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Abstract

Automatic speech recognition (ASR) sys-
tems usually incorporate postprocessing mech-
anisms to remove disfluencies, facilitating the
generation of clear, fluent transcripts that are
conducive to many downstream NLP tasks.
However, verbal disfluencies have proved to
be predictive of dementia status, although lit-
tle is known about how various types of verbal
disfluencies, nor automatically detected disflu-
encies, affect predictive performance. We ex-
periment with an off-the-shelf disfluency anno-
tator to tag disfluencies in speech transcripts
for a well-known cognitive health assessment
task. We evaluate the performance of this
model on detecting repetitions and corrections
or retracing, and measure the influence of gold-
annotated versus automatically detected verbal
disfluencies on dementia detection through a
series of experiments. We find that remov-
ing both gold and automatically-detected dis-
fluencies negatively impacts dementia detec-
tion performance, degrading classification ac-
curacy by 5.6% and 3% respectively.

1 Introduction

As populations grow older worldwide, the num-
ber of people with Alzheimer’s disease (AD) and
related dementia is also on the rise (Alzheimer’s
Association, 2018). Significant changes to speech
and language use caused by dementia occur early
in disease progression (Bucks et al., 2000). Interest-
ing case studies have demonstrated how diachronic
analysis of patients’ language use may reveal signs
of dementia, using writing samples from British
novelists Iris Murdoch, who ultimately perished
with Alzheimer’s, and Agatha Christie, who was
suspected of it (Le et al., 2011). Numerous stud-
ies have also sought to automatically detect early
signs of the disease and model its progression using
speech and writing samples (Becker et al., 1994;
Herd et al., 2014; Yancheva et al., 2015; Masrani,
2018; Di Palo and Parde, 2019; Zhu et al., 2019;

Fraser et al., 2019; Eyre et al., 2020; Farzana and
Parde, 2020; Sarawgi et al., 2020).

Although some studies have pointed to disflu-
ency patterns as an important predictor of AD sta-
tus (Lopez-de Ipina et al., 2017; Mueller et al.,
2018), research in this area has been limited by sev-
eral factors. Disfluency detection is a challenging
and resource-intensive task in itself (Wang et al.,
2017; Jamshid Lou and Johnson, 2017; Zayats and
Ostendorf, 2019), and may lie out of scope for
many interdisciplinary researchers already strad-
dling boundaries between NLP and clinical practice
(Valizadeh and Parde, 2022; Kaelin et al., 2021).
Rich manual disfluency annotations are present in
some datasets common in automated dementia de-
tection (Becker et al., 1994), but off-the-shelf ASR
systems do not typically transcribe disfluencies.
Moreover, inconsistencies between automatically
generated and gold standard transcripts may pose
significant challenges for modeling dementia in
real-world applications (Balagopalan et al., 2020b),
for which ASR will be a necessary component of
any speech-based pipeline.

We address these limitations, by investigating the
impacts of automatically derived disfluencies on
modeling cognitive decline. Our key contributions
are as follows:

1. We experiment with an off-the-shelf disflu-
ency detection model to automatically assign
word- and phrase-level disfluency tags to sam-
ples from the most popular dementia detection
dataset, focusing on repetitions and retraces.

2. We measure the influence of these disflu-
ency types on the downstream task of demen-
tia detection by systematically ablating gold-
labelled and automatically tagged disfluencies
from manual transcripts.

3. We compare AD classification performance
on manually and automatically generated tran-
scripts, and compare the removal of gold and
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automatically detected disfluencies from man-
ual transcripts, to investigate the influence ver-
bal disfluencies have on dementia detection.

This analysis1 not only paves the way for the
discovery of approaches to automated dementia de-
tection that are more suitable for realistic scenarios,
but also enhances our understanding of the individ-
ual contributions of different disfluency types to
this task. We report on related studies and provide
relevant background for automatic disfluency de-
tection in §2. We describe our datasets and task
setup in §3, and detail our methods in §4. We report
the results of our experiments in §5, and further
analyze our findings in §6 before concluding in §7.

