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Abstract

Machine learning models that offer excellent
predictive performance often lack the inter-
pretability necessary to support integrated hu-
man machine decision-making. In clinical or
other high-risk settings, domain experts may
be unwilling to trust model predictions with-
out explanations. Work in explainable AI must
balance competing objectives along two differ-
ent axes: 1) Models should ideally be both
accurate and simple. 2) Explanations must
balance faithfulness to the model’s decision-
making with their plausibility to a domain ex-
pert. We propose to use knowledge distilla-
tion, or training a student model that mimics
the behavior of a trained teacher model, as a
technique to generate faithful and plausible ex-
planations. We evaluate our approach on the
task of assigning ICD codes to clinical notes to
demonstrate that the student model is faithful
to the teacher model’s behavior and produces
quality natural language explanations.

1 Introduction

Machine learning (ML) methods have demon-
strated predictive success in medical settings, lead-
ing to discussions of how ML systems can augment
clinical decision-making (Caruana et al., 2015).
However, a prerequisite to clinical integration is the
ability for healthcare professionals to understand
the justifications for model decisions. Clinicians
often disagree on the proper course of care, and
share their justifications as a means of agreeing
on a treatment plan. Explainable Artificial Intel-
ligence (AI) can enable models to provide the ex-
planations needed for them to be integrated into
this process (Lundberg et al., 2018; Caruana et al.,
2015). However, modern AI models that often rely
on complex deep neural networks with millions or
billions of parameters pose challenges to creating
explanations that satisfy clinician’s demands (Feng
et al., 2018).

∗Equal contribution

Similar concerns over model explanations across
domains have inspired a whole field of interpretable
ML. Work in this area typically considers two goals:
faithfulness (explanations that accurately convey
the decision-making process of the model) and
plausibility (explanations that make sense to do-
main experts) (Jacovi and Goldberg, 2020). These
two goals may be in conflict: faithful explanations
that accurately convey the reasoning of complex
AI systems may be implausible to a domain ex-
pert, and vice versa (Kumar and Talukdar, 2020;
Wiegreffe et al., 2021). Models must also balance
performance against transparency. The methods
that perform best on a task may be unable to pro-
vide explanations (Rudin, 2019).

We propose to disentangle these competing goals
by using knowledge distillation. We train a bag-
of-words linear student model to predict the pre-
dictions of the teacher model, so that the behavior
of the student model mimics the teacher model’s
behavior, rather than independently modeling the
target task. We then rely on the interpretable stu-
dent to create explanations without changing the
original teacher model. We evaluate the student’s
faithfulness to the teacher model and the plausibil-
ity of the student’s explanations.

We demonstrate our approach on the task of
medical code prediction. While ML methods have
achieved predictive success on various versions of
International Classification of Diseases (ICD) clin-
ical code assignment, the best-performing methods
have been neural networks that are notoriously dif-
ficult to interpret. We train student models for
three teacher models: (1) DR-CAML, a method
designed to produce explainable predictions which
outperformed several baselines when evaluated by
a clinical expert (Mullenbach et al., 2018); (2) Hier-
archical Attention Networks, a Bi-GRU document
classifier first introduced by Yang et al. (2016) and
adapted to ICD code prediction by Dong et al.
(2021); and (3) TransICD, a transformer-based
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method (Biswas et al., 2021). We show that our
student models are faithful to the teacher models
and can generate natural language explanations that
are comparably plausible. We also show that our
student model outperforms a logistic regression
baseline in comparison to the true ICD-9 labels,
despite being of equal complexity. We release the
code under an MIT license for both our method
and for reproducing Mullenbach et al. (2018).1

2 Background

2.1 Interpretable ML
Interpretable machine learning falls within the
growing field of Explainable AI (Doshi-Velez,
2017). We present an overview of major themes
in the literature, and direct the reader to recent sur-
veys for more details (Doshi-Velez, 2017; Guidotti
et al., 2018; Gilpin et al., 2018).

Past work distinguishes between “transparent”
or “inherently interpretable” models that offer their
own explanations, and “post-hoc” methods that pro-
duce explanations for a separately-trained model.
Linear methods such as logistic regression are often
considered transparent, while deep neural networks
are generally not and rely on post-hoc methods for
explainability (Guidotti et al., 2018; Feng et al.,
2018). However, even simple models can prove dif-
ficult to interpret, e.g., when the model’s features
are complex (Lipton, 2018). LIME and SHAP are
commonly used post-hoc methods (Ribeiro et al.,
2016; Lundberg and Lee, 2017); given a trained
model of arbitrary complexity they produce ex-
planations for individual predictions by sampling
perturbed inputs. Unlike LIME and SHAP, our
method produces global explanations, and the stu-
dent model can be used for predictions on future
input. Prior work has shown that such methods
can produce contrasts which are misleading or un-
intuitive (Mittelstadt et al., 2019) and that LIME
or SHAP can be fooled into providing innocuous
explanations for models that demonstrate racist or
sexist behavior (Slack et al., 2020). These methods’
feature importance scores are difficult to aggregate
across a dataset and do not provide global faithful-
ness (van der Linden et al., 2019; Lakkaraju et al.,
2017).

