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Abstract

Machine translation quality estimation (QE) aims to evaluate the quality of machine translation
automatically without relying on any reference. One common practice is applying the translation
model as a feature extractor. However, there exist several discrepancies between the transla-
tion model and the QE model. The translation model is trained in an autoregressive manner,
while the QE model is performed in a non-autoregressive manner. Besides, the translation model
only learns to model human-crafted parallel data, while the QE model needs to model machine-
translated noisy data. In order to bridge these discrepancies, we propose two strategies to post-
train the translation model, namely Conditional Masked Language Modeling (CMLM) and De-
noising Restoration (DR). Specifically, CMLM learns to predict masked tokens at the target side
conditioned on the source sentence. DR firstly introduces noise to the target side of parallel data,
and the model is trained to detect and recover the introduced noise. Both strategies can adapt the
pre-trained translation model to the QE-style prediction task. Experimental results show that our
model achieves impressive results, significantly outperforming the baseline model, verifying the
effectiveness of our proposed methods.

1 Introduction

Machine translation has always been the hotspot and focus of research. Compared with traditional meth-
ods, neural machine translation (NMT) has achieved great success. However, current translation systems
are still not perfect to meet the real-world applications without human post-editing. Therefore, to carry
out risk assessment and quality control for machine translation, how to evaluate the quality of machine
translation is also an important problem.

Quality Estimation (QE) aims to predict the quality of machine translation automatically without rely-
ing on reference. Compared with commonly used machine translation metrics such as BLEU (Papineni
et al., 2002) and METEOR (Lavie and Denkowski, 2009), QE can be applicable to the case where refer-
ence translations are unavailable. It has a wide range of applications in post-editing and quality control
for machine translation. The biggest challenge for QE is data scarcity. Since QE data is often limited in
size, it is natural to transfer bilingual knowledge from parallel data to the QE task.

One well-known framework for this knowledge transfer is the predictor-estimator framework, in which
the predictor is trained on large parallel data and used to extract features, and the estimator will make
quality estimation based on features provided by the predictor. The predictor is usually a machine trans-
lation model, which can hopefully capture the alignment or semantic information of the source and the
target in a pair. Kim et al. (2016) first proposed to use an RNN-based machine translation model as the
feature extractor, to leverage massive parallel data to alleviate the sparsity of annotated QE data. Wang
et al. (2020) employed a pre-trained translation model as the predictor and added pseudo-PE information
to predict translation quality.

∗ Corresponding author.
©2022 China National Conference on Computational Linguistics
Published under Creative Commons Attribution 4.0 International License

CC
L 
20
22

Proceedings of the 21st China National Conference on Computational Linguistics, pages 872-883, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

872



Computational Linguistics

However, there are two discrepancies between machine translation and quality prediction, which im-
pedes the NMT model to be directly adopted for feature extraction. i) Translation task is usually a
language generation task trained in an autoregressive manner, where each token is only conditioned
on previous tokens unidirectionally. But QE is a language understanding task performed in a non-
autoregressive manner, therefore each token could attend to the whole context bidirectionally. ii) The
predictor is trained on human-crafted parallel data and only learns to model the alignment between cor-
rect translation pairs. However, the QE task needs to model machine-translated, imperfect translation
pairs. Both discrepancies may hinder the adaptation of the pre-trained NMT model to the downstream
QE task, leading a degradation of model performance (Weiss et al., 2016).

In this paper, we propose two strategies to alleviate the discrepancies, named as Conditional Mask
Language Modeling (CMLM) and Denoising Restoration (DR). Both strategies are applied to the pre-
trained NMT model and can be deemed as a post-training phase. The CMLM is to train the NMT model
to recover the masked tokens at the target side in a non-autoregressive manner, where each token can
attend to the whole target sequence bidirectionally. Furthermore, the DR first generates erroneous trans-
lation by performing conditionally masked language modeling, and then trains the NMT model to detect
the introduced noise and recover the target sequence, which is also performed in a non-autoregressive
manner. Both methods can adapt the autoregressive NMT model to non-autoregressive QE prediction.
Moreover, compared with CMLM, DR removes the introduction of [MASK] token (which may also
cause the discrepancy between pre-training and QE prediction). Besides, adversarially using another
model with knowledge distillation to generate noise could provide more natural and harder training sam-
ples, thereby pushing the translation model better model the semantic alignment between the imperfect
translation and source sequence. After the post-training phase, the NMT model is better adapted to the
quality prediction task, and can serve as a better feature extractor.

