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Abstract

Explanations can increase the transparency of neural networks and make them more trustworthy.
However, can we really trust explanations generated by the existing explanation methods? If
the explanation methods are not stable enough, the credibility of the explanation will be greatly
reduced. Previous studies seldom considered such an important issue. To this end, this paper
proposes a new evaluation frame to evaluate the stability of current typical feature attribution
explanation methods via textual adversarial attack. Our frame could generate adversarial exam-
ples with similar textual semantics. Such adversarial examples will make the original models
have the same outputs, but make most current explanation methods deduce completely different
explanations. Under this frame, we test five classical explanation methods and show their perfor-
mance on several stability-related metrics. Experimental results show our evaluation is effective
and could reveal the stability performance of existing explanation methods.

1 Introduction

Fueled by recent rapid development in deep learning, NLP systems have obtained promising results in
several fields, such as medical, law and commerce (Rudin, 2019; Bommasani et al., 2021). However,
besides the predicted results, users concern more on how these results are generated (Lipton, 2018). To
this end, lots of emphases have been set upon the explanation methods for neural networks (Ribeiro et
al., 2016; Li et al., 2016; Simonyan et al., 2013; Bastings et al., 2019).

Although the current explanation methods have increased the transparency of the neural networks and
provided explanations as supports for predicted results, most of them ignored important questions: are
these methods reliable and the generated explanations really trustful? Besides the widely used focused
properties of explanation methods, such as faithfulness, plausibility (Adebayo et al., 2018; Jacovi and
Goldberg, 2020; Atanasova et al., 2020), readableness (Bastings et al., 2019) and compactness (Miller,
2019; Jiang et al., 2021), we believe stability is an important but often overlooked property (Robnik-
Šikonja and Bohanec, 2018). When we put a small perturbation on the input, which would not change
the input semantic and the output of the original model, we believe that the explanation method is not
stable enough when we obtain the same outputs with quite different explanations. For example, Figure 1
shows all results of major explanation methods would change when we just replace fine by refined,
including LIME (Ribeiro et al., 2016), Leave-one-out (Li et al., 2016), Vanilla Gradient (Simonyan et
al., 2013), Smooth Gradient (Smilkov et al., 2017), Integrated Gradient (Sundararajan et al., 2017).

To fulfill the stability testing, we intuitively consider existing word-substitution based textual adver-
sarial attack methods0(Ren et al., 2019; Zang et al., 2020), since it is under the black-box1 settings and

*Corresponding author.
©2022 China National Conference on Computational Linguistics
Published under Creative Commons Attribution 4.0 International License

0Feature attribution based explanation methods show the importance of each token to the prediction. Therefore, paraphrase-
based attack methods do not fit because they would modify too many parts of inputs at once.

1Black-box refers to we can only utilize the outputs of the model during the attack. However, some explanation methods are
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  The movie exists for its soccer action and its fine acting.
  Label: Positive                            Attribution Order: 1st  2nd  3rd

  LeaveOneOut                                                          Label: Positive 
  Ori: The movie exists for its soccer action and its fine acting. 
  Adv: The movie exists for its soccer action and its terrific acting. 

  LIME                                                                       Label: Positive 
  Ori: The movie exists for its soccer action and its fine acting. 
  Adv: The special exists for its soccer action and its fine acting. 

  Vanilla Gradient                                                     Label: Positive 
  Ori: The movie exists for its soccer action and its fine acting. 
  Adv: The movie exists for its soccer action and its refined acting. 

  Smooth Gradient                                                    Label: Positive 
  Ori: The movie exists for its soccer action and its fine acting. 
  Adv: The movie exists for its soccer action and its gorgeous acting. 

  Integrated Gradient                                               Label: Positive 
  Ori: The movie exists for its soccer action and its fine acting. 
  Adv: The movie exists for its soccer behavior and its good acting. 

