE), Slavic Fusional
Finnish Uralic Agglutinative
Kazakh Turkic Agglutinative
Kurmanji Indo-European (IE), Iranian Fusional
Spanish Indo-European (IE), Romance Fusional
Tamil Dravidian Agglutinative
Telugu Dravidian Agglutinative
Turkish Turkic Agglutinative
Vietnamese Austro-Asiatic Analytic

Indo-European (IE). We have five representatives for this language family: Kurmanji,
Belarusian, Catalan, Spanish, and Czech. The representative languages are from various
branches: Iranian, Slavic, and Romance. From the typological perspective, all languages
have fusional characteristics. In other words, morphemes (prefixes, suffixes) are used
to convey some linguistic information such as gender; however, one morpheme can
be used to mark multiple properties. Slavic languages are known to have around 7
distinct case markers, while others are not as rich. The number and type of case markers
available in Slavic helps to relax the word order.

Uralic and Turkic. The languages from both families are known to be agglutinative,
meaning that there is one-to-one mapping between morpheme and meaning. All repre-
sentative languages, namely, Kazakh (Turkic), Turkish (Turkic), Hungarian (Uralic), and
Finnish (Uralic), attach morphemes to words extensively. These languages have a high
morpheme-to-word ratio, and a comprehensive case marking system.

22

Şahin To Augment or Not to Augment?

Table 4
Data set statistics for all tasks, languages, and splits. #sampled: Ranges between 250 and 1,000.
*: No original development set.

#training #dev #test

SRL

Czech #sampled 5,228 4,213
Catalan #sampled 1,724 1,862
Spanish #sampled 1,655 1,725
Turkish #sampled 844 842
Finnish #sampled 716 648

POS & DEP

Vietnamese 1,400 800 800
Telugu 1,051 131 146
Tamil 400 80 120
Belarusian 319 65 253
Kazakh* 23 8 1,047
Kurmanji* 15 5 734
Buryat* 14 5 908

Dravidian. Two languages, namely, Tamil and Telugu, are from the Dravidian language
family but in different branches. Similar to Uralic and Turkic, Dravidian languages are
also agglutinative, and have extensive grammatical case marking (e.g., Tamil defines
eight distinct markers). Unlike other language families, it is not based on the Latin
alphabet.

Austro-Asiatic. Vietnamese is the only representative of this family. Unlike the previous
languages, Austro-Asiatic languages are analytic. For instance, Vietnamese does not
use any morphological marking for tense, gender, number, or case (i.e., it has low
morphological complexity).

Mongolic. Being a language from the Mongolic family, Buryat is an agglutinative lan-
guage with eight grammatical cases. Modern Buryat uses an extended Cyrillic alphabet.

4.3 Data Sets

We use the Universal Dependencies v2.6 treebanks (Zeman, Nivre, and Abrams 2020)
for POS and DEP. Some of the languages, such as Kazakh, Kurmanji, and Buryat, do
not have any development data. For those languages, we randomly sample 25% of
the training data to create a development set. For the SRL task, we use the data sets
distributed by Linguistic Data Consortium (LDC) for Catalan (CAT) and Spanish (SPA).4

In addition, we use dependency-based annotated SRL resources released for Finnish
(FIN) (Haverinen et al. 2015) and Turkish (TUR) (Şahin and Adali 2018; Şahin 2016;
Sulubacak and Eryiğit 2018; Sulubacak, Eryiğit, and Pamay 2016). All proposition banks
are derived from a language-specific dependency treebank, and contain semantic role
annotations for verbal predicates. We provide the basic data set statistics for each
language in Table 4. Because SRL resources are not available for truly low-resource
languages, we sample a small training data set from the original ones, shown with

4 Catalog numbers are as follows: LDC2012T03 and LDC2012T04.

23

Computational Linguistics Volume 48, Number 1

#sampled in Table 4. Each SRL data set uses a language-specific dependency and se-
mantic role annotation scheme. Therefore, we needed to perform language-specific pre-
processing for cropping and rotation augmentation techniques given in the Appendix.

5. Experiments and Results

We perform experiments on three downstream tasks, POS, DEP, and SRL, using the
models described in Section 4.1. We run each experiment 10 times using the same set
of random seeds for the model that operates on the original (unaugmented) and aug-
mented data sets. We compare augmentation techniques to their corresponding unaug-
mented baselines using a paired t-test and report the p-values. We use dark green

for p ≤ 0.05 and light green for 0.05 < p ≤ 0.1 to highlight the cases where the im-

provements over the baselines are statistically significant. Similarly we use dark red
and light red to denote significantly lower scores. Additionally, we use the sign (**)
for p ≤ 0.05 and (*) for 0.05 < p ≤ 0.1 to highlight the cases where the improvements
over the baselines are statistically significant, and similarly the symbols (††) and (†) to
denote significantly lower scores. Color-blind friendly results are additionally given in
the Appendices.

5.1 POS Tagging

POS tagging is considered one of the most fundamental NLP tasks, such that it has been
the initial step in the traditional NLP pipeline for quite a long time. Even in the era of
end-to-end models, it has been shown to improve the performance of the downstream
tasks of higher complexity when employed as a feature. Taking the importance of POS
tagging on higher-level downstream tasks into account, we conduct experiments with
different subword units and training regimes (see Section 4.1 for details) to examine
(i) whether the behavior of the augmentation methods are model-agnostic, and (ii)
whether the improvements are relevant for state-of-the-art models that are fine-tuned
on large pretrained multilingual contextualized language models. The results for the
character (char), BPEs (BPE), and multilingual BERT (mBERT) are given in Table 5. The
languages that lack the corresponding pretrained model (e.g., Kurmanji and BPE) are
not shown in the table.

char. Except for Telugu, at least one of the techniques has significantly improved over
the baselines for all other languages. The token-level methods, RWD and RWS, have
increased the scores of Kazakh and Tamil significantly, while providing a slight increase
for Belarusian and Kurmanji. On the other hand, SR results in a mixture of increase
and decrease in the scores. For instance, Buryat and Kazakh POS taggers benefit signif-
icantly from SR, while the opposite pattern is observed for Belarusian, Kurmanji, and
Telugu. Unlike token-level methods, the character-level ones, CI, CSU, CSW, CD, and
CA, seem to bring more consistent improvements. In particular, Belarusian, Kazakh,
and Tamil POS taggers are significantly improved by most of the character-level tech-
niques, whereas the Vietnamese tagger only benefited from CSU and CA and is slightly
hurt by CD. In the majority of the cases, syntactic methods either slightly decrease the
performance or have not improved significantly. One exception is the Nonce technique,
which led to a significant improvement for Kazakh, and slight improvements for Buryat
and Tamil.

24

Şahin
To

A
ugm

entor
N

otto
A

ugm
ent?

Table 5
Part-of-speech tagging results on original (Org) and augmented data sets, where the results of char are given at the top, BPE in the middle, and mBERT
at the bottom.

Token Level Character Level Syntactic
Org RWD RWS SR CI CSU CSW CD CA Crop Rotate Nonce

c
h
a
r

be 90.29 ± 1.23 90.41 ± 1.68 91.38 ± 1.36 * 88.57 ± 2.48 † 91.00 ± 0.43 ** 91.66 ± 0.39 ** 90.24 ± 1.17 91.60 ± 0.79 ** 91.50 ± 0.63 ** 88.75 ± 2.30 † 90.06 ± 1.12 89.68 ± 1.26
bxr 39.29 ± 4.16 43.77 ± 6.37 41.48 ± 6.13 46.44 ± 3.16 ** 41.36 ± 5.60 * 41.75 ± 5.60 41.15 ± 6.19 41.06 ± 4.83 * 39.99 ± 5.33 43.96 ± 1.53 * 42.37 ± 5.20 42.45 ± 3.57 *
kk 46.24 ± 3.02 49.65 ± 2.75 ** 46.36 ± 3.47 51.25 ± 3.04 ** 49.94 ± 2.91 ** 50.61 ± 3.15 ** 49.51 ± 3.47 ** 48.38 ± 4.0 * 51.49 ± 1.22 ** 42.57 ± 9.04 46.94 ± 2.84 51.45 ± 0.58 **
ku 57.04 ± 3.98 57.70 ± 5.20 58.30 ± 3.25 * 56.28 ± 3.71 † 58.90 ± 3.41 * 57.97 ± 3.11 * 56.99 ± 3.20 56.62 ± 3.40 58.60 ± 2.10 * 57.67 ± 3.71 * 54.46 ± 6.77 57.09 ± 2.68
ta 84.30 ± 1.87 86.96 ± 0.54 * 86.37 ± 0.26 ** 85.94 ± 0.35 86.29 ± 0.40 ** 86.62 ± 0.14 ** 86.37 ± 0.57 ** 86.24 ± 0.62 * 86.33 ± 0.77 * 84.63 ± 0.79 84.36 ± 0.57 85.98 ± 0.80 *
te 90.96 ± 1.38 90.07 ± 1.85 90.51 ± 1.21 90.80 ± 0.36 † 89.90 ± 1.54 90.21 ± 1.23 90.49 ± 1.68 90.62 ± 1.40 90.23 ± 1.73 89.99 ± 0.49 †† 90.01 ± 0.63 † –
vi 77.62 ± 0.54 77.45 ± 0.75 77.10 ± 0.90 77.93 ± 0.21 76.97 ± 0.87 77.88 ± 0.24 77.29 ± 0.25 76.00 ± 0.57 † 78.08 ± 0.76 77.17 ± 0.26 † 77.20 ± 0.45 † –