Our contributions can be summarized as follows:

• We propose two strategies for post-training the NMT model to bridge the gaps between machine
translation and quality estimation, which can make the NMT model more suitable to act as the
feature extractor for the QE task.

• We conduct experiments on the WMT21 QE tasks for En-Zh and En-De directions, and our methods
outperform the baseline model by a large margin, proving its effectiveness. We also perform in-
depth analysis to dig into the discrepancies between translation and quality prediction.

2 Background

2.1 Task description
Quality Estimation aims to predict the translation quality of an MT system without relying on any refer-
ence. In this task, the dataset is expressed in the format of triplet (s,m, q), where s represents the source
sentence, m is the translation output from a machine translation system, and q is the quality score of
machine translation.

Generally, Quality Estimation task includes both word-level and sentence-level tasks. In word-level
task, the prediction is done both on source side (to detect which words caused errors) and target side (to
detect mistranslated or missing words). In sentence-level task, it will mark each sentence with a score,
which can be calculated based on different standards, consists of Human-targeted Translation Edit Rate
(HTER) (Snover et al., 2006), Direct Assessment (DA) (Graham et al., 2017), Multidimensional Quality
Metrics (MQM) (Lommel et al., 2014), etc. In this work, we mainly focus on sentence level post-editing
effort prediction, which is measured by:

HTER = (I +D +R)/L, (1)

where I , D and R are the number of Insertions, Deletions and Replacement operations required for post-
editing, and L is the reference length. However, labeling the data requires post-editing for the machine
translations by experts, leading the label of QE data too expensive to obtain, which makes QE highly
data-sparse.

CC
L 
20
22

Proceedings of the 21st China National Conference on Computational Linguistics, pages 872-883, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

873



Computational Linguistics

2.2 Previous work
Generally, sentence-level QE is fomulated as a regression task. Early approaches were based on fea-
tures fed into a traditional machine learning method, such as QuEst++ (Specia et al., 2015) and MAR-
MOT (Logacheva et al., 2016) system. These model usually has two modules: the feature extraction mod-
ule and the classification module. But they relied on heuristic artificial feature designing, which limits
their development and application (Huang et al., 2020). With the increasing popularity of deep learning
methods, researchers resort to distributed representations and recurrent networks to encode translation
pairs. However, the limited size of training samples impedes the learning of deep networks (Martins
et al., 2017). To solve this problem, a lot of research has been done to use additional resource (both
bilingual and monolingual) to strengthen the representation (Kim and Lee, 2016) . After the emergence
of BERT (Devlin et al., 2018), some work attempts to use the pre-trained language model as a predic-
tor directly and add a simple linear on top of the model to obtain the predictions (Chen et al., 2021;
Chowdhury et al., 2021), which has led to significant improvements.

Among all the deep learning-based methods, one commonly used framework for QE is the predictor-
estimator framework, where the predictor is used as a feature extractor and the estimator uses the features
to make predictions. The predictor is usually a translation model, which can alleviate the problem of data
sparsity by transferring bilingual knowledge from parallel data. Kim et al. (2016) firstly proposed the
predictor-estimator framework to leverage massive parallel data to improve QE results, they applied
an RNN-based machine translation model as the predictor and added a bidirectional RNN as estimator
to predict QE scores, which achieved excellent performance especially in sentence-level QE. Fan et
al. (2019) used Transformer-based NMT model as the predictor to extract high-quality features, and used
4-dimensional mis-matching features from this model to improve performance. Wang et al. (2019) pre-
trained left-to-right and right-to-left deep Transformer models as the predictor and introduced a multi-
layer bidirectional Gated Recurrent Unit (Bi-GRU) as the estimator to make prediction. Wu et al. (2020)
reformed Transformer-based predictor-estimator by using multidecoding during the machine translation
module, then implemented LSTM-based and Transformer-based estimator with top-K and multi-head
attention strategy to enhance the sentence feature representation. Wang et al. (2020) employed a pre-
trained translation model as the predictor and added pseudo-PE information to predict translation quality,
which obtained the best result in the English-German direction of WMT20. However, despite various
of improvement has been made on the predictor-estimator framework, the discrepancy problem between
machine translation and quality estimation is not systematically investigated.