Figure 1: An example of the result of our adversarial attack. We select a sentence from SST-2 and show
the adversarial examples for explanation method Vanilla Gradient (Simonyan et al., 2013). Ori and
Adv stand for original sentence and corresponding adversarial example respectively. We show the three
most important tokens and sign them in different colors.

no need for the transparency of the model framework. However, we could not directly extend the cur-
rent adversarial attack on the explanation methods. In our explanation stability test setting, the attack
method should ensure the original prediction model has unchanged outputs for the adversarial examples,
but the explanations vary, which is obviously different from the target of the common textual adversarial
attacks. Thus, the main challenge is, for such adversarial examples, how to ensure the explanations are
different but the outputs of the original model are the same. To this end, we modified the target of the
standard textual adversarial attack to keep the prediction label of the adversarial examples unchanged.
At the same time, we define two criteria to measure the difference between two explanations and add
them respectively to the score function. Such explanation difference measurements are used to help the
judgment of the adversarial examples’ qualities in the attacking procedure.

Finally, we put the attack on five typical feature attribution explanation methods. Experimental results
show their performance on stability. We find perturbation-based explanation methods perform better on
stability than gradient-based methods. All of the source code and data will be available soon.

2 Related Work

2.1 Feature Attribution Explanation Method

Feature attribution explanation methods score each token of the input based on its contribution to the
prediction label. We can easily find the key tokens according to the attribution value. These explanation
methods can be simply classified as below two categories: perturbation-based methods and gradient-
based methods.

Perturbation-based get the attribution score by perturbing the input sequence: LIME (Ribeiro et al.,
2016) sampled enough new sequences from the neighbor of the input sequence and fit the output logits
of these sampled sequences by a linear function, the coefficients of the fitted function are the attribution

not black-box such as gradient-based methods. Whether the explanation method is black-box has nothing to do with our black
box attack method.
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score for each token. Leave-one-out (Li et al., 2016) observed the probability change on the predicted
class when erasing some certain word and the value of probability change is the attribution score for the
removed word. Gradient-based methods compute the attribution score according to the gradient of the
input: Vanilla Gradient (Simonyan et al., 2013) simply computed the gradient of the loss with respect
to each token. Smooth Gradient (Smilkov et al., 2017) added small Gaussian noise to every embedding
and take the average gradient value as the final attribution score for each token. Integrated Gradient
(Sundararajan et al., 2017) integrated the gradient along the path from a sequence of all-zero embeddings
to the original input and take the integral value as the attribution score.

2.2 Evaluation of Explanation Methods
Recently, a collection of explanation methods has emerged exploring to interpret neural networks. To
compare these explanation methods, various explanation metrics have been proposed. Faithfulness refers
to how accurately the explanation reflects the true reasoning process of the model (Herman, 2017; Wiegr-
effe and Pinter, 2019; Jacovi and Goldberg, 2020). Plausibility refers to how convincing the explanation
is to humans by comparing explanations that generated by explanation methods and human annotated
explanations (Atanasova et al., 2020; DeYoung et al., 2019). Besides, readableness measures whether
human could understand the explanations (Molnar, 2020) and compactness requires a explanation should
be short or selective (Miller, 2019; Jiang et al., 2021). However, these evaluation metrics ignore whether
the explanation method is reliable.

To evaluate the reliability of existing explanation methods, consistency and stability have been pro-
posed. However, consistency is quite different from stability actually. To evaluate consistency, existing
studies usually modified original model to generate different explanations when the inputs and outputs
keep unchanged. Jain and Wallace (2019) modified the attention value and maintain the output un-
changed to illustrate attention is not explanation. Heo et al. (2019) applied adversarial model manipu-
lation to generate different explanations. Slack et al. (2020) aims to sample based explanation methods.
They modified the original classifier into two parts: original classifier for original instances and another
model for instances in neighbor. Wang et al. (2020) construct a new model which has similar outputs
with original model but definitely different gradient. They added this model on original model and the
added model shows similar prediction but totally different gradient-based explanations. Indeed, they all
try to modified the original model to generate different explanations. However, for stability, we just put
perturbation on inputs not on model, which is extremely different with consistency.