Lipton (2018) argues that interpretability is never
“inherent” and must satisfy several criteria. These
include simulatability, or whether a human can rea-
sonably work through each step of the model’s

1https://github.com/isabelcachola/mimic-proxy

calculations; decomposibility, or whether each pa-
rameter of the model can be understood on its own;
and algorithmic transparency, or whether the model
belongs to a class with known theoretical behaviors.
Lou et al. (2012) highlights linear and additive mod-
els as particularly decomposible (or intelligible)
classes of models, because “users can understand
the contribution of individual features in the model.”
Our proposed approach uses a linear bag-of-words
model to provide a simulatible, decomposible, and
transparent method.

Interpretability methods are also distinguished
by the form and quality of the explanations they
produce. We follow Jacovi and Goldberg (2020)
in recognizing two primary desiderata for post-
hoc explanations of ML systems: “faithfulness”
and “plausibility.”2 A faithful explanation accu-
rately represents the original model, by closely ap-
proximating its behavior or exposing its internal
state (Yeh et al., 2019; Lakkaraju et al., 2020). A
plausible model produces explanations that can be
interpreted by a human expert (Jacovi and Gold-
berg, 2020; Ehsan et al., 2019). Prior work has ex-
plored methods such as forcing a faithful classifier
to make predictions from a limited set of (plausi-
ble) rationales (Jain et al., 2020), or focusing on
extracting rationales to constrain predictors to be
inherently interpretable (Lei et al., 2016; Bastings
et al., 2019). Methods should attempt to achieve
both goals, but there is a trade-off between the
two; explanations typically cannot be both concise
and perfectly descriptive. Plausibility, unlike faith-
fulness, necessarily requires an evaluation based
on human perception (Herman, 2017; Jain et al.,
2020). A strength of our proposed method is that
it is designed for plausibility and transparency, but
optimized for faithfulness.

2.2 Knowledge Distillation

Knowledge distillation is a technique in which a
simpler “student” model is trained to behave like
a high performing, but more complex “teacher”
model (Hinton et al., 2015). This approach has
been widely studied under a variety of other names
such as model approximation or compression (Bu-
ciluǎ et al., 2006), or simply ‘copying’ (Unceta
et al., 2020). In many of these threads of research,
the goal is to produce a student model that is

2Faithfulness is also referred to as fidelity, validity or com-
pleteness; plausibility is alternatively referred to as persuasive-
ness (Herman, 2017). See Jacovi and Goldberg (2020) for a
longer discussion of alternate terminology.

https://github.com/isabelcachola/mimic-proxy
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Figure 1: Relationship between the teacher and stu-
dent models. The student model is trained to predict
the teacher’s outputs, rather than the true ICD-9 codes.
This optimizes the student model for faithfulness.

smaller or faster than the teacher, while achiev-
ing high accuracy. Our work most closely follows
approaches such as Lakkaraju et al. (2017); Asadu-
laev et al. (2019) that have sought to produce an
interpretable student. The experimental and theo-
retical properties of knowledge distillation are well
studied (Tan et al., 2018b; Phuong and Lampert,
2019).

Knowledge distillation has been applied to a va-
riety of domains for the purposes of interpretability,
such as crime and lending data (Tan et al., 2018a)
and image classification (Asadulaev et al., 2019).
Furthermore, a wide variety of model architectures
have been shown to be effective as the student
model, including decision trees (Elshawi et al.,
2019), elastic nets (Guo et al., 2017), decision sets
(Lakkaraju et al., 2017). We apply knowledge distil-
lation to the task of medical code prediction, for the
purposes of interpretability. We show that knowl-
edge distillation is both an effective technique for
training a faithful student model and can be used to
generate plausible natural language explanations.

2.3 Explainable prediction in the medical
domain

Explainability techniques have been applied to a
variety of tasks in the medical domain, such as
pneumonia and hospital readmission risk (Caruana
et al., 2015) or real-time hypoxaemia prediction
(Lundberg et al., 2018). Our work considers the
task of predicting medical codes from hospital dis-

charge notes. This task has been widely studied,
and we use three published models on which we
evaluate our approach: DR-CAML (Mullenbach
et al., 2018), HAN (Yang et al., 2016), and Tran-
sICD (Biswas et al., 2021). As all three models
contain millions of parameters, they are not sim-
ulatible or decomposible. However, DR-CAML
and TransICD seek to produce their own explana-
tions using a per-label attention mechanism that
highlights regions in the input text that were corre-
lated with the model’s predictions. HAN was not
designed with the goal of interpretability.

The use of attention to produce explanations
has sparked discussion. Jain and Wallace (2019)
showed that attention mechanisms can provide mis-
leading explanations, whereas Wiegreffe and Pinter
(2019) argued that attention-based explanations are
often plausible, even when unfaithful. More recent
work has explored when and how attention mech-
anisms can be either useful or deceptive (Zhong
et al., 2019; Grimsley et al., 2020; Jain et al., 2020;
Pruthi et al., 2020). As researchers continue to use
this domain to explore methods for explainability
and document classification (Kim and Ganapathi,
2021; Vu et al., 2020), we should strive to produce
models that are both faithful and plausible.