3 Approach

In this section, we first describe the NMT-based QE architecture, and then describe our proposed post-
training strategies.

3.1 QE Architecture
The QE architecture is shown in Figure 1. Our work follows the predictor-estimator framework. The
predictor is a translation model trained with the transformer architecture on parallel data, which has
learned the feature extraction ability of bilingual inputs after a long-term and large-scale pre-training.
Therefore, adding only a linear layer on the top of translation model and fine-tuning with a small amount
of QE data can achieve promising results.

As shown in Figure 1, the final hidden vector of the neural machine translation model corresponding
to the first input token is fed into a simple linear layer to make quality prediction, which is given by:

HTERpred = W T
s h(0) + b0, (2)

where h(0) ∈ RH is the hidden vector of the first input token, Ws ∈ RH represents a weight matrix, H is
the dimension of hidden states, b0 ∈ R1 is the bias. The loss function is the mean squared error between
HTERpred and HTERtrue, which can be written as:

LQE = MSE(HTERpred, HTERtrue) (3)
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Figure 1: The illustration of the QE model. The source and mt sentence are fed into encoder and decoder
respectively. The BAL is integrated after the self-attention layer and the FFN layer, respectively. In order
to better adapt to QE task, the causal mask in decoder is removed.

Since the size of training dataset is relatively small, the model is easy to be over-fitted when all pa-
rameters are updated. Incorporating the insights from Wang et al. (2020), the Bottleneck Adapter Layers
(BAL) (Houlsby et al., 2019) are integrated into the neural machine translation model, which alleviates
the problem of overfitting by freezing the parameters of the original model. The BAL is implemented
with two simple fully-connected layers, a non-linear activation and residual connections, where the hid-
den representations are first expanded two times and then reduced back to the original dimension.

3.2 Conditional Masked Language Modeling
The Conditional Masked Language Modeling is illustrated in Figure 2. Despite using the same archi-
tecture as the machine translation model, the CMLM utilizes a mask language modeling objective at the
target side (Ghazvininejad et al., 2019). The source sentence is sent to the encoder, while some tokens
are corrupted at the target side. Then the CMLM is trained to recover the corrupted target sentence.

I like eat apple.

当代 [mask] 应该 [mask]

Encoder Decoder

当代 青年 应该 努力

Contemporary youth study hard

Encoder

should

学习

学习 。.

。

Figure 2: The illustration of the CMLM. At the target side, some tokens are replaced with [mask] symbol
or random token. Note that it also needs to remove the casual mask in decoder.
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In terms of implementation, given a parallel sentence pair < x, y >, we generate a corrupted sentence
y′ with a 25% mask ratio. When the i-th token is chosen to be masked, it may be replaced with the
[MASK] token 20% of the time or a random token 80% of the time. The training objective for CMLM
is to maximize: P (yi|x, y′), where yi is the i-th token, x and y′ represent the source sentence and the
corrupted target sentence, respectively. More specifically, we reuse the parameters of the neural machine
translation model instead of training the model from scratch, and the model is trained with data in the
same domain as the QE data.

Translation model is a natural language generation model trained in an autoregressive manner, where
each token can only pay attention to the tokens before it, and the tokens after it are masked out. On the
contrary, QE task is a natural language understanding task in which each token needs to be concerned
with the whole context. Through this mask-prediction task focusing on bidirectional information, the
model can learn the context-based representation of the token at the target side, thereby adapting the
unidirectional NMT decoder to the bidirectional prediction task.