B
P
E

be 88.43 ± 0.59 89.75 ± 0.42 ** 89.72 ± 0.38 ** 87.61 ± 0.80 † 86.06 ± 1.64 ** 88.73 ± 1.68 87.30 ± 1.59 † 88.41 ± 1.47 89.23 ± 1.53 * 87.83 ± 0.74 87.81 ± 1.81 88.40 ± 1.66
bxr 33.11 ± 0.80 44.21 ± 7.06 ** 41.50 ± 7.81 ** 46.67 ± 7.55 ** 41.82 ± 7.37 ** 43.49 ± 7.72 ** 39.14 ± 5.37 ** 46.06 ± 7.43 ** 42.20 ± 6.91 ** 28.60 ± 9.77 40.47 ± 7.43 ** 44.21 ± 5.51 **
kk 46.20 ± 0.68 50.36 ± 1.75 ** 46.83 ± 0.30 * 50.29 ± 1.66 ** 48.64 ± 2.84 * 47.14 ± 0.52 ** 48.33 ± 1.84 ** 47.28 ± 2.57 47.90 ± 2.40 * 47.02 ± 6.51 49.00 ± 2.16 ** 50.75 ± 2.31
ta 82.76 ± 0.41 81.96 ± 1.00 82.48 ± 0.59 81.51 ± 1.22 82.77 ± 0.31 82.79 ± 0.35 82.22 ± 0.52 82.48 ± 0.49 82.26 ± 0.68 81.69 ± 0.56 80.97 ± 0.64 † 81.97 ± 1.00
te 88.27 ± 0.60 88.60 ± 0.23 * 88.74 ± 0.63 * 87.71 ± 0.63 †† 88.93 ± 0.26 ** 88.21 ± 0.31 87.93 ± 0.67 † 88.27 ± 0.67 88.35 ± 0.34 87.38 ± 0.93 87.68 ± 0.36 –
vi 77.07 ± 0.46 77.83 ± 0.50 ** 77.77 ± 0.33 ** 77.83 ± 0.62 ** 77.42 ± 0.33 77.39 ± 0.54 77.46 ± 0.56 * 77.53 ± 0.37 * 77.72 ± 0.43 ** 75.17 ± 1.08 †† 76.04 ± 0.41 †† –

m
B
E
R
T

be 95.30 ± 0.65 94.50 ± 0.63 † 94.27 ± 0.68 † 94.55 ± 0.92 94.44 ± 1.39 95.70 ± 0.60 ** 95.18 ± 0.74 94.76 ± 1.16 95.56 ± 0.34 * 95.64 ± 0.71 * 95.11 ± 0.70 94.48 ± 1.02
kk 71.34 ± 2.28 70.75 ± 1.89 73.10 ± 1.65 ** 71.88 ± 2.16 * 71.65 ± 1.51 * 69.00 ± 4.01 73.11 ± 0.77 ** 70.90 ± 1.58 72.57 ± 1.92 * 67.42 ± 2.20 72.00 ± 1.59 * 72.45 ± 1.72 **
te 89.92 ± 0.48 89.53 ± 0.95 90.12 ± 1.03 * 88.43 ± 0.81 † 89.49 ± 1.17 88.84 ± 1.41 88.59 ± 0.64 89.40 ± 0.41 † 90.15 ± 1.31 * 88.82 ± 1.01 † 89.01 ± 0.48 † –
vi 82.41 ± 0.72 81.66 ± 0.97 82.75 ± 0.87 81.04 ± 1.37 82.45 ± 0.89 82.09 ± 1.07 82.48 ± 0.81 * 82.20 ± 0.87 82.57 ± 0.65 * 82.28 ± 0.80 82.33 ± 0.79 –

25

Computational Linguistics Volume 48, Number 1

BPE. In general, BPE scores are slightly lower than char, which can be considered
as more room for improvement. Similar to char, we observe improvements over the
baselines by at least one technique, with the exception of Tamil. Contrary to char, token-
level techniques RWD and RWS significantly increase the scores for Belarusian, Buryat,
Kazakh, Telugu, and Vietnamese. Similar to char, SR yields significantly higher scores
for Buryat and Kazakh, while significantly reducing the performance for Belarusian
and Telugu. Although it brings consistent and significant improvements for Buryat
and Kazakh, not many character-level methods lead to higher scores for the other
languages. Finally, except for Buryat and Kazakh, the improvements from syntactic
techniques are not significant, while the performance drop might be severe in cases
like Vietnamese.

mBERT. As expected, the mean baseline scores are the highest for most languages;
however, the augmentation methods still provide significant gains in some cases. The
most significant improvements are achieved in Belarusian by CSU and in Kazakh
by RWS, CSW, and Nonce. Unlike char and BPE, we do not observe a distinct in-
crease or decrease pattern in certain groups of techniques, except from CA, which
achieved significantly higher scores for all languages. However, by manual comparison
of the improved/worsened results, the pattern is found to be closer to char than
to BPE.

Summary and Discussion. To summarize, we observe significant improvements over the
corresponding baselines by a group of augmentation techniques on certain languages
for all experimented models. The token-level methods provide more significant im-
provements for BPE models, whereas character-level methods increase the char models’
performances the most. Except from Nonce and a few exceptional cases, the syntactic-
level augmentation techniques either deteriorate the performance or do not lead to
significant gains. Even though mBERT baselines are quite strong, it is still possible to
achieve significantly better scores—especially for Kazakh, and CA leads to consistent
improvements across experimented languages. On the other hand, we haven’t observed
any significant gains by any augmentation for Telugu-char and Tamil-BPE. We also note
the following decreasing patterns across models: Belarusian-SR, Telugu-SR, Telugu-
Crop, Vietnamese-Crop, and Telugu-Rotate. We believe the inconsistency of SR is due
to: (i) pretrained embeddings do not guarantee a syntactic equivalent of a token, and
(ii) quality of embeddings also suffer from low-resources, namely, small Wikipedia.

Furthermore, the linguistically motivated syntactic techniques such as Crop and
Rotate are found to be less effective than the straightforward techniques that rely on
introducing noise to the system, namely, RWD, RWS, CI, CSU, CSW, CD, and CA. One
important difference between these two categories is the amount of augmented data that
can be generated via both techniques. This amount is limited to linguistic factors for
syntactic techniques, such as the number of subtrees or the number of tokens that
share the same morphological features and dependency labels. On the other hand, the
number of sentences with noise addition is only constrained by the parameters. Hence,
substantially larger amounts of augmented data can be generated via simple techniques
than the more sophisticated ones.

Additionally, we believe that this additional number of noisy sentences provides
informative signals to the POS tagging network. As shown previously (Tenney, Das, and
Pavlick 2019), low-level features like POS tags are mostly encoded at the initial layers
of the network. As layers are added to the network, more sophisticated features that
require understanding of the interaction between tokens are more likely to be captured.

26

Şahin To Augment or Not to Augment?

This is connected to the nature of the unsophisticated augmentation techniques that
treat tokens as isolated items, rather than considering the relation among other tokens
like the syntactic methods. As a result, easier techniques yield stronger associations
at the initial layers, while more sophisticated techniques are more likely to strengthen
the intermediate layers. In addition to easier techniques, the syntactic method Nonce
also advanced the scores of most POS taggers. Although it is considered one of the
sophisticated methods, it targets tokens instead of modifying the sentence structure.

5.2 Dependency Parsing

We use the transition-based parser uuparser and the biaffine parser based on mBERT
from Rust et al. (2021) to conduct the dependency parsing experiments. The mean and
the standard deviation for each language-data set pair are given in Table 6.

uuparser. Compared with POS tagging, the relative improvements over the baseline are
substantially higher. However, unlike POS tagging there is no linear relation between
low baseline scores and larger improvements. For instance, the relative improvement for
Kazakh is only 3%, despite having the second lowest baseline. This suggests that more
factors such as data set statistics and linguistic properties come into play for depen-
dency parsing. Except for Vietnamese, we observe significant gains for all languages by
at least one of the augmentation methods—sometimes by any technique as in Kurmanji.
Similar to POS tagging, SR provides a mixture of results, significantly reducing the
scores for Belarus and Vietnamese, while improving the Kurmanji and Buryat parsers.
Character-level augmentation techniques mostly improve the performance of Belaru-
sian, Buryat, Kazakh, Kurmanji, and Telugu parsers significantly. Unlike POS tagging,
the improvements from syntactic methods are more emphasized for most languages
with the exception of Vietnamese, Belarusian, and Buryat (only in Nonce augmentation
setting).

biaffine. As discussed earlier, mBERT is trained on the top 100 languages with the
largest Wikipedia; however, training is performed on a shared vocabulary. Hence even
if a language is not seen during training, the shared vocabulary might enable zero-
shot learning—especially if the model is trained with related languages. In Table 6,

Table 6
Dependency parsing LAS scores on original (Org) and augmented data sets, where the results of
uuparser are given at the top, and biaffine parser at the bottom. languageˆ denotes that
language is part of the multilingual BERT.

Token Level Character Level Syntactic

Org SR CI CSU CSW CD CA Crop Rotate Nonce

u
u
p
a
r
s
e
r

be 52.85± 0.70 50.10± 0.67 †† 54.05± 0.40 ** 53.39± 0.51 55.37± 1.48 * 54.89± 0.87 * 53.57± 0.97 * 53.01± 1.01 53.03± 0.31 54.27± 0.68
bxr 11.73± 1.65 12.70± 1.84 * 12.39± 1.31 13.04± 1.20 ** 13.83± 0.46 ** 13.44± 1.06 ** 14.06± 1.14 ** 11.99± 1.52 ** 11.43± 1.39 10.70± 0.77 ††
kk 23.82± 0.92 23.82± 0.98 24.36± 0.59 24.80± 0.75 ** 24.87± 0.77 * 24.79± 0.86 * 24.62± 0.83 * 24.09± 0.79 23.76± 0.32 24.78± 1.07 *
ku 21.09± 0.86 23.22± 0.60 ** 23.70± 0.92 ** 24.08± 0.74 ** 23.48± 0.87 * 24.32± 0.55 ** 24.39± 0.12 ** 22.74± 0.35 ** 24.50± 0.44 ** 23.98± 0.31 **
ta 55.52± 0.39 54.27± 1.99 55.39± 0.42 55.15± 0.71 54.89± 0.90 56.11± 0.77 56.52± 1.31 54.62± 0.65 * 55.16± 0.18 * 57.50± 0.43 **
te 77.79± 0.85 76.94± 0.94 77.65± 0.94 78.83± 0.73 * 77.27± 1.12 * 78.11± 0.80 ** 78.87± 0.51 78.01± 0.86 * 78.27± 1.05 * –
vi 55.01± 0.15 48.23± 0.27 †† 53.80± 0.32 52.26± 0.47 † 52.19± 0.36 †† 52.92± 0.23 †† 53.15± 0.42 † 55.33± 0.40 54.87± 0.26 –

b
i
a
f
f
i
n
e

beˆ 78.17± 0.36 79.66± 0.28 80.47± 0.11 ** 80.04± 0.80 ** 78.79± 0.64 80.58± 0.49 ** 80.45± 0.36 ** 79.84± 0.30 ** 79.78± 0.35 ** 79.33± 0.27 **
bxr 17.71± 0.52 18.73± 0.13 ** 17.91± 0.51 17.65± 0.44 17.73± 0.17 17.72± 0.87 17.81± 0.50 * 16.74± 0.88 † 17.59± 0.36 17.12± 0.82
kkˆ 34.23± 0.32 35.49± 0.75 ** 35.61± 0.52 ** 36.69± 0.76 ** 36.30±0.59 ** 35.42± 0.49 ** 35.76± 0.42 ** 34.61± 0.75 * 34.18± 0.42 38.43± 0.17 **
ku 20.48± 0.35 20.64± 0.24 22.16± 0.47 ** 20.49± 0.33 22.56± 0.68 ** 22.71± 0.30 ** 23.13± 0.26 ** 20.53± 0.41 19.39± 0.50 †† 22.82± 0.24 **
taˆ 70.01± 0.62 70.99± 0.21 ** 70.27± 0.10 71.21± 1.08 * 70.54± 0.49 71.13± 0.67 ** 71.47± 0.53 ** 70.89± 0.30 ** 71.11± 1.01 * 71.24± 0.85 **
teˆ 84.60± 0.79 84.60± 0.80 84.28± 0.97 † 84.88± 0.54 ** 85.02± 0.32 ** 84.05± 0.78 †† 84.74± 0.81 85.30± 0.57 ** 84.19± 0.59 †† –
viˆ 66.25± 0.84 62.40± 0.76 †† 63.49± 0.80 †† 63.87± 0.55 †† 64.22± 2.07 †† 64.54± 2.05 †† 64.09± 1.25 †† 66.11± 0.85 65.94± 0.91 –