3 Methods

Our proposed method is post-hoc and seeks to bal-
ance faithfulness and plausibility. We assume that
we have a trained teacher model with good predic-
tive performance but low interpretability. We train
a student model that takes the same input from the
dataset, but uses the teacher model’s predictions as
its labels. Figure 1 gives a visual representation of
our model distillation setup.

The MIMIC-III dataset contains anonymized
English-language ICU patient records, includ-
ing physiological measurements and clinical
notes (Johnson et al., 2016). Following Mullenbach
et al. (2018), we focus on discharge summaries
which describe a patient’s visit and are annotated
with ICD-9 codes. There are 8,922 different ICD-9
codes that describe procedures and diagnoses that
occurred during a patient’s stay. The manual assign-
ment of these codes to patient records are required
by most U.S. healthcare payers (Topaz et al., 2013).

To train the teacher models, we duplicate the
experimental setup of Mullenbach et al. (2018) and
Dong et al. (2021), which use the text of the dis-
charge summaries as input to the DR-CAML and
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HAN models, respectively, which then are trained
to predict all ICD-9 codes associated with that doc-
ument. After applying their pre-processing code to
tokenize the text, the dataset contains 47,724 dis-
charge summaries divided into training, dev, and
test splits. We also duplicate the experimental setup
of Biswas et al. (2021), which has a similar exper-
imental setup but only predicts the top 50 most
common ICD-9 codes.

We apply DR-CAML and HAN to the texts in
MIMIC-III and save its continuous-valued prob-
abilities as the labels for our student model. We
similarly apply TransICD to MIMIC-III-50, which
contains the top 50 most frequent labels in MIMIC-
III and save the continuous-valued probabilities as
the labels.3 For all three models, we use the code re-
leased by the authors.4 Training the student model
on predictions from the existing teacher model op-
timizes for faithfulness.

We want the student model to produce plausi-
ble explanations and fulfill the criteria from Lipton
(2018): simulatibility, decomposibility, and algo-
rithmic transparency. To fulfill these desiderata,
each student is a linear regression trained on bag-of-
words representation of the clinical text. The fun-
damental trade-off here is that if we overly restrict
our model class, the student will be unfaithful and
unable to mimic the behavior of the teacher model.
But if we allow for a student model that is too
complex, it may not provide plausible or otherwise
desirable explanations. These trade-offs may be
domain-specific based, for example, on the target
audience of the explanations. If the student model
demonstrates sufficient empirical performance, a
domain expert may even prefer to use it in place of
the teacher model, an option unsupported by LIME
or SHAP models.

We train a student model for each medical code
independently, and we refer to the student model
trained on X model’s predictions as “Student-X”
(e.g. Student-DRCAML). Each student uses only
50k parameters, allowing us to train each model on
a single CPU in a matter of minutes. We implement
our method using the linear SGDRegressor
model from sklearn (Pedregosa et al., 2011),

3Training on the full label set was prohibitively computa-
tionally expensive to reproduce and the authors did not release
the trained model weights. In Table 1, TransICD and its stu-
dent only use these 50 codes. These codes do not include
those used in Tables 3 and 7, so TransICD models are omitted.

4Mullenbach et al. (2018) released their code under an
MIT license, while Yang et al. (2016) and Biswas et al. (2021)
did not specify a license.

and apply a log transform to the model’s probability
outputs and train the student to minimize squared
loss. After a brief5 grid search on the validation
set, we use L1 regularization with α = 0.0001 for
the DR-CAML student and α = 0.01 for HAN and
TransICD proxies.

To extract a rationale, we take the feature im-
portance weights of the student model and average
over a sliding window of n-grams from the dis-
charge summary. We extract the n-gram with the
highest average feature importance weight. Future
work could use extracted rationales to train a stu-
dent model that remains faithful to a black-box
model.

In the next two sections, we introduce our eval-
uation for the student model’s faithfulness to each
model and the plausibility of its explanations.

4 Faithfulness evaluation

To establish that this collection of linear regressions
is faithful to the trained models, we want to show
that it makes similar predictions across all ICD-9
codes on held-out data. Recall from Figure 1 that
the student is trained not to predict the true ICD-9
codes but to output the same label probabilities as
the teacher model. In fact, the student model never
sees the true ICD-9 codes. We evaluate faithfulness
by comparing the outputs of the student and teacher
models on the held-out test set. If the two systems
produced identical outputs on held-out data, we
would say that the student was perfectly faithful.
We make this comparison in three different ways
– first with regression metrics for the continuous
outputs of the two models, then using classification
metrics with binarized teacher predictions, and fi-
nally comparing student outputs as predictions for
the true ICD-9 codes. For all these comparisons,
we use a logistic regression baseline that is trained
to directly predict the ICD-9 codes, independent of
any black-box model. While we would expect the
logistic baseline’s predictions to roughly correlate
with those of other models, we would not expect it
to be faithful.