3.3 Denoising Restoration
Inspired by Electra (Clark et al., 2020), to further mitigate the discrepancy of data quality, we apply the
Denoising Restoration strategy to post-train the neural machine translation model. The model architec-
ture is illustrated in Figure 3, which can be divided into the Noiser and the Restorer. The Noiser is used to
create noisy samples, and the restorer is used to recover the noisy samples. After that, only the Restorer
would be used as the predictor and the Noiser would be dropped.

Encoder Decoder

Encoder Decoder

Restorer

Noiser

我 [mask] 买 苹果。

Encoder Decoder

我 喜欢 吃 苹果。

He put on maska for safety 为了 [mask] 他 带上了 [mask]

为了 安全 他 带上了 面具

为了 安全 他 带上了 口罩

Encoder

。

。安全 他 带上了 面具 。

。

.

Figure 3: The Noiser-Restorer architecture.

The Noiser is first trained to introduce noise at the target side. It has the same architecture as the
CMLM, the difference is that we utilize the decoding results of the to-be-evaluated NMT model as the
training objective of the Noiser, where the to-be-evaluate NMT model is used to generate QE data.
Specifically, given a parallel sentence pair < x, y >, we use the to-be-evaluted NMT model to generate
the translation ỹ of x. Then the Noiser is trained with the new parallel sentence pair < x, ỹ >. After the
training of the Noiser, we put the Noiser and the Restorer together for training with parallel data< x, y >.
Moreover, it is performed by dynamic mask strategy with the masked positions decided on-the-fly, where
the mask ratio is same as that of the CMLM. The loss function is defined as follows:

LDR = −
L∑
i=1

logP (l = li|x, ŷ), li ∈ {1, 2, ..., V }, (4)

where L is the length of sentence, ŷ is the sentence generated by the Noiser, V is the size of vocabulary.
The reason for introducing Noiser is that in the CMLM strategy, there is a large deviation between the

sentences generated by randomly adding noise and real machine translation, which is easily detected and
may limit the performance. Limited by the performance of the Noiser, it is certain that not all tokens can
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be recovered completely and correctly. Therefore, the target sequence generated by the Noiser is noisy
compared with reference translation. Meanwhile, since the Noiser utilizes a decoder with language
modeling capabilities for generation, the generated sentences are more natural without obvious lexical
and syntactic errors. Similarly, real machine translation noise is also natural and does not have significant
lexical and syntactic errors, so the noise generated by the Noiser is closer to the real noise distribution
than the noise generated by random replacement. A possible example is shown in the Figure 3.

In addition, we utilize knowledge distillation technique (Kim and Rush, 2016) in the Noiser, which
is used to transfer specific patterns and knowledge among different sequence generation models. In our
scenario, the decoding process of the to-be-evaluated NMT model has a fixed pattern, so the translation
results obtained by decoding the source sentences with this NMT model contains the noise distribution
of the to-be-evaluated NMT model. When the Noiser learns to recover a corrupted token, both training
objectives and context are generated by this NMT model. Hence, the obtained Noiser would have a
similar decoding space with the to-be-evaluated NMT model. Note that the Noiser could produce pseudo
translations with the same length as the reference translation, which is convenient for later training.

Despite both adopting non-autoregressive training objective, the difference between CMLM and Re-
storer lies in the source of noise. The noise of CMLM comes from random masking, while the noise of
Restorer comes from language model generation. On the one hand, the noise generated by the Noiser is
more consistent with the noise distribution of the to-be-evaluated NMT model, so during the training, the
Restorer can learn the modeling ability for noise data with specific distribution. On the other hand, since
the noise generated by the Noiser is more natural and more difficult to identify, the obtained Restorer
would have a better feature extraction ability and can identify trivial translation errors. In cases where
QE needs to model machine-translated noisy data, the Restorer is more suitable for QE task.