27

Computational Linguistics Volume 48, Number 1

the languages without an * sign are not included in mBERT training; therefore the
scores are the results of zero-shot learning. Compared with uuparser, all baselines (Org)
are substantially higher as expected—except for Kurmanji. Despite such high scores,
we observe a considerable amount of statistically significant improvements over the
baseline with some exceptions. As with the uuparser, Vietnamese dependency parsing
performance is significantly reduced by augmentation, suggesting that augmentation
methods introduce too much noise for the Vietnamese dependency parser. SR improves
the scores more consistently for Belarus, Kazakh, and Tamil, while not being able to
bring significant gains for the other languages. Character noise injection techniques—
especially CD and CA—boost the performance of most parsers, again with the exception
of Vietnamese and Telugu. Similar to uuparser, syntactic techniques result in higher
scores compared to POS tagging. We observe significant gains from Nonce, while Crop
also improves substantially in most cases—Buryat and Vietnamese are exceptions. Un-
like Nonce and Crop, Rotate gives mixed results.

Summary and Discussion. The similarities among different parsers and POS taggers are
numerous, such as (i) the small number of augmentation techniques that were able to
improve scores for Buryat; (ii) the high performance of character noise methods for
most languages; (iii) the generally confusing scores produced by the SR and rotation, and
(iv) the mostly unimproved or worse results for Vietnamese and Telugu. Considering
the synthetic nature of most languages, where characters (e.g., case markers) provide
valuable information on the relationship between two tokens, high performance of
character-level noise is rather expected. In other words, varying character sequences
may help the network to strengthen the dependency relations. Unlike POS tagging,
we also observe a performance boost from the syntactic augmenters Crop and Nonce,
sometimes leading to the best results, for example, for Vietnamese and Kurmanji. This
suggests that introducing more syntactic variation/noise, even in smaller amounts than
character-level noise, helps in certain cases. Nevertheless, the performance of both
techniques is comparable, and it is not possible to single out one technique that is
guaranteed to improve the results. Additionally, we observe that not all character-level
methods increase the scores and there is no clear pattern to which character noise im-
proves which language. Our results also suggest that a higher number of augmentation
techniques are able to improve significantly over competitive baseline scores provided
by biaffine compared to the mBERT-based POS tagger. One reason may be that the
mBERT model already contains a substantial amount of low-level syntactic knowledge
and augmentation techniques only add noise to the fine-tuning process.

5.3 Semantic Role Labeling

As discussed in Section 4.1, we simulate a low-resource scenario by sampling 250, 500,
and 1,000 training sentences from the original training sets. We perform a grid search
on augmentation parameters for the #sampled = 250 setting, and choose the parameters
with the best average performance for other data set settings. The results are given in
Table 7.

As expected, the relative improvement over the baselines decreases, as the number
of samples increases. For some languages like Finnish, the drop is dramatic, while for
the majority, the decrease is exponential. The only exception is Czech. The reason is the
fine-grained, language-specific semantic annotation scheme that requires larger data
sets. Another noticeable pattern is the decreasing number of augmentation methods
that improve the F1 scores with the increasing sample size. For instance, while six of the

28

Şahin To Augment or Not to Augment?

Table 7
Semantic role labeling results on original (Org) and augmented data sets.

Catalan
#sample Org SR CI CSU CSW CD CA Crop Rotate
250 31.34± 0.99 37.29± 1.26 ** 38.50± 1.37 ** 37.74± 1.64 ** 39.79± 0.25 ** 37.45± 1.58 ** 38.28± 1.48 ** 26.59± 0.52 †† 25.96± 0.62 ††
500 44.53± 1.39 44.12± 1.78 49.75± 0.10 ** 47.77± 0.65 * 46.81± 1.59 * 47.47± 0.62 * 49.46± 0.19 ** 44.30± 1.16 † 44.72± 0.36
1,000 53.06± 1.33 53.49± 0.64 53.80± 0.67 54.83± 0.81 56.37± 0.29 * 55.50± 0.17 * 53.97± 0.96 53.57± 0.07 52.31± 0.96

Turkish
#sample Org SR CI CSU CSW CD CA Crop Rotate
250 31.28± 0.12 31.78± 1.20 31.62± 1.53 30.67± 2.19 30.14± 2.46 32.52± 0.89 * 32.02± 1.53 32.42± 0.64 * 30.37± 1.75
500 35.75± 1.38 35.95± 0.65 36.35± 0.68 38.27± 0.88 * 37.30± 1.05 34.80± 1.96 36.23± 1.37 37.40± 1.07 * 34.58± 1.89
1,000 44.89± 0.80 42.41± 1.20 43.36± 0.67 41.78± 1.39 42.28± 1.31 41.42± 1.38 29.14± 0.47 †† 44.83± 1.07 42.71± 0.76

Spanish
#sample Org SR CI CSU CSW CD CA Crop Rotate
250 31.23± 1.30 34.65± 1.02 * 36.31± 2.28 37.91± 1.21 ** 36.80± 1.90 * 36.76± 2.11 * 37.34± 1.14 ** 26.04± 1.34 †† 26.95± 2.22 ††
500 44.16± 0.68 43.89± 0.65 44.80± 0.81 44.82± 1.10 43.75± 1.36 44.60± 0.72 * 45.03± 0.91 * 42.35± 0.42 †† 41.13± 0.38 ††
1,000 50.98± 1.30 50.80± 1.21 53.03± 0.76 ** 52.53± 0.60 ** 52.10± 1.00 * 52.76± 0.57 ** 54.12± 0.12 ** 51.32± 1.09 52.40± 0.34 *

Czech
#sample Org SR CI CSU CSW CD CA Crop Rotate
250 35.63± 1.08 33.48± 1.58 37.17± 0.13 * 37.56± 0.02 * 31.56± 1.00 † 35.70± 0.80 36.14± 1.78 34.84± 1.55 ** 30.78± 0.38 ††
500 44.96± 0.51 42.04± 1.08 † 46.44± 1.20 * 46.13± 1.97 46.24± 1.60 47.92± 0.59 ** 47.42± 1.07 * 46.38± 0.12 * 44.83± 1.47
1,000 50.29± 0.09 48.15± 0.31 † 48.66± 0.49 † 52.63± 0.97 * 51.10± 1.23 47.85± 1.19 † 51.97± 0.54 * 49.33± 1.36 48.45± 1.34

Finnish
#sample Org SR CI CSU CSW CD CA Crop Rotate
250 18.80± 0.89 18.60± 2.34 17.18± 1.56 19.68± 1.16 25.71± 0.80 ** 28.87± 1.55 ** 27.96± 0.44 ** 30.83± 0.17 ** 20.07± 2.42
500 37.23± 0.35 34.10± 1.61 35.59± 0.87 † 36.88± 0.29 † 38.98± 0.03 * 35.29± 0.99 † 35.32± 1.63 37.58± 0.93 * 35.16± 1.08
1,000 41.64± 0.98 40.15± 0.95 † 41.27± 0.84 41.41± 1.08 39.80± 0.81 40.57± 1.17 41.99± 0.04 41.35± 1.37 39.08± 0.34 †

methods increase the SRL performance in the #sample = 250 setting for Catalan, only
two of them provides improvement for the #sample = 1,000 setting—which are also less
significant.

We see one distinctive pattern for the languages Turkish, Czech, and Finnish. Un-
like Spanish and Catalan, the syntactic operation crop improves the performances for
almost all settings. We believe this is due to the rich case marking systems of these
languages that enable generating almost natural sentences from subtrees. Furthermore,
we observe that the rotation operation introduces a high amount of noise that cannot be
regularized easily with the models. One reason for more consistent improvements with
the cropping operation is related the semantic role statistics. Most treebanks in this
study are dominated by the core arguments, namely, Arg0, Arg1. These core arguments
are usually observed as subjects or objects. In addition, many predicates are encoun-
tered with missing arguments, that is, it is more likely to see a predicate with only one
of the arguments than containing all. We believe cropping introduces more variation
in terms of core arguments compared to rotation, which provides more signals for the
cases such as missing arguments. For Spanish and Catalan, the gains are almost always
provided by character-level noise. On the contrary, both languages never benefit from
the syntactic operations, as expected.

5.4 Summary of the Findings

We summarize the key findings from experiments from different perspectives: lan-
guages, downstream tasks, augmentation techniques, and models.

5.4.1 Languages

• Most languages see significant improvements in at least one augmentation
configuration independent of tasks, models, and the data set sizes.

• Vietnamese has mostly witnessed drops in scores, which were especially
highlighted in dependency parsing. This suggests that the augmentation
methods may be less effective for analytic languages.

29

Computational Linguistics Volume 48, Number 1

• We have not observed any significant difference between fusional and
agglutinative languages by means of POS and DEP scores, although the
differences between syntactic and non-syntactic augmentation techniques
were pronounced for languages with different morphological properties.

• The suitability of augmentation techniques have been found to be
dependent on the language and subword unit pair. For instance, Tamil
POS tagging with BPE baseline could not be improved, where we have
observed significant improvements over the Tamil POS tagging char

baseline.

• We have detected inconsistent results for the Telugu language in the
majority of cases. Furthermore, we have not seen many configurations that
led to substantial improvements. Telugu had the second largest number of
significant declines in performance after Vietnamese. We believe this may
be due to Telugu having one of the largest treebanks, and augmentation
techniques adding unmeaningful noise to the already strong baseline.

5.4.2 Tasks

• We have found many similarities between the results for POS and DEP.
The most important ones are: (i) character-level augmentations providing
significant improvements in most cases and (ii) inconsistent results from
SR and rotation methods.

• The task that has been improved the most (i.e., statistically significant
improvements with a large gap over the baseline) was DEP, followed by
POS and SRL. In other words, the experimented augmentation benefited
the task with the intermediate complexity the most.