Similar to Tan et al. (2018a), our first evaluation
uses regression metrics that assess the correlation
between the student’s predictions and the original
teacher model’s predicted probabilities. We use
Spearman and Pearson correlation coefficients and

5We considered L1, L2, and elastic net regularization with
α from 0.1 to 10−7. For HAN, which was not trained using
the published dev set, we simply adopted α=0.01.
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Regression Classification
AUC F1

Model Spearman Pearson Kendall Macro Micro Macro Micro

Logistic to...
DRCAML 0.036 -0.195 -0.135 0.734 0.936 0.012 0.353
HAN 0.204 0.036 -0.139 0.885 0.994 0.017 0.511
TransICD 0.587 0.662 0.419 0.894 0.927 0.476 0.580

Student-X
-DRCAML 0.794 0.498 0.608 0.980 0.995 0.052 0.416
-HAN 0.736 0.519 0.543 0.975 0.997 0.014 0.454
-TransICD 0.838 0.539 0.650 0.960 0.960 0.507 0.592

Table 1: Comparison of the logistic baseline and the student model to the DR-CAML, HAN, and TransICD predic-
tions. For the F1 evaluation, we threshold the student outputs at 0.5. The logistic model was trained to predict the
ICD codes; the student model to predict DR-CAML’s, HAN’s, or TransICD’s predictions, respectively. The stu-
dent model dramatically outperforms the logistic baseline in terms of faithfulness to the DR-CAML and TransICD
models. On classification metrics, the baseline is a surprisingly excellent student for the HAN model.

DR CAML HAN Trans ICD

Logistic Student Orig Student Orig Student Orig
Macro AUC 0.561 0.901 0.906 0.870 0.884 0.883 0.897
Micro AUC 0.937 0.967 0.972 0.962 0.967 0.907 0.924

Macro F1 0.011 0.142 0.224 0.026 0.077 0.426 0.586
Micro F1 0.271 0.326 0.536 0.251 0.390 0.478 0.640

Prec @ 8 0.541 0.483 0.701 0.519 0.599 0.479 0.502
Prec @ 15 0.412 0.407 0.548 0.406 0.455 0.333 0.343

Table 2: Comparison of DR-CAML, HAN, and TransICD and their respective student models to the true ICD
labels. Although the logistic regression baseline was trained to directly predict ICD codes and our student models
were not, the Student-DRCAML and Student-TransICD models outperform the baseline in AUC and F1.

the non-parametric Kendall Tau rank correlation.
These metrics range from -1 to 1 with 1 indicating
perfect faithfulness. Regression results are on the
left side of Table 1.

Our second evaluation treats the teacher model’s
predictions as binary labels to compute F1, AUC,
and precision scores. We then evaluate the faithful-
ness of our student model by treating its outputs as
probabilities and using classification metrics such
as F1 score. Prec @ n is the fraction of the n high-
est scored labels that are present in the ground truth.
These metrics range from 0 to 1, where perfectly
faithful predictions would have 1.0 AUC and F1
scores. The student model is considered faithful if
it correctly predicts whether the teacher model will
make a binary prediction. We again use the logistic
regression baseline. Classification results are on
the right side of Table 1.

Finally, we use the student model’s predictions

to predict the ground-truth ICD code labels and
compare its predictive performance against that of
the teacher model’s in Table 2. While the student
model was not trained using these labels, we can
use its predictions as probabilities for these codes.
By comparing against the logistic regression base-
line (a linear model of equal complexity), we can
see whether our training setup allows the student
model to learn a better predictor.

Our results show that our proxies are quite faith-
ful to the teacher models. Table 1 shows that the
Student-DRCAML and Student-HAN models are
dramatically more faithful to their corresponding
black-box models than the logistic regression base-
line. Interestingly, the baseline is in fact quite faith-
ful to the TransICD model. Comparing the classi-
fication metrics of Table 1 to the results in Table
2, we see that on AUC metrics, all three proxies
are more faithful to the their target models than
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934.1: “Foreign body in main bronchus”

Mullenbach et al. (2018)
CAML (HI) ... line placed bronchoscopy performed showing large mucus plug on the left on transfer to ...
Cosine ... also needed medication to help your body maintain your blood pressure after receiving iv...
CNN ... found to have a large lll lingular pneumonia on chest x ray he was ...
Logistic ... impression confluent consolidation involving nearly the entire left lung with either

bronchocentric or vascular ...
Ours
DR-CAML 0.38 ... line placed bronchoscopy performed showing large mucus plug on the left on transfer to ...
Logistic 0.28 ... tube down your throat to help you breathe you also needed medication to help ...
Student-DRCAML 0.38 ... a line placed bronchoscopy performed showing large mucus plug on the left on transfer ...
Student-HAN 0.39 ... line and r radial a line placed bronchoscopy performed showing large mucus plug on ...