For stability, though existing works defined its specific meanings, only a few work design correspond-
ing experiments to evaluate the performance of stability. (Ghorbani et al., 2019) applied pixel-level
perturbations to evaluate the stability. However, pixel-level perturbations can not be easily transferred
in NLP. In NLP only (Ding and Koehn, 2021) evaluated this property by manually constructing similar
instances, which is much time-consuming and expensive. Therefore, in this paper, we automatically
construct similar instances by learning from textual adversarial attack.

3 Formulation

In this section, we first introduce the basic information of the common textual adversarial attack in
Section 3.1. Then we introduce how to formulate explanation adversarial attack in Section 3.2.

3.1 Textual Adversarial Attack
Formally, suppose that a sentence xk = ω1ω2 · · ·ωn, where ωi is the i-th word in xk. For a given
classifier P (y|x) and label set Y = (y1, y2, ..., ym), the model prediction yk for xk can be formulated as
yk = argmaxy∈Y P (y|xk). The target is to find x

′
k, which can be formulated as:

x
′
k

s.t. yk ̸= y
′
k,
∥∥∥x′

k − xk

∥∥∥ < ϵ
(1)

where x
′
k is the adversarial example of xk. The core constraint is to ensure the difference between xk

and x
′
k is small enough. In this paper, we ensure the semantics of xk and x

′
k to be as similar as possible,
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which has been shown more imperceptible for human (Zhang et al., 2020).

3.2 Explanation Adversarial Attack
Feature attribution explanation method can generate an explanation ek = (s1, s2, · · · , sn) according to
xk and its prediction yk, where si is the attribution score of ωi. Therefore, the target is to find x

′
k, which

can be formulated as follow:

x
′
k

s.t. ek ̸= e
′
k, y

′
k = yk,

∥∥∥x′
k − xk

∥∥∥ < ϵ
(2)

We also follow the common textual adversarial attack to keep the semantics of xk and x
′
k to be similar.

And the most important difference is an extra constraint y
′
k = yk, we must ensure this constraint should

be satisfied because of the definition of stability. Obviously, the constraint is contrary to the target of
common textual attack, where y

′
k ̸= yk. By contrast, our target is to ensure the explanations are different.

Therefore, we will define how to measure explanation difference in the following section.

4 Attack Method

According to Section 3.2, we need to measure the explanation difference. Therefore, we propose two
metrics in Section 4.1. Then we present our detailed attack strategies to attack existing explanation
methods in Section 4.2.

4.1 Measuring the Explanation Difference
For feature attribution methods, people usually do not care the specific attribution score of each token
but the relative importance ranks of these tokens. Therefore, we consider the rank differences between
explanations. We can easily get the corresponding rank sequence Rk for explanation Ek in descending
order, where Rk = (rk1 , r

k
2 , ..., r

k
n), r

k
i stands for the descending rank of the i-th token in xk. We can also

get the corresponding position sequence Pk = (pk1, p
k
2, ..., p

k
n) via argsort, pki stands for the index of

the i-largest attribution score in xk. Based on this, we design two quantitative criteria to measure the
difference between explanations.

Rank-count: In this setting, we compute the number of positions whose rank has changed:

dcount(Ei, Ej) =
n∑

k=1

||rik − rjk||0 (3)

where || · ||0 refers to the L0 norm.
Rank-topk: In this setting, we compute the size of intersection set of two position set of the top-k

rank. The top-k set for ei is the first k elements of position sequence ri: Ei
topk = {pi1, pi2, ..., pik}.

dtopk(Ei, Ej) = |Ei
topk ∩ Ej

topk| (4)

where | · | refers to the size of a set.
For example, given E1 = {0.1, 0.5, 0.3, 0.2} and E2 = {0.6, 0.3, 0.4, 0.2}. We get the rank sequence

R1 = {3, 0, 1, 2} and R2 = {0, 2, 1, 3}, then we can get the position sequence P1 = {1, 2, 3, 0} and
P2 = {0, 2, 1, 3}. Accordingly, we compute dcount(E1, E2) = 3 and dtopk(E1, E2) = 2 when k = 3.