• Strong baseline scores provided by exploiting large pretrained
contextualized embeddings were more likely to be further improved for
DEP (e.g., biaffine) than POS (e.g., mBERT).

5.4.3 Augmentation Techniques

• The most consistent augmenters across tasks, models, and languages were
found to be the character-level ones.

• A satisfactory choice of augmentation techniques depends heavily on the
input unit. For instance, token-level augmentation provides significant
improvements for BPE, while character-level augmentation gives higher
scores for char and WordPiece of mBERT.

• The performance of SR has been detected as irregular. The reason may be
that it relies on external pretrained embeddings that may be of
lower-quality for some of the languages.

• Even if we have not found one single winner across character-level
augmentation methods, the mixed character noise, namely, CA, has
improved the POS, DEP, and SRL tasks more consistently.

30

Şahin To Augment or Not to Augment?

• Among the syntactic augmenters, crop and Nonce have been found to be
more reliable compared with rotate—with some exceptions like the case
for BPE.

5.4.4 Models

• We observed almost a regular improvement pattern among different
models for DEP, such as a significant drop in scores for Vietnamese. Even
though there were some similarities among models for POS, such as
syntactic augmenters achieving the lowest scores, a regular pattern was
not visible. The reason might be the difference among the subword units
in POS.5

• Strong baseline scores provided by exploiting large pretrained
contextualized embeddings were more likely to be further improved for
DEP (e.g., biaffine) than POS (e.g., mBERT). This may be due to mBERT

already containing a substantial amount of low-level syntactic knowledge
(e.g., POS), hence augmentation techniques only add noise to the
fine-tuning process.

6. Analysis

In this section, we first discuss the parameter choice for augmentation techniques and
conduct a case study on POS tagging to analyze their sensitivity to parameter choice and
their performance range. Next, we study the performance of individual augmentation
techniques on frequent and infrequent tokens and lexical types to reveal whether the
performance improvement also corresponds to better generalization in out-of-domain
settings.

6.1 Augmentation Parameters

Augmentation methods are parameterized and their performance may be sensitive
to changes in parameter values. However in a real-world low-case scenario (mostly)
without any development set, parameter tuning may not always be possible. Therefore
we create augmented data sets using all combinations of augmentation parameters
described in Section 3 (e.g., 4× 4× 2 = 32 augmented data sets with RWD method for
each treebank). To analyze the behavior of each augmentation technique, we perform a
grid search on the parameters and draw the box plots for each augmentation method
on Belarusian, Tamil, Vietnamese, Buryat, Kazakh, and Kurmanji POS tagging shown in
Figure 5. The box plots ensure that the augmentation techniques can be compared with
respect to their performance range and their sensitivity to parameters rather than their
best performance.

Belarusian. The median lines of RWD, RWS, CI, CSU, CA, and the Nonce lie outside of
the Org (baseline) box. This suggests that these techniques are statistically likely to per-
form higher than the baseline. Out of these methods, Nonce and RWD performance are
found to be less dispersed than the others, that is, are more prone to parameter changes.

5 All POS models use distinct input types: character, BPE, and WordPiece; while uuparser (using a
combination of char and word) and biaffine (WordPiece) parsers are likely to share more vocabulary.

31

Computational Linguistics Volume 48, Number 1

Figure 5
Box plots for augmentation model performances on POS Tagging. Org box refers to the baseline
on the original data set, while other techniques are defined in Section 3.

The min-max range of Nonce is quite smaller than others, signaling the reliability of the
method. There are only a few outliers to most techniques, suggesting that the results
mostly follow a distribution.

Tamil. For Tamil, only RWS and Nonce median lines lie above the baseline box. Similar to
Belarusian, the box length and the min-max range of Nonce is smaller than RWS, hinting
at the reliability of the model. Unlike Belarusian, SR, crop, and rotate lie under the
box, meaning that they are likely to yield worse results than the baseline. Similarly, the
number of outliers are limited and the maximum improvement over the best baseline
model is around 0.7%.

32

Şahin To Augment or Not to Augment?

Vietnamese, Hungarian. For Vietnamese, there are no methods that are significantly better
than the baseline, but only worse: CD, crop, and rotate. Although the maximum value
of SR surpasses the best baseline model, the box plots reveal that this is statistically
unlikely. A similar pattern is observed for Hungarian, despite being from a different
language family.

Buryat, Telugu. While the training data set of Buryat is the smallest of all, even modest
changes in parameters may lead to outliers. Interestingly, we found none of the tech-
niques to be significantly better or worse than the baseline according to the median
lines. However, the outliers provide a performance boost around 8% over the best
baseline. Even the plot is not shown for convenience; we noticed that all augmentation
techniques, except for SR, provide neither a significant drop nor an increase in the scores
for Telugu, similar to Buryat.

Kazakh, Kurmanji. For both languages, the median lines above the baseline box are
the character-level methods and the syntactic method Nonce. In Kazakh, similar to
Belarusian and Tamil, Nonce has the smallest box and the min-max range. For Kurmanji,
however, CA has the smallest box and min-max range instead of Nonce. Kazakh and
Kurmanji, as the languages with the lowest resources, benefit significantly more from
character-level augmentation compared with other languages. This may be due to a
higher ratio of out-of-vocabulary words for these treebanks. In other words, association
of a character set to POS labels is more important than association of tokens with POS
labels. Apparently, character-level noise helps to strengthen such links.

6.2 Frequency Analysis

Besides improving the downstream task scores, one of the important goals of an aug-
mentation method is to increase the generalization capability of the model. In order to
evaluate the extent of this skill, we measure the individual performances on frequent
and infrequent tokens along with word types. We perform a case study on dependency
parsing because it stands between POS and SRL by means of complexity. The results are
given in Figure 6.

Frequent vs. Infrequent Tokens. First, we define the token as frequent if it is among the
top 10% in the token frequency list extracted from the combination of training and

Figure 6
Individual contributions of correct labeling of frequent and infrequent tokens and POS tags to
the overall parser performance. Shown separately for each augmentation technique.

33

Computational Linguistics Volume 48, Number 1

development set. Next, we create a vocabulary of frequent tokens and then measure
the LAS scores individually for frequent and infrequent tokens for each language and
augmentation technique. Finally, we average the scores over all languages to ease the
presentation of the results. The results show that only SR, CSW, Rotate, and Nonce
improve the scores of infrequent tokens than frequent ones. SR and Nonce are likely
to replace frequent tokens with infrequent ones, since their objective is to replace words
with another. However, CSW and Rotate are not designed to replace tokens. We believe
character switching sometimes coincidentally resulted in rare tokens, and the Rotate
operation has randomly chosen the subtrees with rare tokens to augment. Interestingly,
there is no one-to-one correspondence between the techniques that improved the de-
pendency scores the most and the techniques that improved labeling of infrequent
tokens the most. This may be due to building the vocabulary over tiny training sets and
identifying the frequent/rare tokens accordingly. Therefore we analyze a more general
property: POS tags.

Frequent vs. Infrequent POS Tags. We perform a similar analysis for the token class—
using the gold POS tags as the class. Because the number of unique POS tags is much
lower than unique tokens, we identify the top 50% of the POS tags as frequent. We
use the same calculation technique as above. The results show that all techniques
improve the performance on rare token classes more than the frequent ones; however,
there still does not exist a direct correlation between the best performing technique
and the improvement over infrequent POS tags. This suggests that the improvement
cannot simply be explained by frequency analysis, that is, the method that focuses on
improving rare tokens or token classes is not guaranteed to improve the overall score.
This is because the parser’s performance is a more complicated multivariate variable
that relies on many other factors apparent in data set statistics.

7. Conclusion

Neural models have emerged as the standard model for a wide range of NLP tasks,
including part-of-speech tagging, dependency parsing, and semantic role labeling—
the task of assigning semantic role labels to predicate-argument pairs. These models
were shown to provide state-of-the-art scores in the presence of large training data
sets, although they still fall behind traditional statistical techniques in genuinely low-
resource scenarios. One method that is commonly used to overcome the low data set
size problem is enhancing the original data set synthetically, which is referred to as data
augmentation. Recently, a variety of text augmentation techniques have been proposed
such as replacing words with their synonyms or related words, injecting spelling errors,
generating grammatically correct but meaningless sentences, simplifying sentences, and
many more.

Despite the richness of augmentation literature, previous work mostly explores text
classification and machine translation tasks on high-resource languages, and reports
single scores. In this study, on the contrary, we provide a more detailed performance
analysis of the existing augmentation techniques on a diverse set of languages and
traditional sequence tagging tasks that are more sensitive to noise. First, we compile
a rich set of augmentation methods of different categories that can be applied to our
tasks and languages, namely, character level, token level, and syntactic level. Then
we systematically compare them on the following downstream tasks: part-of-speech
tagging, dependency parsing, and semantic role labeling. We conduct experiments on
truly low-resource languages (when possible) such as Buryat, Kazakh, and Kurmanji;

34

Şahin To Augment or Not to Augment?

and simulate a low-resource setting on a diverse set of languages such as Catalan,
Turkish, Finnish, and Czech when data are not available.

We find that the easy-to-apply techniques such as injecting character-level noise
or generating grammatical, meaningless sentences provide gains across languages
more consistently for the majority of cases. Compared with POS tagging, we have
observed more significant improvements over the baseline for dependency parsing.
Although the augmentation patterns for dependency parsing are found similar to
POS tagging, a few differences, such as larger gains from syntactic methods, are
noted. Again, the largest improvements in dependency parsers are mostly obtained by
injecting character-level noises. For SRL, we show that the improvement from augmen-
tation decreases with more training samples, along with the number of augmentation
techniques that increases the scores. We observe that languages with fusional mor-
phology almost always benefit from character-level noise the most; but always suffer
from the syntactic operations crop and rotate. On the contrary, agglutinative languages
such as Turkish and Finnish benefit from cropping, while character-level augmentation
may provide inconsistent improvements. We show that augmentation techniques can
provide consistent and statistically significant improvements for all languages except
Vietnamese and Telugu. We find that the improvements do not solely depend on the task
architecture, that is, augmentation methods can further improve on the strong biaffine

parser as well as the weaker uuparser.

Acknowledgments
We first thank the anonymous reviewers
who helped us improve the article. We
would like to thank Clara Vania, Benjamin
Heinzerling, Jonas Pfeiffer, and Phillip Rust
for the valuable discussions and providing
early access to their implementations. We
finally thank Celal Şahin, Necla İşgüder, and
Osman İşgüder for their invaluable support
during the writing of this article.