4 Experiments

4.1 Settings
Dataset. Our experiments focus on the WMT21 QE tasks for English-to-Chinese (En-Zh) and English -
to-German (En-De) directions. The QE data in each direction contains a training set of 7000, a validation
set of 1000, and a test set of 1000. Besides, we also use the test set of WMT20. To train our own NMT
model, we use the En-Zh and En-De parallel data released by the organizers0, which contains roughly
20M sentence pairs for each direction after cleaning.

For the CMLM and DR, We first trained a BERT-based domain classifier and then screened 200K
in-domain data from WikiMatrix for each direction1. The validation set we use is the training set of the
QE task.
Implementation Details. All our programs are implemented with Fairseq (Ott et al., 2019). For the
NMT model, we use Transformer-base architecture. We apply byte-pair-encoding (BPE) (Sennrich et al.,
2015) tokenization to reduce the number of unknown tokens and set BPE steps to 32000. The learning
rate is set to 5e-4. This setting is adopted in both En-Zh and En-De directions.

For the CMLM, the casual mask is removed and learning rate is set to 5e-5. For the Noiser-Restorer
model, the parameters of the Noiser are frozen and the learning rate for the Restorer is 5e-5. For the
Noiser, we use the decoding results of the to-be-evaluated NMT model as the training objective. We use
inverse-square-root scheduler in above three models. For the QE model, it trained for 30 epochs and the
hyperparameter patience is set to 5. The activation function in the BAL is ReLU. We batch sentence pairs
with 4096 tokens and use the Adam optimizer with β1 = 0.9, β2 = 0.98 and ϵ = 10−8 . The learning
rate is 1e-4 without any scheduler.

The training data for all models is preprocessed by Fairseq based on the vocabulary and BPE vocab-
ulary of the NMT model. For fair comparison, we tune all the hyper-parameters of our model on the
validation data, and report the corresponding results for the testing set. The main metric we use is Pear-
son’s Correlation Coefficient. We also calculate Spearman Coefficient, but it is not a ranking reference
in the QE task.

0https://www.statmt.org/wmt21/quality-estimation-task.html
1http://data.statmt.org/wmt21/translation-task/WikiMatrix
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Direction System
Test21 Test20

Avg
Pearson↑ Spearman↑ Pearson↑ Spearman↑

En-Zh

XLM-R(WMT-baseline) 0.282 - - - 0.282

DistilBert 0.257 0.223 0.340 0.334 0.299

XLM-R 0.265 0.219 0.323 0.318 0.294

NMT 0.286 0.242 0.322 0.312 0.304

NMT(finetune) 0.294 0.243 0.322 0.311 0.308

CMLM 0.334 0.273 0.355 0.345 0.345

DR 0.342 0.275 0.362 0.353 0.352

En-De

XLM-R(WMT-baseline) 0.529 - - - 0.529

DistilBert 0.466 0.433 0.432 0.427 0.449

XLM-R 0.537 0.492 0.469 0.464 0.503

NMT 0.528 0.491 0.427 0.424 0.478

NMT(finetune) 0.532 0.491 0.438 0.430 0.485

CMLM 0.569 0.518 0.450 0.437 0.509

DR 0.577 0.521 0.460 0.424 0.519

Table 1: Experiment results on both En-Zh and En-De directions. ‘XLM-R’ and ‘DistilBERT’ are
implemented by us based on XLM-RoBERTa and DistilBERT. ‘Avg’ represents the average value of the
pearson over two datasets. ‘-’ indicates missing results.

4.2 Main Results

We compare our models with the following methods:
PLM-Baseline: Pre-training language models (PLM) are directly used as the predictor without inte-

grating the BAL layer. In our experiments, DistilBert (Sanh et al., 2019) and XLM-RoBERTa (Conneau
et al., 2019) were selected, and the baseline of organisers is also implemented by XLM-RoBERTa.

NMT-Baseline: An NMT model pre-trained on parallel data is used as the predictor, where
NMT(finetune) is obtained by continuing to finetune on the in-domain data used by CMLM and DR.