Table 3: Comparison of the clinical evaluation from Mullenbach et al. (2018) with our plausibility evaluation. The
example above contains the explanations produced by eight systems. The first four systems for each example are
directly copied from Table 1 of Mullenbach et al. (2018). The (HI) and (I) labels in the second column indicate
whether the clinician labeled those explanations as Highly Informative or Informative. The four systems below the
dotted line are from our evaluation, for which the second column indicates the probability output of our plausibility
classifier. Here, Student-DRCAML and DR-CAML produce almost identical explanations. The Student-HAN
explanation highlights that our student method can generate explanations for black-box models which cannot
explain themselves. Additional comparisons are shown in Tables 5 and 7.

those black-box models were to the original ICD
codes. In Table 2, we hypothesize that the rela-
tively low precision scores result from our student
regressions being fit for each ICD code indepen-
dently, which prevents the combined model from
encoding relative frequency information.

Rudin (2019) critiques post-hoc methods in gen-
eral, arguing that “if we cannot know for certain
whether our [post-hoc] explanation is [faithful], we
cannot know whether to trust either the explana-
tion or the original model.” Because no post-hoc
method can ever be perfectly faithful to an orig-
inal model, our explicit measurement of faithful-
ness provides a useful approach for understanding
whether the student is “faithful enough” for a given
application. It also allows for a prediction-specific
analysis – if we wish to use the student model to
explain a high-stakes prediction made by a black-
box model, we can first check whether both agree
upon that specific prediction.

In applications where explainability is essential,
our student model could be used as a more inter-
pretable replacement for a high-performing black-
box model. In such a case, a domain expert might
care less about the evaluation of faithfulness in Ta-
ble 1 and more about the ground-truth predictive
performance evaluated in Table 2. We leave for fu-
ture work the challenge of whether a student model
produced by our method could be fine-tuned to
better predict ground-truth ICD codes.

5 Plausibility Evaluation

Explanations are considered plausible if they can
be reasoned about by a person (Wiegreffe and Pin-
ter, 2019). Evaluating plausibility is thus typically
more difficult than faithfulness, because it requires
input from annotators (Herman, 2017; Arora et al.,
2021). Furthermore, an explanation that is plausi-
ble to a domain expert may not be plausible to a
layperson. Mullenbach et al. (2018) evaluated the
plausibility of their models’ explanations by col-
lecting annotations from a clinical expert. For 100
notes, each of four models produced an explanation
in the form of a 14-token subsequence taken from
the discharge summary. The clinician read the four
(anonymized) explanations and the corresponding
ICD code and subjectively rated each explanation
as “informative”6. Across the 100 examples, the
clinician rated CAML as slightly more informa-
tive than the logistic regression and CNN baselines.
Table 3 shows explanations produced by our and
Mullenbach et al. (2018)’s models.

The format of Mullenbach et al. (2018)’s plausi-
bility evaluation does not easily lend itself to repli-
cation. While the authors shared their annotations
with us, missing metadata (see Appendix A.2) pre-
vented a direct reproduction of their analysis. Ad-
ditionally, since the clinical annotator considered
explanations in a comparative setting, we cannot
easily add our student model as another method us-

6The annotator was told to mark as informative all expla-
nations that “adequately explain[ed] the presence of the given
ICD code” (Mullenbach et al., 2018).
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Model Score Interval Best

Logistic 35 (31, 49) 7%
Cosine 38 (32, 51) 13%
CNN 42 (33, 52) 14%
CAML 44 (33, 52) 16%
DR-CAML 48 (34, 53) 22%
Student-DRCAML 52 (34, 54) 19%
Student-HAN 47 (33, 52) 10%

Table 4: Binary plausibility evaluation using classifier
annotations. We collapse the Highly Informative and
Informative labels from Mullenbach et al. (2018) to a
single positive class. The Score column is out of 99; we
use a binary threshold of 0.45 so that the proportion of
predicted plausible explanations matches the data. To
highlight the uncertainty of this evaluation, we boot-
strap sample 1000 informative labels for each method’s
explanations. The Interval column shows the 95% in-
terval of informative scores across those 1000 samples.
The Best column shows the percentage of samples in
which each method scored highest.

296.20: “Major depressive affective disorder,
single episode, unspecified”

DR-
CAML

... diagnosis overdose of medications narcotics
benzodiazepine suicide attempt chronic mi-
graine headaches depression stage iv ...

Student-
DRCAML

... up from the medications you were evaluated
by psychiatry and will be transferred to ...

Table 5: Examples of differing explanations between
DR-CAML and its student. Our informative classifier
gives the DR-CAML and student explanations scores
of 0.47 and 0.33, respectively. Additional examples are
shown in Table 8.

ing the same annotations. Therefore, we replicate
this evaluation as best as possible by using a clas-
sifier to predict synthetic labels as to whether the
clinical domain expert would have labeled our mod-
els’ explanations as plausible. Using BioWordVec
embeddings released by Zhang et al. (2019), the
text of the ICD-9 code description, and the 14-gram
explanation produced by each model from Mullen-
bach et al. (2018), we train a classifier that predicts
whether an explanation would have been rated as
informative. This annotation classifier achieves
a binary classification accuracy of 67.2% and an
AUC score of 0.726 when evaluated with leave-
one-out validation. This relatively low accuracy
and our model training details are discussed in Ap-
pendix A.3.