2 Related Work

2.1 Studies of Disfluency in the Context of
Cognitive Decline

Disfluency, defined as any interruption in the nor-
mal flow of speech, is prevalent in spoken lan-
guage. Verbal disfluency comprises several major
subcategories: false starts, repetitions, filled pauses
(e.g., “uh,” “um,” etc.), and sentence corrections
(Shriberg, 1994). Although verbal and nonverbal
(unfilled pauses) disfluencies are common in spon-
taneous speech, there is a fine line between normal
and abnormal disfluencies. This boundary can be
exploited to facilitate modeling cognitive decline.

Studies have found that verbal fluency is an ef-
fective indicator of cognitive decline, as fluency
declines rapidly for subjects suffering from early
stage Mild Cognitive Impairment (MCI) relative
to healthy controls (Mueller et al., 2018). Re-
searchers have previously leveraged both acous-
tic and transcript-based fluency features to auto-
matically detect MCI (Lopez-de Ipina et al., 2017;
Mueller et al., 2018). Another study revealed
that anomic aphasic subjects tend to produce more
disfluent speech than non-aphasic subjects during
word retrieval tasks, when examining disfluencies
or “stutterings” including part-word repetitions, vo-
cal segregate repetitions, and prolongations (Brown
and Cullinan, 1981).

Transcript-based normalized verbal disfluency
features (e.g, filled pause count, retracing count,
and repetition count) have proved to be discrimina-
tive in predicting outcomes from cognitive screen-

1https://github.com/AshwinDeshpande96
/Measuring_the_Impact_of_Verbal_Disflue
ncy_Tags_on_Automated_Dementia_Detection
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Figure 1: An example of gold labelled parse tree
(Jamshid Lou et al., 2019).

ing tests such as the Mini Mental State Examina-
tion (MMSE) and AD classification, as have con-
catenations of automatically detected verbal disflu-
ency segments (e.g., repair onset, edit term, and
fluent words) with word vectors (Farzana and Parde,
2020; Rohanian et al., 2020, 2021). Automatically
extracted non-verbal disfluency features from both
transcripts and speech (e.g., silent pauses, speed of
articulation, and pronounciation) have also shown
performance boosts in AD classification (Yuan
et al., 2020; Qiao et al., 2021).

2.2 Automatic Disfluency Detection

Disfluency detection is a key challenge in pars-
ing transcribed speech. Disfluencies are defined
structurally with three main components (Shriberg,
1994): the reparandum, the interregnum and the
repair. The reparandum is replaced by the repair
segment and the interregnum is an optional part
of the structure consisting of filled pauses (e.g.,
“uh”) and discourse connectives (e.g., “I mean”).
We present an example disfluency with all three
components present below:

reparandum︷ ︸︸ ︷
I I ’ve

interregnum︷ ︸︸ ︷
uhImean

repair︷ ︸︸ ︷
Ienjoy

(1)

Disfluencies are further categorized into rep-
etition, correction/retracing, and false start
(Jamshid Lou and Johnson, 2020a), following es-
tablished typology of speech repairs (Shriberg,
1994). Repetition contains identical reparandum
and repair segments, whereas the reparandum and
repair differ in correction/retracing. The latter is
much harder to detect automatically.