4.2 Attack Strategies
Word-substitution based textual adversarial attack methods usually consist of two main steps: determin-
ing substitution order and selecting substitution words. In different steps, we employ different strategies.
To determine the substitution order, we modify Samanta and Mehta (2017) as an example. To select
substitution words, we utilize OpenHowNet (Qi et al., 2019) as the substitution resource (Zang et al.,
2020). Notably, other word-substitution based adversarial attack methods (Ren et al., 2019; Alzantot et
al., 2018; Zang et al., 2020) are also applicable.
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original word sememe word with same sememe candidate word

writer

human

compile

literature

{police, author, teacher, poet…}

{edit, redact, poet, author…}

{poetry, novel, author, poet…}

{poet, author,...}
intersection

The writer is pleased with his latest work. The poet/author is pleased with his latest work.

Figure 2: An example of how to construct candidate substitution word set for the word writer by its
sememes human, compile and literature.

4.2.1 Determining Substitution Order

Formally, for a sentence x = ω1ω2 · · ·ωi · · ·ωn, to determine the substitution order, we compute the
word saliency WSi for token ωi first. To compute WSi , we should get x̂i = ω1ω2 · · · 0 · · ·ωn by
replacing ωi with 0.

WSi = P (yori|x)− P (yori|x̂i) (5)

where yori refers to the original output label. We calculate the word saliency WSi for all ωi ∈ x and
then we sort all of the tokens in descending order based on their saliency value. Then we substitute the
words in this order (Samanta and Mehta, 2017).

4.2.2 Selecting Substitution Words

We construct candidate substitution set via sememes and utilize OpenHowNet (Qi et al., 2019) as the
resource. Sememe is the minimum semantic unit of language (Bloomfield, 1926) and the sememes of
one word can composite the meaning of this word. Therefore, words that have the same sememe can
substitute for each other (Zang et al., 2020). As shown in Figure 2, when we want to find substitution
words for the original word writer. We utilize OpenHowNet to get its sememes human, compile
and literature. Then we get three word sets that has these three sememes respectively. Finally, we
compute the intersection of these three word sets and get the substitution word poet and author for
the original word writer. According to Qi et al. (2019) and Zang et al. (2020), when we replace the
word with the obtained substitution word, the semantic of the original sentence would not change.

After getting substitution set for the original word by above method, we still have to choose which
word to substitute the original word. Therefore, we also need a quantitative criterion to help us to find
the most suitable substitution word from the whole substitution set. Specifically, we define our score
function as follow:

score(x1, x2) = d(e1, e2)× (1− ||y1 − y2||0) (6)

where d(e1, e2) represent the explanation difference for x1, x2 and we directly employ the Equation (3)
and Equation (4). y1, y2 are the prediction label for x1, x2. We directly force the labels must be same,
otherwise the score would be zero.

With this score function, we can get the substitution word ω∗
i for ωi in xi = ω1ω2 · · ·ωiωn. This

process can be formulate as follow:

ω∗
i = arg max

ωi∈Lωi

score(x, x
′
i) (7)

where x
′
i = ω1ω2 · · ·ω

′
i · · ·ωn and Lωi is the candidate set for the word ωi. Finally, ω∗

i is the substitution
word for ωi is x.

CC
L 
20
22

Proceedings of the 21st China National Conference on Computational Linguistics, pages 932-944, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

936



Computational Linguistics

5 Experiments

5.1 Datasets and Models
Following previous explanation studies (DeYoung et al., 2019; Atanasova et al., 2020), we also select
sentiment analysis as the target task. In specific, we choose SST-2 (Socher et al., 2013) and IMDB (Maas
et al., 2011) as the test benchmark dataset and select the base version of BERT (Devlin et al., 2018) and
BiLSTM (Conneau et al., 2017) as the target model.