References
Anaby-Tavor, Ateret, Boaz Carmeli, Esther

Goldbraich, Amir Kantor, George Kour,
Segev Shlomov, Naama Tepper, and
Naama Zwerdling. 2020. Do not have
enough data? Deep learning to the rescue!
In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI
2020, pages 7383–7390. https://doi
.org/10.1609/aaai.v34i05.6233

Andreas, Jacob. 2020. Good-enough
compositional data augmentation. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics,
pages 7556–7566. https://doi.org/10
.18653/v1/2020.acl-main.676

Belinkov, Yonatan and Yonatan Bisk. 2018.
Synthetic and natural noise both break

neural machine translation. In 6th
International Conference on Learning
Representations, ICLR 2018, Conference Track
Proceedings, pages 1–13.

Chen, Hannah, Yangfeng Ji, and David
Evans. 2020. Finding friends and flipping
frenemies: Automatic paraphrase data set
augmentation using graph theory. In
Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4741–4751.
https://doi.org/10.18653/v1/2020
.findings-emnlp.426

Chen, Jiaao, Derek Tam, Colin Raffel, Mohit
Bansal, and Diyi Yang. 2021. An empirical
survey of data augmentation for limited
data learning in NLP. CoRR,
abs/2106.07499:1–19.

Chen, Jiaao, Zhenghui Wang, Ran Tian,
Zichao Yang, and Diyi Yang. 2020a. Local
additivity based data augmentation for
semi-supervised NER. In Proceedings
of the 2020 Conference on Empirical
Methods in Natural Language Processing,
EMNLP 2020, pages 1241–1251. https://
doi.org/10.18653/v1/2020.emnlp-
main.95

Chen, Jiaao, Zichao Yang, and Diyi Yang.
2020b. MixText: Linguistically-informed
interpolation of hidden space for
semi-supervised text classification. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics,
pages 2147–2157. https://doi.org/10
.18653/v1/2020.acl-main.194

35

https://doi.org/10.1609/aaai.v34i05.6233
https://doi.org/10.1609/aaai.v34i05.6233
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.findings-emnlp.426
https://doi.org/10.18653/v1/2020.findings-emnlp.426
https://doi.org/10.18653/v1/2020.emnlp-main.95
https://doi.org/10.18653/v1/2020.emnlp-main.95
https://doi.org/10.18653/v1/2020.emnlp-main.95
https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194

Computational Linguistics Volume 48, Number 1

de Lhoneux, Miryam, Sara Stymne, and
Joakim Nivre. 2017. Arc-hybrid
non-projective dependency parsing with a
static-dynamic oracle. In Proceedings of the
15th International Conference on Parsing
Technologies, IWPT 2017, pages 99–104.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Volume 1
(Long and Short Papers), pages 4171–4186.

Ding, Bosheng, Linlin Liu, Lidong Bing,
Canasai Kruengkrai, Thien Hai Nguyen,
Shafiq Joty, Luo Si, and Chunyan Miao.
2020. DAGA: Data augmentation with a
generation approach for low-resource
tagging tasks. In Proceedings of the 2020
Conference on Empirical Methods in Natural
Language Processing (EMNLP),
pages 6045–6057. https://doi.org/10
.18653/v1/2020.emnlp-main.488

Fadaee, Marzieh, Arianna Bisazza, and
Christof Monz. 2017. Data augmentation
for low-resource neural machine
translation. In Proceedings of the 55th
Annual Meeting of the Association for
Computational Linguistics, ACL 2017,
Volume 2: Short Papers, pages 567–573.
https://doi.org/10.18653/v1/P17-2090

Feng, Steven Y., Varun Gangal, Dongyeop
Kang, Teruko Mitamura, and Eduard
Hovy. 2020. GenAug: Data augmentation
for finetuning text generators. In
Proceedings of Deep Learning Inside Out
(DeeLIO): The First Workshop on Knowledge
Extraction and Integration for Deep Learning
Architectures, pages 29–42. https://doi
.org/10.18653/v1/2020.deelio-1.4

Feng, Steven Y., Varun Gangal, Jason Wei,
Sarath Chandar, Soroush Vosoughi, Teruko
Mitamura, and Eduard H. Hovy. 2021. A
survey of data augmentation approaches
for NLP. In Findings of the Association for
Computational Linguistics: ACL/IJCNLP
2021, pages 968–988. https://doi.org
/10.18653/v1/2021.findings-acl.84

Feng, Steven Y., Aaron W. Li, and Jesse Hoey.
2019. Keep calm and switch on! Preserving
sentiment and fluency in semantic text
exchange. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language
Processing (EMNLP-IJCNLP),
pages 2701–2711.

Futrell, Richard, Kyle Mahowald, and
Edward Gibson. 2015. Quantifying word
order freedom in dependency corpora. In
Proceedings of the Third International
Conference on Dependency Linguistics
(Depling 2015), pages 91–100.

Gao, Fei, Jinhua Zhu, Lijun Wu, Yingce Xia,
Tao Qin, Xueqi Cheng, Wengang Zhou,
and Tie-Yan Liu. 2019. Soft contextual data
augmentation for neural machine
translation. In Proceedings of the 57th
Annual Meeting of the Association for
Computational Linguistics, pages 5539–5544.
https://doi.org/10.18653/v1/P19-1555

Glavas, Goran and Ivan Vulic. 2021. Is
supervised syntactic parsing beneficial for
language understanding tasks? An
empirical investigation. In Proceedings of
the 16th Conference of the European Chapter of
the Association for Computational Linguistics:
Main Volume, EACL 2021, pages 3090–3104.
https://doi.org/10.18653/v1/2021
.eacl-main.270

Grave, Edouard, Piotr Bojanowski, Prakhar
Gupta, Armand Joulin, and Tomas
Mikolov. 2018. Learning word vectors for
157 languages. In Proceedings of the
International Conference on Language
Resources and Evaluation (LREC 2018),
pages 3483–3487.

Grundkiewicz, Roman, Marcin
Junczys-Dowmunt, and Kenneth Heafield.
2019. Neural grammatical error correction
systems with unsupervised pre-training
on synthetic data. In Proceedings of the
Fourteenth Workshop on Innovative Use of
NLP for Building Educational Applications,
pages 252–263. https://doi.org/10
.18653/v1/W19-4427

Gulordava, Kristina, Piotr Bojanowski,
Edouard Grave, Tal Linzen, and Marco
Baroni. 2018. Colorless green recurrent
networks dream hierarchically. In
Proceedings of the 2018 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, Volume 1
(Long Papers), pages 1195–1205.
https://doi.org/10.18653/v1/N18-1108

Guo, Demi, Yoon Kim, and Alexander M.
Rush. 2020. Sequence-level mixed sample
data augmentation. In Proceedings of the
2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020,
pages 5547–5552. https://doi.org/10
.18653/v1/2020.emnlp-main.447

Guo, Hongyu. 2020. Nonlinear mixup:
Out-of-manifold data augmentation for
text classification. In The Thirty-Fourth

36

https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/P17-2090
https://doi.org/10.18653/v1/2020.deelio-1.4
https://doi.org/10.18653/v1/2020.deelio-1.4
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/P19-1555
https://doi.org/10.18653/v1/2021.eacl-main.270
https://doi.org/10.18653/v1/2021.eacl-main.270
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/2020.emnlp-main.447
https://doi.org/10.18653/v1/2020.emnlp-main.447

Şahin To Augment or Not to Augment?

AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020,
pages 4044–4051. https://doi.org/10
.1609/aaai.v34i04.5822

Guo, Hongyu, Yongyi Mao, and Richong
Zhang. 2019a. Augmenting data
with mixup for sentence classification:
An empirical study. CoRR.,
abs/1905.08941:1–7.

Guo, Hongyu, Yongyi Mao, and Richong
Zhang. 2019b. Mixup as locally linear
out-of-manifold regularization. In The
Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019,
pages 3714–3722. https://doi.org/10
.1609/aaai.v33i01.33013714

Han, Wenjuan, Liwen Zhang, Yong Jiang,
and Kewei Tu. 2020. Adversarial attack
and defense of structured prediction
models. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language
Processing, EMNLP 2020, pages 2327–2338.
https://doi.org/10.18653/v1/2020
.emnlp-main.182

Haverinen, Katri, Jenna Kanerva, Samuel
Kohonen, Anna Missila, Stina Ojala, Timo
Viljanen, Veronika Laippala, and Filip
Ginter. 2015. The Finnish Proposition
Bank. Language Resources and Evaluation,
49(4):907–926. https://doi.org/10.1007
/s10579-015-9310-y

Hedderich, Michael A., Lukas Lange, Heike
Adel, Jannik Strötgen, and Dietrich
Klakow. 2021. A survey on recent
approaches for natural language
processing in low-resource scenarios. In
Proceedings of the 2021 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021,
pages 2545–2568. https://doi.org/10
.18653/v1/2021.naacl-main.201

Heinzerling, Benjamin and Michael Strube.
2018. BPEmb: Tokenization-free
pre-trained subword embeddings in 275
languages. In Proceedings of the Eleventh
International Conference on Language
Resources and Evaluation, LREC 2018,
pages 2989–2993.

Heinzerling, Benjamin and Michael Strube.
2019. Sequence tagging with contextual

and non-contextual subword
representations: A multilingual evaluation.
In Proceedings of the 57th Conference of the
Association for Computational Linguistics,
ACL 2019, Volume 1: Long Papers,
pages 273–291.

Jindal, Amit, Arijit Ghosh Chowdhury,
Aniket Didolkar, Di Jin, Ramit Sawhney,
and Rajiv Ratn Shah. 2020a. Augmenting
NLP models using latent feature
interpolations. In Proceedings of the 28th
International Conference on Computational
Linguistics, pages 6931–6936.
https://doi.org/10.18653/v1/2020
.coling-main.611

Jindal, Amit, Narayanan Elavathur
Ranganatha, Aniket Didolkar, Arijit Ghosh
Chowdhury, Di Jin, Ramit Sawhney, and
Rajiv Ratn Shah. 2020b. SpeechMix -
augmenting deep sound recognition using
hidden space interpolations. In
INTERSPEECH, pages 861–865.
https://doi.org/10.21437
/Interspeech.2020-3147

Karpukhin, Vladimir, Omer Levy, Jacob
Eisenstein, and Marjan Ghazvininejad.
2019. Training on synthetic noise improves
robustness to natural noise in machine
translation. In Proceedings of the 5th
Workshop on Noisy User-generated Text,
W-NUT@EMNLP 2019, pages 42–47.
https://doi.org/10.18653/v1/D19
-5506

Kiperwasser, Eliyahu and Yoav Goldberg.
2016. Simple and accurate dependency
parsing using bidirectional LSTM feature
representations. TACL, 4:313–327.
https://doi.org/10.1162/tacl_a_00101

Kobayashi, Sosuke. 2018. Contextual
augmentation: Data augmentation by
words with paradigmatic relations. In
Proceedings of the 2018 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers),
pages 452–457. https://doi.org/10
.18653/v1/N18-2072

Kolomiyets, Oleksandr, Steven Bethard,
and Marie-Francine Moens. 2011.
Model-portability experiments for textual
temporal analysis. In The 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies,
Proceedings of the Conference, Short Papers,
pages 271–276.