To conduct our plausibility evaluation, we first
use or reproduce the baseline methods from Mul-

lenbach et al. (2018) and Biswas et al. (2021). Each
model, including the student, produces a 14-token
explanation from the discharge summary by first
finding the 4-gram with the largest average feature
importance and then including five tokens on either
side of the 4-gram. The logistic regression baseline
is the same as in § 4, where feature importance
is computed using the coefficients of the logistic
model. The student model’s explanations are com-
puted in the same manner, finding the 4-gram with
the largest average coefficient weights. For CAML,
DR-CAML, and the CNN models, we use the code
released by Mullenbach et al. (2018) to extract ex-
planations. The CNN baseline primarily differs
from CAML in that it does not use an attention
mechanism. Finally, we reimplement their Cosine
baseline which picks the 4-gram with the highest
cosine similarity to the ICD-9 code description text.

We extract the model’s explanations for the
same7 discharge summaries as were evaluated by
Mullenbach et al. (2018). For each explanation,
we use the annotation classifier described above to
predict the probability that each explanation would
have been labeled as informative. If we set the
classifier threshold such that 45% of explanations
are rated as informative (matching the proportion
from the original annotations), we get the results
in the Score column of Table 4. The student model
produces the largest number of informative expla-
nations according to our classifier; however, the
classifier’s inaccuracy can introduce substantial un-
certainty. Rather than thresholding the outputs of
the annotation classifier, we can use its probabil-
ity outputs to sample a set of informative labels
for each explanation. If we sample 1000 such sets
of labels and report the 95% confidence interval
for each model’s score in the Interval column of
Table 4, the interval overlap makes the methods
essentially indistinguishable. The Best column in
this table shows the percentage of samples in which
each method scored highest. While the Interval col-
umn highlights the inherent limitation of evaluating
plausibility on this small fixed dataset of human
evaluations, the Best and Score columns combined
with the qualitative comparisons in Table 3 suggest
that our student model explanations are at least
comparably plausible to those of DR-CAML.

Table 3 shows that DR-CAML and Student-
DRCAML produce qualitatively similar explana-

7Using the 99 (of 100) discharge summaries that could be
uniquely identified. See Appendix A for details.
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tions. The other two examples presented in Mullen-
bach et al. (2018) are in Appendix A.4. The simi-
larity is perhaps surprising because DR-CAML ex-
tracts explanations using its attention mechanism,
whereas the student model uses unigram feature
importance values that do not vary between exam-
ples. For this example, it appears that the student is
faithful both in the predictions it makes and how it
makes those predictions. We additionally include
the explanations for Student-HAN. As HAN can-
not produce its own explanations, this highlights
that our method can also be applied to models that
are not interpretable by design. Table 5 shows an
example where the student and DR-CAML diverge
the most. We include two additional examples in
Appendix A.4. These cases highlight two benefits
of the student model. First, its feature importance
weights are global across all predictions, providing
an aggregate representation of the student’s behav-
ior. Second, the approach for extracting student
explanation n-grams is transparent and simulatible;
it is just the average of n feature weights. These fac-
tors may be particularly appealing in cases where
explainability is paramount.

6 Discussion

We have introduced a method that uses knowledge
distillation to generate post-hoc explanations and
is designed to be interpretable and plausible while
maintaining faithfulness to the trained model. By
constraining the student to a class of models that
is decomposible, simulatible, and algorithmically
transparent, our optimization for faithfulness gives
us a clear way to evaluate several dimensions of
interpretability. We evaluated our method on the
task of clinical code prediction. A key benefit of
our method is its simplicity and wide applicability.
Even for a proprietary trained model for which the
learned parameters are unknown, a student can be
trained as long as we have a dataset that includes
the trained model’s predictions. Our approach has
the additional benefit of producing a standalone
student model that can provide global feature ex-
planations. If the student has sufficient predictive
performance, a skeptic of post-hoc methods (e.g.
Rudin (2019)) might prefer to use the inherently-
interpretable student.

The present work has several limitations that are
left for future work. Though the task of medical
code prediction has important implications and has
been widely studied in interpretability research, we

only consider this single task on a single English-
language dataset. While we have shown our student
approach works for three different black-box mod-
els, it requires additional study in new domains
and tasks. There may be black-box models for
which no linear student is faithful. Our evaluation
is also limited to only a single form of explana-
tion: n-grams extracted via importance or atten-
tion weights. Counterfactual explanations (i.e., an
alternative input that would have been classified
differently) might be harder or easier for our stu-
dent method to generate (Barocas et al., 2020). Our
plausibility evaluations rely on a small set of an-
notations from which we extrapolate. Future work
should collect new annotations that consider met-
rics such as sufficiency and simulatibility that re-
quire human evaluations (Jain et al., 2020; Hase
and Bansal, 2020; Arora et al., 2021).

As the ML community continues to explore new
directions for interpretable methods, new desider-
ata may arise based on the domain experts who
turn to ML methods for decision support. Inter-
pretable ML methods should clearly define how
they expect to satisfy criteria such as faithfulness
or plausibility; by designing for plausibility and
transparency and optimizing for faithfulness, our
proposed method is broadly applicable. We release
our code to enable future work.