For BERT, we utilize the base version of BERT. For BiLSTM, the hidden states are 256-dimensional
and we utilize the 300-dimensional pre-trained Glove (Pennington et al., 2014) word embeddings. Our
reproduced BERT can achieve accuracy of 91.28% and 91.36% on SST-2 and IMDB respectively. And
BiLSTM can achieve accuracy of 85.50% and 90.38% on SST-2 and IMDB respectively.

To improve evaluation efficiency, we randomly sample 500 correctly classified instances with the
length of 10-100 from the test set.

5.2 Explanation Methods
We select five classical feature attribution explanation methods in the two mainstream types to conduct
our experiments:

A. Perturbation-based Explanation Method:
LIME (Ribeiro et al., 2016) sampled enough sentences from the neighbor of the input and fit the

output logits of these samples by a linear function. The coefficients of the obtained linear function is the
corresponding attribution scores.

LeaveOneOut (LOO) (Li et al., 2016) observed the probability change on the predicted class when
erasing each word one by one and take this change value as the atribution score.

B. Gradient-based Explanation Method:
VanillaGradient (VG) (Simonyan et al., 2013) simply computed the gradient of the model loss with

respect to the token and multiply with its embedding as its corresponding attribution score.

ai = xi ·
∂f(xi)

∂xi
(8)

SmoothGradient (SG) (Smilkov et al., 2017) added small Gaussian noise to every embedding N
times and average these N VanillaGradient value as the final attribution score.

ai =
1

N

N∑
i=1

(xi +N (0, 1)) · ∂f(xi +N (0, 1))

∂(xi +N (0, 1))
(9)

where N (0, 1) refers to the Gaussian noise.
IntegratedGradient (IG) (Sundararajan et al., 2017) integrated the gradient along the path from a

basic sequence x
′
i to the original input xi and take the integral value ai as the attribution.

ai = (xi − x
′
i)

∫ 1

α=0

∂f(x
′
i + α× (xi − x

′
i))

∂α
dα (10)

Specifically, it is time-consuming to compute intergral value. To improve computation efficiency, we
divide the integral area into K parts and obtain the approximate value of ai (Sundararajan et al., 2017).

ai = (xi − x
′
i)

K∑
m=1

∂f(x
′
i +

m
K × (xi − x

′
i))

∂xi
× 1

K
(11)

5.3 Experimental Settings and Results
5.3.1 Explanation Similarity
Firstly, we fix m modified words to generate corresponding adversarial examples whose explanations are
the most different. Then we use explanation similarity to evaluate the stability of explanation methods.
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Model Dataset Explanations
m=1 m=2 m=3

change↓ spearman↑ inte↑ change↓ spearman↑ inte↑ change↓ spearman↑ inte↑

BERT

SST-2

LIME 79.87 0.80 3.87 84.03 0.78 3.81 86.52 0.76 3.75
LOO 89.13 0.64 3.14 92.62 0.62 3.09 94.12 0.61 3.03
VG 92.99 0.48 2.83 95.65 0.45 2.71 97.11 0.42 2.64
SG 92.86 0.55 2.92 95.71 0.53 2.87 96.70 0.52 2.83
IG 86.79 0.71 3.45 90.01 0.69 3.38 91.69 0.67 3.37

IMDB

LIME 84.60 0.92 4.23 88.65 0.90 4.08 90.04 0.88 3.87
LOO 90.10 0.84 3.48 93.47 0.79 3.12 95.22 0.76 2.91
VG 92.75 0.79 3.23 95.44 0.73 2.88 96.65 0.69 2.66
SG 92.48 0.82 3.29 95.26 0.76 2.89 96.60 0.73 2.67
IG 85.49 0.91 4.07 89.58 0.89 3.90 91.37 0.87 3.81

BiLSTM

SST-2

LIME 71.18 0.81 4.02 80.38 0.74 3.78 84.22 0.68 3.63
LOO 75.76 0.77 3.89 84.07 0.71 3.70 86.96 0.67 3.60
VG 78.20 0.75 3.78 85.04 0.62 3.52 88.50 0.56 3.36
SG 77.83 0.77 3.85 84.49 0.68 3.55 87.21 0.64 3.40
IG 73.55 0.79 3.99 81.73 0.72 3.75 85.39 0.67 3.61