Kumar, Varun, Ashutosh Choudhary, and
Eunah Cho. 2020. Data augmentation
using pre-trained transformer models. In
Proceedings of the 2nd Workshop on Life-long

37

https://doi.org/10.1609/aaai.v34i04.5822
https://doi.org/10.1609/aaai.v34i04.5822
https://doi.org/10.1609/aaai.v33i01.33013714
https://doi.org/10.1609/aaai.v33i01.33013714
https://doi.org/10.18653/v1/2020.emnlp-main.182
https://doi.org/10.18653/v1/2020.emnlp-main.182
https://doi.org/10.1007/s10579-015-9310-y
https://doi.org/10.1007/s10579-015-9310-y
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2020.coling-main.611
https://doi.org/10.18653/v1/2020.coling-main.611
https://doi.org/10.21437/Interspeech.2020-3147
https://doi.org/10.21437/Interspeech.2020-3147
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072

Computational Linguistics Volume 48, Number 1

Learning for Spoken Language Systems,
pages 18–26.

Ling, Wang, Chris Dyer, Alan W. Black,
Isabel Trancoso, Ramon Fermandez, Silvio
Amir, Luı́s Marujo, and Tiago Luı́s. 2015.
Finding function in form: Compositional
character models for open vocabulary
word representation. In Proceedings of the
2015 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2015,
pages 1520–1530. https://doi.org/10
.18653/v1/D15-1176

Louvan, Samuel and Bernardo Magnini.
2020. Simple is better! Lightweight data
augmentation for low resource slot filling
and intent classification. In Proceedings of
the 34th Pacific Asia Conference on Language,
Information and Computation,
pages 167–177.

Nguyen, Xuan Phi, Shafiq Joty, Kui Wu, and
Ai Ti Aw. 2020. Data diversification: A
simple strategy for neural machine
translation. In Advances in Neural
Information Processing Systems, volume 33,
pages 10018–10029.

Palmer, Martha, Dan Gildea, and Paul
Kingsbury. 2005. The proposition bank: A
corpus annotated with semantic roles.
Computational Linguistics, 31(1):10–1162.
https://doi.org/10.1162
/0891201053630264

Pennington, Jeffrey, Richard Socher, and
Christopher D. Manning. 2014. GloVe:
Global vectors for word representation. In
Proceedings of the 2014 Conference on
Empirical Methods in Natural Language
Processing, EMNLP 2014, A Meeting of
SIGDAT, a Special Interest Group of the ACL,
pages 1532–1543. https://doi.org/10
.3115/v1/D14-1162

Rosa, Rudolf and David Marecek. 2018.
CUNI x-ling: Parsing under-resourced
languages in CoNLL 2018 UD shared task.
In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw
Text to Universal Dependencies,
pages 187–196.

Rust, Phillip, Jonas Pfeiffer, Ivan Vulic,
Sebastian Ruder, and Iryna Gurevych.
2021. How good is your tokenizer? On the
monolingual performance of multilingual
language models. In Proceedings of the 59th
Annual Meeting of the Association for
Computational Linguistics and the 11th
International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), pages 3118–3135.
https://doi.org/10.18653/v1/2021
.acl-long.243

Şahin, Gözde Gül. 2016. Verb sense
annotation for Turkish PropBank via
crowdsourcing. In International Conference
on Intelligent Text Processing and
Computational Linguistics, pages 496–506.
https://doi.org/10.1007/978-3-319
-75477-2 35

Şahin, Gözde Gül and Esref Adali. 2018.
Annotation of semantic roles for the
Turkish proposition bank. Language
Resources and Evaluation, 52(3):673–706.
https://doi.org/10.1007/s10579-017
-9390-y

Şahin, Gözde Gül and Mark Steedman. 2018.
Data augmentation via dependency tree
morphing for low-resource languages. In
Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, pages 5004–5009.
https://doi.org/10.18653/v1/D18-1545

Sennrich, Rico, Barry Haddow, and
Alexandra Birch. 2016a. Improving neural
machine translation models with
monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), pages 86–96. https://doi.org
/10.18653/v1/P16-1009

Sennrich, Rico, Barry Haddow, and
Alexandra Birch. 2016b. Neural machine
translation of rare words with subword
units. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 1715–1725. https://doi.org/10
.18653/v1/P16-1162

Singh, Jasdeep, Bryan McCann,
Nitish Shirish Keskar, Caiming Xiong, and
Richard Socher. 2019. XLDA: Cross-lingual
data augmentation for natural language
inference and question answering. arXiv
preprint arXiv:1905.11471. pages 1–10.

Sulubacak, Umut and Gülşen Eryiğit. 2018.
Implementing universal dependency,
morphology, and multiword expression
annotation standards for Turkish language
processing. Turkish Journal of Electrical
Engineering & Computer Sciences,
26(3):1662–1672. https://doi.org/10
.3906/elk-1706-81

Sulubacak, Umut, Gülşen Eryiğit, and Tuğba
Pamay. 2016. IMST: A revisited Turkish
dependency treebank. In 1st International
Conference on Turkic Computational
Linguistics, pages 1–6.

Tenney, Ian, Dipanjan Das, and Ellie Pavlick.
2019. BERT rediscovers the classical NLP
pipeline. In Proceedings of the 57th
Conference of the Association for

38

https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.1007/978-3-319-75477-2_35
https://doi.org/10.1007/978-3-319-75477-2_35
https://doi.org/10.1007/s10579-017-9390-y
https://doi.org/10.1007/s10579-017-9390-y
https://doi.org/10.18653/v1/D18-1545
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.3906/elk-1706-81
https://doi.org/10.3906/elk-1706-81

Şahin To Augment or Not to Augment?

Computational Linguistics, ACL 2019,
Volume 1: Long Papers, pages 4593–4601,
https://doi.org/10.18653/v1
/P19-1452

Vaibhav, Vaibhav, Sumeet Singh, Craig
Stewart, and Graham Neubig. 2019.
Improving robustness of machine
translation with synthetic noise. In
Proceedings of the 2019 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 1916–1920.
https://doi.org/10.18653/v1/N19-1190

Vania, Clara, Yova Kementchedjhieva,
Anders Søgaard, and Adam Lopez. 2019.
A systematic comparison of methods for
low-resource dependency parsing on
genuinely low-resource languages. In
Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, pages 1105–1116,
https://doi.org/10.18653/v1/D19-1102

Vaswani, Ashish, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information
Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017,
pages 5998–6008.

Vickrey, David and Daphne Koller. 2008.
Sentence simplification for semantic role
labeling. In ACL 2008, Proceedings of the
46th Annual Meeting of the Association for
Computational Linguistics, pages 344–352.

Wang, William Yang and Diyi Yang. 2015.
That’s so annoying!!!: A lexical and
frame-semantic embedding based data
augmentation approach to automatic
categorization of annoying behaviors
using #petpeeve tweets. In Proceedings of
the 2015 Conference on Empirical Methods in
Natural Language Processing,
pages 2557–2563. https://doi.org/10
.18653/v1/D15-1306

Wang, Xinyi, Hieu Pham, Zihang Dai, and
Graham Neubig. 2018. SwitchOut: An
efficient data augmentation algorithm for
neural machine translation. In Proceedings
of the 2018 Conference on Empirical Methods
in Natural Language Processing,
pages 856–861. https://doi.org/10
.18653/v1/D18-1100

Wei, Jason and Kai Zou. 2019. EDA: Easy
data augmentation techniques for boosting
performance on text classification tasks. In

Proceedings of the 2019 Conference on
Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6382–6388.
https://doi.org/10.18653/v1/D19-1670

Wieting, John and Kevin Gimpel. 2017.
Revisiting recurrent networks for
paraphrastic sentence embeddings. In
Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 2078–2088.
https://doi.org/10.18653/v1/P17-1190

Wu, Xing, Shangwen Lv, Liangjun Zang,
Jizhong Han, and Songlin Hu. 2019.
Conditional BERT contextual
augmentation. In Computational Science -
ICCS 2019 - 19th International Conference,
Proceedings, Part IV, pages 84–95. https://
doi.org/10.1007/978-3-030-22747-0_7

Yoo, Kang Min, Dongju Park, Jaewook Kang,
Sang-Woo Lee, and Woomyeong Park.
2021. GPT3Mix: Leveraging large-scale
language models for text augmentation.
CoRR, abs/2104.08826:1–11.
https://doi.org/10.18653/v1/2021
.findings-emnlp.192

Zeman, Daniel, Jan Hajic, Martin Popel,
Martin Potthast, Milan Straka, Filip Ginter,
Joakim Nivre, and Slav Petrov. 2018.
CoNLL 2018 shared task: Multilingual
parsing from raw text to universal
dependencies. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies,
pages 1–21.

Zeman, Daniel, Joakim Nivre, Mitchell
Abrams, et al. 2020. Universal
dependencies 2.6. LINDAT/CLARIAH-CZ
digital library at the Institute of Formal
and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles
University.

Zhang, Hongyi, Moustapha Cissé, Yann N.
Dauphin, and David Lopez-Paz. 2018.
Mixup: Beyond empirical risk
minimization. arXiv preprint
arXiv:1710.09412v2

Zhang, Rongzhi, Yue Yu, and Chao Zhang.
2020. SeqMix: Augmenting Active
Sequence Labeling via Sequence Mixup. In
Proceedings of the 2020 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 8566–8579.
https://doi.org/10.18653/v1/2020
.emnlp-main.691

Zhang, Tianyi, Varsha Kishore, Felix Wu,
Kilian Q. Weinberger, and Yoav Artzi.
2020. BERTScore: Evaluating text

39

https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/N19-1190
https://doi.org/10.18653/v1/D19-1102
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D18-1100
https://doi.org/10.18653/v1/D18-1100
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/P17-1190
https://doi.org/10.1007/978-3-030-22747-0_7
https://doi.org/10.1007/978-3-030-22747-0_7
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2021.findings-emnlp.192
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691

Computational Linguistics Volume 48, Number 1

generation with BERT. In 8th International
Conference on Learning Representations, ICLR
2020, pages 1–43.

Zhang, Xiang, Junbo Jake Zhao, and Yann
LeCun. 2015. Character-level
convolutional networks for text
classification. In Advances in Neural
Information Processing Systems 28: Annual
Conference on Neural Information Processing
Systems 2015, pages 649–657.