7 Ethics and Broader Impacts

This paper is situated in a broader field of clini-
cal applications of machine learning. While our
work does not raise new ethical issues within this
domain, there are general concerns that also apply
to this work. ML methods should not be deployed
in real-world settings without extensive validation
(Wiens et al., 2019). In the clinical domain, par-
ticular attention must be paid to the possibility of
perpetuating disparities that have been encoded in
the training data (Rajkomar et al., 2018). While
MIMIC-III provides a useful benchmark for devel-
oping and evaluating methods, it is not represen-
tative of the the enormous variety of clinical and
linguistic data. Domain experts and those most
likely to be affected by new ML systems should be
given oversight of potential deployments.
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A (Re-)implementation details

A.1 Reproducing CAML predictive
performance

The trained DR-CAML model released by Mul-
lenbach et al. (2018) produced predictions that
matched the published F1 and ROC scores. We
were unable to precisely replicate the outputs of
the CAML model. Table 6 shows the scores pub-
lished by Mullenbach et al. (2018) as well as those
for a CAML reimplementation done by Wiegreffe
et al. (2019). We include the scores we observe
using the model weights released on GitHub as
well as the scores for a model we retrained from
scratch. We use the released model instead of the
retrained model as its performance is much closer
to the published numbers.

A.2 Reproducing plausibility scores
The clinical plausibility annotations provided to us
by the authors of Mullenbach et al. (2018) contains
the text explanations and their corresponding an-
notations, but was missing the crucial metadata of
which models produced which explanations. The
metadata also did not indicate from which specific
discharge summary the texts were derived; while
the text explanations were uniquely identifying for
all but one of the 100 examples. For that one ex-
ample, because some patients had multiple docu-
ments sometimes containing duplicated segments
of text, there were three discharge summaries from
which the explanations could have been drawn. We
thus excluded this example from our analyses. To
replicate their analysis the best we could, we re-
trained or reimplemented their logistic regression,
vanilla CNN, and cosine similarity methods. We
then looked at the attention or feature importance
weights for each trained model and the text expla-
nations that had been annotated, and assigned each
model the text explanation for which it provided
the highest weight. This assignment did not per-
fectly align with past work: there were six cases
(out of 99) where a text explanation was “chosen”
by more models than times it appeared as an option.
Ignoring that issue and then simply aggregating the
Informative and Highly Informative clinician an-
notations, we obtained the plausibility scores in
the Ours column of Table 9. The Theirs column
shows the published numbers from Mullenbach
et al. (2018). While the numbers change substan-
tially, the ordering is relatively stable with only two
swaps: CAML and Cosine, and Logistic and CNN.

The other columns of the table are described below.

A.3 Plausibility annotation classifier

To evaluate the plausibility of our student model’s
explanations, we trained a classifier to predict
whether an explanation would have been labeled
as plausible by the clinical domain expert. We
treat this as a binary classification task by grouping
the “Informative” and “Highly Informative” anno-
tations as a single “plausible” label. Conscious of
the fact that we have only 99 examples with four
text explanations each, we use two approaches with
which to train and evaluate our classifier. The first
used leave-one-out cross validation at the exam-
ple level, such that the classifier was trained on
98 examples at a time and then evaluated on the
remaining one. We refer to this evaluation as “E1”
in Table 9. The second also used leave-on-out cross
validation but at the explanation level; we held out
a single text explanation, trained on all other ex-
planations across all examples, and then evaluated
on the held-out explanation. When an explanation
appeared more than once in a single example, we
made sure to remove its duplicates from the train-
ing data for predicting that explanation. We refer
to this evaluation as “E2” in Table 9.

The trained model is a simple logistic regres-
sion classifier trained on a fastText embedding of
both the explanation and the target ICD-9 code
description. Using the BioWordVec embeddings
released by Zhang et al. (2019), we embed each
both the explanation and code description into a
200-dimensional vector, concatenate the two vec-
tors, and pass it to the logistic regression. In the
E1 evaluation, the model achieves an accuracy of
60.6% and an ROC AUC score of .640. In the E2
evaluation, that increases to an accuracy of 67.2%
and an AUC score of .726, indicating that the ad-
ditional within-example explanations substantially
help the classifier.

When using these classifiers to label the explana-
tions generated by each model instead of the plau-
sibility scores derived in A.2, we get the results
shown in columns E1 and E2 of Table 9.

Finally, we retrain our final classifier on all the
explanations, leaving none held out. Rather than
using our classifier to evaluate the explanations that
were actually shown to the clinician, we instead use
our (re-)implementation of the four models to ex-
tract an explanation from each of the 99 discharge
summaries. These explanations thus may or may
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AUC F1 P@n

Macro Micro Macro Micro 8 15
Mullenbach et al. (2018) 0.895 0.986 0.088 0.539 0.709 0.561
Wiegreffe et al. (2019) 0.889 0.985 0.080 0.542 0.712 0.562
Ours (using released weights) 0.892 0.978 0.090 0.298 0.636 0.471
Ours (retrained) 0.628 0.884 0.001 0.024 0.042 0.027

Table 6: Published predictive performance of CAML and our replicated results. Our experiments throughout the
paper use the model with the released weights, which is closest to the published numbers (despite Micro F1).