IMDB

LIME 81.44 0.90 4.24 86.36 0.86 4.07 88.25 0.84 3.92
LOO 84.96 0.86 4.11 89.48 0.82 3.91 90.78 0.81 3.85
VG 86.25 0.85 3.72 90.42 0.80 3.41 91.88 0.77 3.27
SG 86.22 0.86 4.08 90.00 0.81 3.89 91.45 0.79 3.80
IG 82.80 0.88 4.21 87.41 0.84 4.02 89.19 0.83 3.89

Table 1: Results of similarity of explanations between original instances and their adversarial examples
by replacing m words for BERT and BiLSTM. change is defined as the percentage of positions whose
corresponding ranks have changed. spearman is the spearman’s rank order correlation between two
explanations. inte is defined as the size of the intersection of the 5 most important tokens before and
after perturbation.

More stable explanation methods could get higher explanation similarity. In specific, we employ three
specific criteria including change, spearman and inte. change refers to the percentage of positions whose
corresponding rank has changed, spearman refers to the spearman’s rank order correlation efficient be-
tween the ranks of two explanations (Spearman, 1961), and inte refers to the size of the intersection of
the 5 most important tokens before and after perturbation (Ghorbani et al., 2019). Table 1 presents the
experimental results of the five explanation methods that conduted on BERT and BiLSTM on the two
datasets SST-2 and IMDB.

To evaluate stability, following its definition, we should ensure the same output and keep semantics of
adversarial examples unchanged. For output consistency, we test the consistency of predictions between
all test instances and their adversarial examples, which can achieve 100%. It means our methods satisfy
the requirement of the same outputs. As for input semantic consistency, we perform human evaluation
to check the semantic similarity between the adversarial example and the original example. Specifically,
We invite 4 postgraduates score ranges 1 to 3 according to the semantic similarity between original
instances and their adversarial examples. Scores of 1,2 and 3 indicate low, medium and high semantic
similarity, respectively. Higher scores mean better consistency. Table 2 shows the results of human
evaluation. These results show that our generated examples could keep semantics unchanged. Therefore,
our experiment satisfies the definition of stability and the experimental results in Table 1 are convincing.

From the experimental results in Table 1, we find the stability performance of the five typical explana-
tion methods keep same on different models and different datasets. And the stability performance (from
good to bad) of these explanation methods is as follow: LIME, Integrated Gradient, LeaveOneOut,
Smooth Gradient, Vanilla Gradient.

According to the results for different m in Table 1, when we replace more words, explanation differ-
ence obviously increases. However, from the human evaluation results in Table 2, we find the semantic
consistency also decreases as m increases. Therefore, one thing must be pointed out, to satisfy the se-
mantic consistency of input, we should control the modification rate when we evaluate the stability of
explanation methods.
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Model Dataset Explanation m=1 m=2 m=3

BERT

SST-2

LIME 2.75 2.48 2.23
LOO 2.74 2.46 2.18
VG 2.73 2.42 2.12
SG 2.74 2.44 2.14
IG 2.75 2.47 2.21

IMDB

LIME 2.82 2.67 2.41
LOO 2.79 2.63 2.36
VG 2.77 2.60 2.34
SG 2.77 2.61 2.33
IG 2.80 2.65 2.39

BiLSTM

SST-2

LIME 2.76 2.48 2.25
LOO 2.73 2.44 2.19
VG 2.72 2.41 2.13
SG 2.72 2.44 2.16
IG 2.75 2.46 2.23

IMDB

LIME 2.81 2.67 2.37
LOO 2.75 2.47 2.18
VG 2.74 2.44 2.15
SG 2.74 2.46 2.16
IG 2.75 2.50 2.22

Table 2: Results of human evaluation. The human evaluation score is not an objective metric and the
higher score does not stand for the better method. We list it here just to show the adversarial examples
in Table 1 keep the semantic unchanged.