Zheng, Xiaoqing, Jiehang Zeng, Yi Zhou,
Cho-Jui Hsieh, Minhao Cheng, and
Xuanjing Huang. 2020. Evaluating and
enhancing the robustness of neural
network-based dependency parsing
models with adversarial examples. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics,
ACL 2020, pages 6600–6610. https://doi
.org/10.18653/v1/2020.acl-main.590

8. Appendix

Appendix J: SRL Preprocessing

Turkish. We use Modifier, Subject

and Object dependency labels as LOI
and merge the predicate tokens linked
with MWE (Multi Word Expression), and
Deriv (Derivation) while performing
augmentation. In order to comply with
the requirements of the SRL model, we
first merge the inflectional groups of
the words that are split via derivational
boundaries; and then use character se-
quences of the full word in the SRL
model.

Finnish. This data set uses Universal De-
pendency (UD) formalism, hence we use
the same LOIs as in the original study

(Şahin and Steedman 2018) for augmen-
tation. These are namely nsubj, dobj,
iobj, obj, obl, and nmod for LOIs and
case, fixed, flat, cop, and compound

for multi-word predicates. In addition, to
standardize the input format to our SRL
model, the custom semantic layer an-
notation used in Finnish PropBank, has
been converted to the same CoNLL-09
format.

Spanish, Catalan. Both data sets use the
same dependency annotation scheme:
suj for subject, cd for direct, and ci for
indirect object relations. Furthermore, we
shorten the organization names to ab-
breviations (e.g., Confederación Francesa to
CF) since such long sequences cause
memory problems for the SRL model.

Czech. Sb, Obj, and Atr dependency la-
bels are used as LOI and the predicate to-
kens with Pred dependency are merged.

Appendix K: UAS Scores

The UAS scores for dependency pars-
ing experiments are given in Tables A1
and A2.

Appendix L: Result Tables without
Colors

We visualize the results presented in Sec-
tion 5 using no colors. POS Tagging,
Dependency Parsing, and Semantic Role
Labeling results are given in Tables A3
and A4 accordingly.

40

https://doi.org/10.18653/v1/2020.acl-main.590
https://doi.org/10.18653/v1/2020.acl-main.590

Şahin To Augment or Not to Augment?

Table A1
Dependency parsing UAS scores on original (Org) and augmented data sets, where the results of
uuparser are given at the top, and biaffine parser at the bottom. languageˆ denotes that
language is part of the multilingual BERT.

Token Level Character Level Syntactic
Org SR CI CSU CSW CD CA Crop Rotate Nonce

u
u
p
a
r
s
e
r

be 61.78 ± 0.33 56.79 ± 1.18 †† 63.29 ± 0.39 ** 61.64 ± 0.84 62.53 ± 1.24 * 61.00 ± 1.02 61.62 ± 0.59 61.13 ± 0.46 61.84 ± 2.64 62.92 ± 1.39
bxr 28.14 ± 3.80 29.04 ± 3.79 * 29.46 ± 3.46 30.25 ± 2.79 ** 29.93 ± 0.90 ** 30.24 ± 2.78 ** 31.59 ± 1.97 ** 29.80 ± 3.08 ** 27.82 ± 3.92 27.07 ± 1.90 ††
kk 44.96 ± 1.51 45.09 ± 1.80 45.34 ± 0.87 46.61 ± 1.82 ** 45.60 ± 1.28 * 45.62 ± 1.51 * 45.20 ± 1.49 * 44.45 ± 1.02 43.01 ± 1.48 44.75 ± 1.62
ku 32.71 ± 1.10 35.02 ± 1.06 ** 35.85 ± 0.22 ** 35.98 ± 0.47 ** 35.08 ± 1.08 * 37.59 ± 0.50 ** 36.54 ± 0.24 ** 34.35 ± 0.35 ** 38.01 ± 0.54 ** 37.49 ± 0.11 **
ta 64.01 ± 2.02 63.21 ± 2.13 64.04 ± 2.34 63.74 ± 0.86 63.00 ± 1.61 64.62 ± 1.71 63.78 ± 1.12 64.07 ± 1.12 65.11 ± 0.28 * 65.69 ± 0.49 *
te 87.80 ± 0.67 88.19 ± 0.62 87.75 ± 0.99 88.33 ± 0.98 88.10 ± 0.77 88.66 ± 0.73 * 88.26 ± 0.64 88.06 ± 0.89 88.09 ± 0.94 –
vi 64.89 ± 0.33 59.10 ± 0.54 †† 62.79 ± 0.49 † 62.79 ± 0.22 † 62.17 ± 0.31 †† 61.87 ± 0.53 †† 61.91 ± 0.81 †† 65.70 ± 0.98 64.84 ± 0.76 –

b
i
a
f
f
i
n
e

beˆ 82.81 ± 0.45 85.03 ± 0.92 * 85.29 ± 0.39 ** 84.69 ± 1.12 * 84.01 ± 0.65 85.07 ± 0.72 ** 85.74 ± 0.39 ** 84.25 ± 0.75 ** 83.72 ± 1.10 83.76 ± 0.45
bxr 29.67 ± 0.66 31.24 ± 0.42 ** 30.81 ± 0.28 30.45 ± 0.33 29.89 ± 0.46 30.03 ± 0.93 30.53 ± 0.68 * 29.33 ± 0.42 † 29.85 ± 0.71 29.16 ± 0.82
kkˆ 50.85 ± 0.51 52.50 ± 0.67 ** 52.80 ± 0.56 ** 54.30 ± 0.83 ** 54.21 ±0.38 ** 53.27 ± 0.67 ** 53.29 ± 0.35 ** 50.44 ± 0.35 48.92 ± 0.52 † 54.38 ± 0.75 **
ku 30.48 ± 0.48 30.23 ± 0.15 32.27 ± 0.59 ** 30.32 ± 0.25 32.11 ± 0.56 ** 32.55 ± 0.46 ** 33.46 ± 0.66 ** 30.33 ± 0.70 28.78 ± 0.52 †† 33.08 ± 0.37 **
taˆ 77.39 ± 0.43 79.11 ± 0.47 ** 77.81 ± 0.26 78.65 ± 1.18 * 77.86 ± 0.60 78.77 ± 0.63 ** 78.85 ± 0.36 ** 78.23 ± 0.48 ** 78.45 ± 0.91 * 77.88 ± 0.85
teˆ 91.57 ± 0.57 91.82 ± 0.82 91.35 ± 0.78 † 91.96 ± 0.43 92.09 ± 0.62 * 91.40 ± 0.40 92.23 ± 0.81 * 92.51 ± 0.32 ** 91.75 ± 0.21 –
viˆ 74.06 ± 0.21 69.24 ± 0.79 †† 71.90 ± 0.26 †† 72.23 ± 0.91 †† 72.30 ± 0.87 †† 72.40 ± 0.32 †† 72.61 ± 0.42 †† 73.74 ± 0.33 †† 73.78 ± 0.5 –

Table A2
Dependency parsing UAS scores on original (Org) and augmented data sets, where the results of
uuparser are given at the top, and biaffine parser at the bottom. languageˆ denotes that
language is part of the multilingual BERT. Significance denoted with symbols only.

Token Level Character Level Syntactic
Org SR CI CSU CSW CD CA Crop Rotate Nonce

u
u
p
a
r
s
e
r

be 61.78 ± 0.33 56.79 ± 1.18 †† 63.29 ± 0.39 ** 61.64 ± 0.84 62.53 ± 1.24 * 61.00 ± 1.02 61.62 ± 0.59 61.13 ± 0.46 61.84 ± 2.64 62.92 ± 1.39
bxr 28.14 ± 3.80 29.04 ± 3.79 * 29.46 ± 3.46 30.25 ± 2.79 ** 29.93 ± 0.90 ** 30.24 ± 2.78 ** 31.59 ± 1.97 ** 29.80 ± 3.08 ** 27.82 ± 3.92 27.07 ± 1.90 ††
kk 44.96 ± 1.51 45.09 ± 1.80 45.34 ± 0.87 46.61 ± 1.82 ** 45.60 ± 1.28 * 45.62 ± 1.51 * 45.20 ± 1.49 * 44.45 ± 1.02 43.01 ± 1.48 44.75 ± 1.62
ku 32.71 ± 1.10 35.02 ± 1.06 ** 35.85 ± 0.22 ** 35.98 ± 0.47 ** 35.08 ± 1.08 * 37.59 ± 0.50 ** 36.54 ± 0.24 ** 34.35 ± 0.35 ** 38.01 ± 0.54 ** 37.49 ± 0.11 **
ta 64.01 ± 2.02 63.21 ± 2.13 64.04 ± 2.34 63.74 ± 0.86 63.00 ± 1.61 64.62 ± 1.71 63.78 ± 1.12 64.07 ± 1.12 65.11 ± 0.28 * 65.69 ± 0.49 *
te 87.80 ± 0.67 88.19 ± 0.62 87.75 ± 0.99 88.33 ± 0.98 88.10 ± 0.77 88.66 ± 0.73 * 88.26 ± 0.64 88.06 ± 0.89 88.09 ± 0.94 –
vi 64.89 ± 0.33 59.10 ± 0.54 †† 62.79 ± 0.49 † 62.79 ± 0.22 † 62.17 ± 0.31 †† 61.87 ± 0.53 †† 61.91 ± 0.81 †† 65.70 ± 0.98 64.84 ± 0.76 –

b
i
a
f
f
i
n
e

beˆ 82.81 ± 0.45 85.03 ± 0.92 * 85.29 ± 0.39 ** 84.69 ± 1.12 * 84.01 ± 0.65 85.07 ± 0.72 ** 85.74 ± 0.39 ** 84.25 ± 0.75 ** 83.72 ± 1.10 83.76 ± 0.45
bxr 29.67 ± 0.66 31.24 ± 0.42 ** 30.81 ± 0.28 30.45 ± 0.33 29.89 ± 0.46 30.03 ± 0.93 30.53 ± 0.68 * 29.33 ± 0.42 † 29.85 ± 0.71 29.16 ± 0.82
kkˆ 50.85 ± 0.51 52.50 ± 0.67 ** 52.80 ± 0.56 ** 54.30 ± 0.83 ** 54.21 ±0.38 ** 53.27 ± 0.67 ** 53.29 ± 0.35 ** 50.44 ± 0.35 48.92 ± 0.52 † 54.38 ± 0.75 **
ku 30.48 ± 0.48 30.23 ± 0.15 32.27 ± 0.59 ** 30.32 ± 0.25 32.11 ± 0.56 ** 32.55 ± 0.46 ** 33.46 ± 0.66 ** 30.33 ± 0.70 28.78 ± 0.52 †† 33.08 ± 0.37 **
taˆ 77.39 ± 0.43 79.11 ± 0.47 ** 77.81 ± 0.26 78.65 ± 1.18 * 77.86 ± 0.60 78.77 ± 0.63 ** 78.85 ± 0.36 ** 78.23 ± 0.48 ** 78.45 ± 0.91 * 77.88 ± 0.85
teˆ 91.57 ± 0.57 91.82 ± 0.82 91.35 ± 0.78 † 91.96 ± 0.43 92.09 ± 0.62 * 91.40 ± 0.40 92.23 ± 0.81 * 92.51 ± 0.32 ** 91.75 ± 0.21 –
viˆ 74.06 ± 0.21 69.24 ± 0.79 †† 71.90 ± 0.26 †† 72.23 ± 0.91 †† 72.30 ± 0.87 †† 72.40 ± 0.32 †† 72.61 ± 0.42 †† 73.74 ± 0.33 †† 73.78 ± 0.5 –

Table A3
Dependency parsing LAS scores on original (Org) and augmented data sets, where the results of
uuparser are given at the top, and biaffine parser at the bottom. languageˆ denotes that
language is part of the multilingual BERT. Significance denoted with symbols only.