442.84: “Aneurysm of other visceral artery”

Mullenbach et al. (2018)
CAML (I) ... and gelfoam embolization of right hepatic artery branch pseudoaneurysm coil

embolization of the gastroduodenal ...
Cosine ... coil embolization of the gastroduodenal artery history of present illness the pt is a ...
CNN ... foley for hemodynamic monitoring and serial hematocrits angio was performed and his

gda was ...
Logistic (I) ... and gelfoam embolization of right hepatic artery branch pseudoaneurysm coil

embolization of the gastroduodenal ...
Ours
DR-CAML 0.55 ... gelfoam embolization of right hepatic artery branch pseudoaneurysm coil embolization

of the gastroduodenal artery ...
Logistic 0.57 ... biliary stents hx cbd r colonic fistula r colectomy partial l nephrectomy for renal ...
Student-DRCAML 0.55 ... embolization of right hepatic artery branch pseudoaneurysm coil embolization of the

gastroduodenal artery history ...
Student-HAN 0.55 ... embolization of right hepatic artery branch pseudoaneurysm coil embolization of the

gastroduodenal artery history ...

428.20: “Systolic heart failure, unspecified”

Mullenbach et al. (2018)
CAML ... no mitral valve prolapse moderate to severe mitral regurgitation is seen the tricuspid valve

...
Cosine ... is seen the estimated pulmonary artery systolic pressure is normal there is no pericardial ...
CNN ... and suggested starting hydralazine imdur continue aspirin arg admitted at baseline cr

appears patient ...
Logistic (HI) ... anticoagulation monitored on tele pump systolic dysfunction with ef of seen on recent echo

...

Ours
DR-CAML 0.39 ... anticoagulation monitored on tele pump systolic dysfunction with ef of seen on recent echo

...
Logistic 0.37 ... seen the mitral valve leaflets are mildly thickened there is nomitral valve prolapse ...
Student-DRCAML 0.39 ... anticoagulation monitored on tele pump systolic dysfunction with ef of seen on recent echo

...
Student-HAN 0.36 ... blood cultures obtained repeated cxr echocardiogram showed an ef of and therefore zestril

was ...

Table 7: Comparison of the clinical evaluation from Mullenbach et al. (2018) with our plausibility evaluation.
There are two examples above, each which contains the explanations produced by eight systems. The first four
systems for each example are directly copied from Table 1 of Mullenbach et al. (2018). The (HI) and (I) labels in the
second column indicate whether the clinician labeled those explanations as Highly Informative or Informative. The
four systems below the dotted line are from our evaluation, for which the second column indicates the probability
output of our plausibility classifier.

not appear in the training data for the classifier. For
the Full evaluation we are not worried about the
classifier overfitting, as the classifier functions as a
direct replacement for the clinician who produced
the training data. The results of this analysis are
the numbers shown in Table 4 in § 5, reproduced in

Table 9 in the “Full” column. The Logistic model
does much worse on the Full evaluation than in
either E1 or E2. This may be because the expla-
nations selected by the trained model were worse
than those selected by the model which was used
for the original clinical evaluation.
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455.0: “Internal hemorrhoids without mention of complication”

DR-CAML 0.38 ... and she then underwent a colonoscopy with gi that also did not detect evidence ...
Student-DRCAML 0.52 ... past medical history diverticular disease diverticulitis sbo anxiety hemorrhoids past

surgical history s p ...

592.0 : “Calculus of kidney”

DR-CAML 0.30 ... if you develop any of these symtpoms please call the office or go to ...
Student-DRCAML 0.46 ... the colon gastroesophageal reflux asthma irritable bowel syndrome gastroparesis

osteoporosis anxiety and or depression ...

Table 8: Additional differing explanations and classifier scores between DR-CAML and the student.

Model Theirs Ours E1 E2 Full

Logistic 41 43 47 49 35
Cosine 48 48 41 40 38
CNN 36 46 51 47 42
CAML 46 54 47 43 44
DR-CAML – – 45 44 48

Table 9: Plausibility evaluations and comparison to
Mullenbach et al. (2018). The Theirs column shows
the published numbers; Ours shows our best attempt
at matching the clinical evaluation to the trained mod-
els. While the numbers change dramatically, the order-
ing only changes by two swaps. The clinical evalua-
tion did not include DR-CAML. E1 and E2 show the
results with predicted plausibility labels under the two
evaluation settings described in A.3. Full duplicates the
results from Table 4 for comparison.

A.4 Additional Examples
We provide two additional examples of eight differ-
ent models’ explanations in Table 7. These are the
same examples shown in (Mullenbach et al., 2018).
We include the four explanations as published in
Mullenbach et al. (2018), our reproduction of DR-
CAML, the logistic regression baseline, and the
explanations from two student models, Student-
DRCAML and Student-HAN. As we can see from
the examples, Student-DRCAML produces similar
explanations to DR-CAML. Student-HAN shows
that our method is able to produce explanations
for models not originally designed to do so. We
also include two additonal examples in which DR-
CAML and Student-DRCAML diverge the most in
Table 8.
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