5.3.2 Attack Success Rate
Secondly, following the common textual adversarial attack, We design a series of success conditions
to check the attack success rate for different explanation methods. Combining with the finding in Sec-
tion 5.3.1 that we should control the modification rate when evaluating stability, we set the maximum
modification rate 20%. And existing textual adversarial attack also usually control the modification rate
less than 20% (Ren et al., 2019; Alzantot et al., 2018; Zang et al., 2020).

Then we illustrate our formulated success conditions. We utilize the quantitative criteria introduced in
Sec 4.1 and then define the success conditions as dcount > α ∗ length and dtopk < β for different α, β.
dcount > α ∗ length refers to the proportion of positions whose ranks have changed in should bigger
than α and we select α from {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. dtopk < β refers to the size of intersection
of the top-5 important tokens should smaller than β and we choose β from {1, 2, 3, 4, 5}. Obiviously,
bigger α and smaller β mean more difficult success conditions, and a smaller attack success rate on the
same condition means a more stable explanation method. Given a sentence, if achieving the success
condition with the modification rate less than 20% , we define this is a successful attack. Otherwise,
when the success condition can not be achieved even on the maximum modification rate, we define this
is a unsuccessful attack. Then we calculate the corresponding attack success rate on all examples.

Figure 3 shows the results of BERT on SST-2. Under the two type of success conditions, we find the
relative rank of the five explanation methods appears the same. And more difficult success condition
would cause lower attack success rate. The stability performance (from good to bad) is the same as the
results in §5.3.1: LIME, Integrated Gradient, LeaveOneOut, Smooth Gradient, Vanilla Gradient.

In summary, in our different experiment settings (Table 1 and Figure 3), all experimental results con-
sistently show that the stability performance (from good to bad) of the five methods is as follows: LIME,
Integrated Gradient, LeaveOneOut, Smooth Gradient, Vanilla Gradient. Besides, we also observe
perturbation-based methods have better performance on stability than gradient-based methods.

6 Discussion

Beyond the above experiments, our discussions would address the following research questions:

• RQ1 How do the evaluation results change when replacing the two steps in the proposed attack
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Figure 3: Success rate for different success conditions. Left part shows the condition dcount > α∗length
for α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. Right part shows the condition dtopk < β for β ∈ {1, 2, 3, 4, 5}.
Success rate is the percentage of instances whose explanation difference could satisfy the condition.
Bigger α and smaller β indicate more different explanations. A smaller success rate on the same success
condition indicates a more stable method.

m=1 m=2

change↓ spearman↑ inte↑ change↓ spearman↑ inte↑
ori rand ori rand ori rand ori rand ori rand ori rand

LIME 79.87 76.00 0.80 0.84 3.87 4.03 84.03 82.71 0.78 0.79 3.81 3.89
LOO 89.13 84.25 0.64 0.76 3.14 3.48 92.62 90.40 0.62 0.69 3.09 3.25
VG 92.99 89.82 0.48 0.62 2.83 3.20 95.65 94.58 0.45 0.55 2.71 2.99
SG 92.86 89.13 0.55 0.65 2,92 3.23 95.71 94.20 0.53 0.55 2.87 2.99
IG 86.79 79.39 0.71 0.80 3.45 3.89 90.01 86.12 0.69 0.75 3.38 3.69

Table 3: Results of explanation similarity for BERT on SST-2. ori refers to the results based on the
word substitution order in §4.2.1 and rand refers to the results based on the random substitution order.

strategy with othe existing methods?

• RQ2 How can we improve the stability of explanation methods?

6.1 Correlation Analysis Between The Two Attack Steps and The Evaluation Results

To address RQ1, we modify the two steps in Section 4.2 to conduct experiments in the following parts:
Effect of Substitution Order To verify whether the other substitution order is effective to evaluate

the stability of explanation methods, we utilize a random order to replace the substituion order in Sec-
tion 4.2.1. Specifically, following experiments settings in Section 5.3.1, we select SST-2 and conduct
experiments on BERT model. To improve efficiency, we only choose m = 1 and m = 2.