Token Level Character Level Syntactic

Org SR CI CSU CSW CD CA Crop Rotate Nonce

u
u
p
a
r
s
e
r

be 52.85 ± 0.70 50.10 ± 0.67 †† 54.05 ± 0.40 ** 53.39 ± 0.51 55.37 ± 1.48 * 54.89 ± 0.87 * 53.57 ± 0.97 * 53.01 ± 1.01 53.03 ± 0.31 54.27 ± 0.68
bxr 11.73 ± 1.65 12.70 ± 1.84 * 12.39 ± 1.31 13.04 ± 1.20 ** 13.83 ± 0.46 ** 13.44 ± 1.06 ** 14.06 ± 1.14 ** 11.99 ± 1.52 ** 11.43 ± 1.39 10.70 ± 0.77 ††
kk 23.82 ± 0.92 23.82 ± 0.98 24.36 ± 0.59 24.80 ± 0.75 ** 24.87 ± 0.77 * 24.79 ± 0.86 * 24.62 ± 0.83 * 24.09 ± 0.79 23.76 ± 0.32 24.78 ± 1.07 *
ku 21.09 ± 0.86 23.22 ± 0.60 ** 23.70 ± 0.92 ** 24.08 ± 0.74 ** 23.48 ± 0.87 * 24.32 ± 0.55 ** 24.39 ± 0.12 ** 22.74 ± 0.35 ** 24.50 ± 0.44 ** 23.98 ± 0.31 **
ta 55.52 ± 0.39 54.27 ± 1.99 55.39 ± 0.42 55.15 ± 0.71 54.89 ± 0.90 56.11 ± 0.77 56.52 ± 1.31 54.62 ± 0.65 * 55.16 ± 0.18 * 57.50 ± 0.43 **
te 77.79 ± 0.85 76.94 ± 0.94 77.65 ± 0.94 78.83 ± 0.73 * 77.27 ± 1.12 * 78.11 ± 0.80 ** 78.87 ± 0.51 78.01 ± 0.86 * 78.27 ± 1.05 * –
vi 55.01 ± 0.15 48.23 ± 0.27 †† 53.80 ± 0.32 52.26 ± 0.47 † 52.19 ± 0.36 †† 52.92 ± 0.23 †† 53.15 ± 0.42 † 55.33 ± 0.40 54.87 ± 0.26 –

b
i
a
f
f
i
n
e

beˆ 78.17 ± 0.36 79.66 ± 0.28 80.47 ± 0.11 ** 80.04 ± 0.80 ** 78.79 ± 0.64 80.58 ± 0.49 ** 80.45 ± 0.36 ** 79.84 ± 0.30 ** 79.78 ± 0.35 ** 79.33 ± 0.27 **
bxr 17.71 ± 0.52 18.73 ± 0.13 ** 17.91 ± 0.51 17.65 ± 0.44 17.73 ± 0.17 17.72 ± 0.87 17.81 ± 0.50 * 16.74 ± 0.88 † 17.59 ± 0.36 17.12 ± 0.82
kkˆ 34.23 ± 0.32 35.49 ± 0.75 ** 35.61 ± 0.52 ** 36.69 ± 0.76 ** 36.30 ±0.59 ** 35.42 ± 0.49 ** 35.76 ± 0.42 ** 34.61 ± 0.75 * 34.18 ± 0.42 38.43 ± 0.17 **
ku 20.48 ± 0.35 20.64 ± 0.24 22.16 ± 0.47 ** 20.49 ± 0.33 22.56 ± 0.68 ** 22.71 ± 0.30 ** 23.13 ± 0.26 ** 20.53 ± 0.41 19.39 ± 0.50 †† 22.82 ± 0.24 **
taˆ 70.01 ± 0.62 70.99 ± 0.21 ** 70.27 ± 0.10 71.21 ± 1.08 * 70.54 ± 0.49 71.13 ± 0.67 ** 71.47 ± 0.53 ** 70.89 ± 0.30 ** 71.11 ± 1.01 * 71.24 ± 0.85 **
teˆ 84.60 ± 0.79 84.60 ± 0.80 84.28 ± 0.97 † 84.88 ± 0.54 ** 85.02 ± 0.32 ** 84.05 ± 0.78 †† 84.74 ± 0.81 85.30 ± 0.57 ** 84.19 ± 0.59 †† –
viˆ 66.25 ± 0.84 62.40 ± 0.76 †† 63.49 ± 0.80 †† 63.87 ± 0.55 †† 64.22 ± 2.07 †† 64.54 ± 2.05 †† 64.09 ± 1.25 †† 66.11 ± 0.85 65.94 ± 0.91 –

41

Computational Linguistics Volume 48, Number 1

Table A4
Semantic role labeling results on original (Org) and augmented data sets. Significance denoted
with symbols only.

Catalan
#sample Org SR CI CSU CSW CD CA Crop Rotate
250 31.34 ± 0.99 37.29 ± 1.26 ** 38.50 ± 1.37 ** 37.74 ± 1.64 ** 39.79 ± 0.25 ** 37.45 ± 1.58 ** 38.28 ± 1.48 ** 26.59 ± 0.52 †† 25.96 ± 0.62 ††
500 44.53 ± 1.39 44.12 ± 1.78 49.75 ± 0.10 ** 47.77 ± 0.65 * 46.81 ± 1.59 * 47.47 ± 0.62 * 49.46 ± 0.19 ** 44.30 ± 1.16 † 44.72 ± 0.36
1,000 53.06 ± 1.33 53.49 ± 0.64 53.80 ± 0.67 54.83 ± 0.81 56.37 ± 0.29 * 55.50 ± 0.17 * 53.97 ± 0.96 53.57 ± 0.07 52.31 ± 0.96

Turkish
#sample Org SR CI CSU CSW CD CA Crop Rotate
250 31.28 ± 0.12 31.78 ± 1.20 31.62 ± 1.53 30.67 ± 2.19 30.14 ± 2.46 32.52 ± 0.89 * 32.02 ± 1.53 32.42 ± 0.64 * 30.37 ± 1.75
500 35.75 ± 1.38 35.95 ± 0.65 36.35 ± 0.68 38.27 ± 0.88 * 37.30 ± 1.05 34.80 ± 1.96 36.23 ± 1.37 37.40 ± 1.07 * 34.58 ± 1.89
1,000 44.89 ± 0.80 42.41 ± 1.20 43.36 ± 0.67 41.78 ± 1.39 42.28 ± 1.31 41.42 ± 1.38 29.14 ± 0.47 †† 44.83 ± 1.07 42.71 ± 0.76

Spanish
#sample Org SR CI CSU CSW CD CA Crop Rotate
250 31.23 ± 1.30 34.65 ± 1.02 * 36.31 ± 2.28 37.91 ± 1.21 ** 36.80 ± 1.90 * 36.76 ± 2.11 * 37.34 ± 1.14 ** 26.04 ± 1.34 †† 26.95 ± 2.22 ††
500 44.16 ± 0.68 43.89 ± 0.65 44.80 ± 0.81 44.82 ± 1.10 43.75 ± 1.36 44.60 ± 0.72 * 45.03 ± 0.91 * 42.35 ± 0.42 †† 41.13 ± 0.38 ††
1,000 50.98 ± 1.30 50.80 ± 1.21 53.03 ± 0.76 ** 52.53 ± 0.60 ** 52.10 ± 1.00 * 52.76 ± 0.57 ** 54.12 ± 0.12 ** 51.32 ± 1.09 52.40 ± 0.34 *

Czech
#sample Org SR CI CSU CSW CD CA Crop Rotate
250 35.63 ± 1.08 33.48 ± 1.58 37.17 ± 0.13 * 37.56 ± 0.02 * 31.56 ± 1.00 † 35.70 ± 0.80 36.14 ± 1.78 34.84 ± 1.55 ** 30.78 ± 0.38 ††
500 44.96 ± 0.51 42.04 ± 1.08 † 46.44 ± 1.20 * 46.13 ± 1.97 46.24 ± 1.60 47.92 ± 0.59 ** 47.42 ± 1.07 * 46.38 ± 0.12 * 44.83 ± 1.47
1,000 50.29 ± 0.09 48.15 ± 0.31 † 48.66 ± 0.49 † 52.63 ± 0.97 * 51.10 ± 1.23 47.85 ± 1.19 † 51.97 ± 0.54 * 49.33 ± 1.36 48.45 ± 1.34

Finnish
#sample Org SR CI CSU CSW CD CA Crop Rotate
250 18.80 ± 0.89 18.60 ± 2.34 17.18 ± 1.56 19.68 ± 1.16 25.71 ± 0.80 ** 28.87 ± 1.55 ** 27.96 ± 0.44 ** 30.83 ± 0.17 ** 20.07 ± 2.42
500 37.23 ± 0.35 34.10 ± 1.61 35.59 ± 0.87 † 36.88 ± 0.29 † 38.98 ± 0.03 * 35.29 ± 0.99 † 35.32 ± 1.63 37.58 ± 0.93 * 35.16 ± 1.08
1,000 41.64 ± 0.98 40.15 ± 0.95 † 41.27 ± 0.84 41.41 ± 1.08 39.80 ± 0.81 40.57 ± 1.17 41.99 ± 0.04 41.35 ± 1.37 39.08 ± 0.34 †

42

	Introduction
	Related Work
	Augmentation Techniques
	Character-Level Augmentation
	Token-Level Augmentation
	Syntactic Augmentation
	Parameters

	Experimental Setup
	Tasks
	Languages
	Data Sets

	Experiments and Results
	POS Tagging
	Dependency Parsing
	Semantic Role Labeling
	Summary of the Findings

	Analysis
	Augmentation Parameters
	Frequency Analysis

	Conclusion
	Appendix