The experimental results in both En-Zh and En-De directions are reported in Table 1. The Test20 is
officially corrected, so there are no up-to-date results. As can be seen, the performance of the baseline
model is relatively poor. By leveraging MLM training strategies, the CMLM can better focus on con-
textual information and achieves much better performance than NMT model. Moreover, the denoising
restoration strategy further enhances the feature extraction ability of Restorer by introducing noise that
is consistent with the distribution of NMT and outperforms the CMLM in two language pairs. This
illustrates that our approaches alleviate the discrepancy between the NMT model and the QE model,
thereby making the NMT model better adapted to the QE task. Combined with the official ranking, in
En-Zh direction, our single model outperforms other systems except the first place (which adapt multiple
ensemble techniques and data-augmentation).

The CMLM and DR also perform better than the fine-tuned NMT model, which indicates the per-
formance gains of them are not due to the introduction of additional datasets. Besides, the NMT-based
models are more effective than PLM-Baseline in most of the comparisons, we consider that the NMT
model is naturally fit for machine translation related tasks, benefiting from the knowledge of bilingual
alignment.
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5 Analysis

5.1 The Impact of Mask Ratio and [MASK] symbol
During the training stage, the number of corrupted tokens may affect the performance of the model,
which is related to the mask ratio. We conduct experiments to study the impact of different mask ratio
and the results are illustrated in Figure 4.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Mask ratio

0.32

0.325

0.33

0.335

0.34
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0.35

0.355

0.36

CMLM

DR

(a) En-Zh direction

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
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0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

CMLM

DR

(b) En-De direction

Figure 4: The effect of mask ratio on model performance. The values in the diagrams are the average of
the pearson over two datasets.

We find that the two diagrams exhibit roughly the same pattern. The QE performance first improves,
but when the mask ratio is too high, the results start to decline. This is because as the mask ratio increases,
the quality of the pseudo data is gradually approaching the real machine translation, therefore the model
can better model semantic alignment between the imperfect translation and source. However, when the
mask ratio is too high, most of the input sentence is covered and it is too difficult for the model to restore
them, thus the model can barely learn anything useful and the performance is degraded. We also observe
that the performance peak of the Noiser-Restorer model in En-Zh direction comes later than that in the
En-De direction. One possible reason is that the Noiser in the En-Zh direction performs better than that
in the En-De direction, we will explain this in the next subsection.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The ratio of [MASK] symbol

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.47

0.475

0.48

0.485
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0.5

0.505

0.51

0.515

0.52

En-Zh

En-De

Figure 5: The impact of the [MASK] symbol.

In the CMLM strategy, among the corrupted tokens, some will be replaced with [MASK] symbol,
and the others will be replaced with random tokens. We fix the mask ratio and then gradually increase
the proportion of corrupted tokens replaced with [MASK] symbol to study the impact of introducing
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[MASK] symbol. The results are presented in Figure 5. We can observe that performance get worse as
the introduced [MASK] symbol increases. It may be caused by the mismatch between pre-training and
fine-tuning when too many [MASK] tokens are introduced, as they never appear during the fine-tuning
stage. Furthermore, using only random replacement does not give the best results, which proves that the
performance improvement brought by DR is not only due to the removal of [MASK] symbol but also
benefits from the introduction of natural noise close to the real machine translation.

5.2 The Impact of Knowledge Distillation
In the implementation of the Noiser, we use the decoding results of the to-be-evaluated NMT model as
the training objective of the Noiser. Our motivation is to make the Noiser learn the knowledge implied by
to-be-evaluated model, so as to generate sentences that is closer to the noise of real machine translation.
We conduct experiments to verify the effective of this scheme, and the results are shown in Table 2.