Table 3 shows the corresponding results. Compare to results in Table 1, all of the attack performance
have dropped. In specific, for same explanation method on same setting, the change metric decreases
and the spearman and inte metrics both increases, which stands for the higher explanation similarity.
And this is consistent with the common textual adversarial attack, which has been shown the random
order would much decrease the attack performance (Ren et al., 2019). Besides, we find the stability
performance of these five explanation methods still keep same as the previous findings.

Effect of Substitution Set To verify whether the other substitution set is effective, we utilize WordNet
(Miller, 1995) to construct substitution word set. We can easily find synonyms for a given word via
WordNet. Following experiments settings in Section 5.3.1, we select IMDB and conduct experiments on
BiLSTM model. To improve efficiency, we also only choose m = 1 and m = 2.

Similar to replacing the substitution order with random order, the attack performance also drop. And
the stability performance of these five explanation methods also keep same.
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m=1 m=2

change↓ spearman↑ inte↑ change↓ spearman↑ inte↑
ori WN ori WN ori WN ori WN ori WN ori WN

LIME 81.44 78.89 0.90 0.92 4.24 4.41 86.36 83.21 0.86 0.89 4.07 4.09
LOO 84.96 82.18 0.86 0.89 4.11 4.18 89.48 86.32 0.82 0.85 3.91 3.98
VG 86.25 83.79 0.85 0.87 3.72 4.02 90.42 88.14 0.80 0.83 3.41 3.85
SG 86.22 83.72 0.86 0.87 4.08 4.14 90.00 87.97 0.81 0.84 3.89 3.95
IG 82.80 79.97 0.88 0.90 4.21 4.27 87.41 84.56 0.84 0.87 4.02 4.05

Table 4: Results of explanation similarity for BiLSTM on IMDB. ori refers to utilizing OpenHowNet
to construct substitution set and WN refers to utilizing WordNet to construct substitution set.
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Figure 4: The left figure shows the relation between Spearman’s rank order correlation and the number
of the added noise M in Smooth Gradient. The right figure shows the relation between change ratio
and the number of the divided parts K in Integrated Gradient.

In summary, our evaluation frame is independent to the specific substitution order and how to construct
substitution set. These specific steps only influence the attack performance and could get the similar
results of existing explanation methods when evaluating stability.

6.2 Simply Improving Stability of Explanation Method
To address RQ2, we try to explore how to improve the stability of two explanation methods.

Adding more noise We explore the influence of the number of the added noise N (Equation (9)) in
Smooth Gradient. We select Spearman’s rank order correlation as the evaluation metric. Figure 4 (left)
shows the results. We find adding appropriate noises is useful and adding more noises is not meaningful.

More robust mechanism Integrated Gradient is a more robust mechanism compared to Simple Gra-
dient and Smooth Gradient, because it satisfy sensitivity and implementation invariance these two im-
portant axiom (Sundararajan et al., 2017). We explore the influence of the divided parts K in Equation
(11). Figure 4 (right) shows the results of change rate. We find adding the number of the divided parts K
is useful. The bigger K is, the more accurate the integral value is, which means more robust mechanism.
Therefore, more robust mechanism could improve the stability of explanation methods.

Therefore, we can try to add appropriate noises and seek more robust mechanisms to make explanation
methods more stable. And we take the further exploration of improving stability as our future work.

7 Conclusion

This paper proposes a new evaluation frame to evaluate the stability of typical feature attribution explana-
tion methods via adversarial attack. Various experimental results on different experimental settings reveal
their performance on stability, which also show the effectiveness of our proposed evaluation frame. We
also conduct experiments to show the proposed frame is dependent of specific step. Therefore, we hope
the proposed evaluation frame could be applied to evaluating the stability of feature attribution explana-
tion methods in the future and attract more research on this important but often overlooked property.
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8 Limitations

The proposed evaluation frame only focus on the rank of the feature attribution explanation methods.
These explanation methods also provide specific attribution scores and these scores may further refine
the proposed frame.
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