Direction System
Test21 Test20

Avg
Pearson↑ MAE↓ Pearson↑ MAE↓

En-Zh
Noiser-Restorer w/o kd 0.328 0.240 0.346 0.226 0.337
Noiser-Restorer w/ kd 0.334 0.202 0.360 0.233 0.347

En-De
Noiser-Restorer w/o kd 0.546 0.125 0.449 0.144 0.498
Noiser-Restorer w/ kd 0.549 0.128 0.436 0.133 0.493

Table 2: The comparison results of Noiser-Restorer under two strategies. ‘w/ kd’ and ‘w/o kd’ denote
with or without knowledge distillation, respectively. The ‘MAE’ is the Mean Absolute Error.

For a fair comparison, we extracted another dataset from WikiMatrix instead of the one used to train
the Noiser for experiments. According to the experimental results, we find that the scheme plays an
obvious role in the En-Zh direction, which shows that the Noiser generates pseudo data consistent with
the noise distribution of the to-be-evaluated NMT model, thereby improving the performance. However,
the situation is different for the En-De direction, where the results are not improved or even slightly
decreased as a whole. We speculate that it may be affected by the performance of the to-be-evaluated
neural machine translation model. We studied the QE dataset and came up with the results shown in the
Table 3.

Direction train valid test21 test20
En-Zh 0.4412 0.2839 0.2283 0.3329
En-De 0.1784 0.1830 0.1754 0.1667

Table 3: The statistical results of translation quality for QE dataset in En-Zh and En-De directions. The
values in the table represent the average value of hter label.

HTER indicates human-targeted translation edit rate, and the higher HTER is, the worse the translation
quality is. As can be seen in Table 3, the average value of HTER in the En-Zh direction is generally
higher than that in the En-De direction. This shows that the to-be-evaluated NMT model has a better
translation effect in the En-De direction, thus the machine translation is not much different from the
reference translation. It is difficult for Noiser to learn the pattern contained in the NMT model, so the
knowledge distillation does not play a significant role.

5.3 Different Loss Calculation Methods
Base on previous researches, there are two ways to calculate the loss:

i. Following BERT, calculating the loss only on the small subset that was masked out.

ii. Calculating the loss over all input tokens at the target side.
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Direction System
Test21 Test20

Avg
Pearson↑ MAE↓ Pearson↑ MAE↓

En-Zh
Only-Corrupted 0.328 0.217 0.348 0.227 0.338

All-Tokens 0.334 0.202 0.355 0.233 0.345

En-De
Only-Corrupted 0.574 0.125 0.445 0.136 0.510

All-Tokens 0.568 0.126 0.450 0.132 0.509

Table 4: Experimental results of different loss calculation methods in En-Zh and En-De directions.
‘Only-Corrupted’ and ‘All-Tokens’ mean the loss is calculated on the corrupted tokens and all input
tokens, respectively.

We compare these two methods on the CMLM strategy and the results are shown in Table 4. In the
En-Zh direction, the method of calculating the loss on all tokens is better than that only on the corrupted
tokens. However, the situation is a little different in the En-De direction. We speculate that English
and German belong to the same family of languages, and the prediction is relatively simple, so adding
this additional information has little effect. Overall, the performance of the two methods is roughly
equivalent.

6 Conclusion

When applying the pre-trained machine translation model to feature extraction for QE, there are two
discrepancies between the NMT model and the QE model. One is the difference in data quality, the other
is the regressive behavior of the decoder. In this paper, we propose two strategies to adapt the neural
machine translation model to QE task, namely Conditional Masked Language Modeling and Denoising
Restoration. The CMLM adopts a mask-prediction task at the target side, which allows the model to
learn context-based representations. Moreover, the DR employs a Noiser-Restorer architecture, where
the Noiser is used to generate sentences with the same noise distribution as machine translation, then
the Restorer will detect and recover the introduced noise. Compared with the original NMT model, our
methods bridge the gaps between the NMT model and the QE model, making it more suitable for the QE
task. The experimental results verify the effectiveness of our methods.

The main work in this paper focuses on sentence-level task. Intuitively, the discrepancy also exists
on word-level quality estimation when applying the pre-trained NMT model, and our strategies could
function without any adaptation. Besides, enhancing the estimator can also improve QE performance,
and we will leave this as our future work.
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