Disfluency detection on pre-segmented utter-

https://github.com/AshwinDeshpande96/Measuring_the_Impact_of_Verbal_Disfluency_Tags_on_Automated_Dementia_Detection
https://github.com/AshwinDeshpande96/Measuring_the_Impact_of_Verbal_Disfluency_Tags_on_Automated_Dementia_Detection
https://github.com/AshwinDeshpande96/Measuring_the_Impact_of_Verbal_Disfluency_Tags_on_Automated_Dementia_Detection
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ances from the Switchboard treebank corpus (God-
frey and Holliman, 1993; Marcus et al., 1999) has
been the focus of many prior works (Johnson and
Charniak, 2004; Charniak and Johnson, 2001; Qian
and Liu, 2013; Honnibal and Johnson, 2014). In
the Switchboard corpus, reparanda, filled pauses,
and discourse connectives are marked by EDITED,
INTJ, and PRN labels respectively (illustrated in
Figure 1). Conventional syntactic parsers often
fail to capture the unconventional relation between
reparandum and repair, where repair uses similar
words to the reparandum in the same order, func-
tioning as a “rough copy” rather than providing ad-
ditional information (Johnson and Charniak, 2004;
Charniak and Johnson, 2001). Because of the dif-
ficulty of addressing disfluency within the task of
syntactic parsing, systems have instead been devel-
oped to detect and remove disfluency prior to pars-
ing (Charniak and Johnson, 2001; Kahn et al., 2005;
Lease and Johnson, 2006). Nonetheless, transition-
based dependency parsers designed with special
mechanisms to handle disfluencies have proven
useful for detecting and removing disfluent words
and their dependencies from sentences (Honnibal
and Johnson, 2014; Rasooli and Tetreault, 2013;
Yoshikawa et al., 2016; Tran et al., 2018). More-
over, encoder-decoder constituency parsing mod-
els using lexical and prosodic cues (Tran et al.,
2018) have resulted in small performance gains
both in parsing and disfluency detection. Augment-
ing parsing models with location-aware attention
mechanisms has also been especially effective for
disfluency detection (Tran et al., 2018).

Specialized disfluency detection models frame
the problem as a sequence labelling task where
each word in the input is labelled as disfluent or
not. Neural models (CNNs and LSTMs) have been
employed for this (Zayats et al., 2016; Jamshid Lou
et al., 2018; Wang et al., 2016) but until recently
have not performed very well. A recent state-of-
the-art semi-supervised approach introduced a self-
attentive model (Wang et al., 2018) that jointly per-
forms syntactic parsing and disfluency detection.

The incremental approach for disfluency detec-
tion has been explored on both unsegmented and
pre-segmented utterances from manual and auto-
mated transcripts using LSTM with different decod-
ing schemes (Hough and Schlangen, 2015, 2017)
leveraging joint and multitask settings. Another
recent approach introduced the incremental pro-
cessing of words to a Transformer model (BERT

(Devlin et al., 2019)) to detect speech disfluency
(Rohanian and Hough, 2021). However, these in-
cremental approaches perform poorly on detecting
reparanda of longer lengths.

3 Data and Task Setup

We used the ADReSS Challenge corpus for our
experiments (Luz et al., 2020). The ADReSS Chal-
lenge corpus, developed as part of a shared task
for INTERSPEECH 2020, is a benchmark dataset
of spontaneous speech in the domain of AD classi-
fication and MMSE score prediction. It has been
acoustically preprocessed, and is balanced in terms
of age and gender. The data consists of audio
recordings and manual transcriptions of spoken pic-
ture descriptions elicited from participants through
the Cookie Theft task from the Boston Diagnostic
Aphasia Exam (Roth, 2011). The corpus is a subset
of the Pitt corpus,2 which is itself a subset of the
DementiaBank dataset (Becker et al., 1994).

In the Cookie Theft task, an investigator and a
participant (in this case, an older adult) carry on
a conversation in which the investigator asks the
participant to describe what is depicted in an event-
ful image containing, among other subjects, a boy
stealing a cookie from a cookie jar.3 There is no
specific time limit for the conversation, allowing
participants to talk as long as they want. In the
Pitt corpus and by extension the ADReSS Chal-
lenge corpus, these conversations were recorded
and manually transcribed using the CHAT tran-
scription protocol (MacWhinney, 2000). Partici-
pants were labelled as HC (healthy control with
no cognitive decline) or AD (declined cognitively)
based on their prior diagnostic test results.

We report the transcript-level mean utterance
count and standard deviation (SD) for data col-
lected from AD and HC participants in Table 1,
showing that the lengths of conversations across
groups were fairly balanced (HC = 13.79 ± 5.21
utterances; AD = 13.93 ± 9.54 utterances). We
also report the mean MMSE score and SD for
each speaker category, showing a significant dif-
ference in cognitive health between groups (HC
= 29.11 ± 0.98 MMSE; AD = 17.06 ± 5.46
MMSE). To assess significance, we applied the
Mann–Whitney U test (as the normality assump-

2https://dementia.talkbank.org/access
/English/Pitt.html

3We refer interested readers to Karlekar et al. (2018),
Mueller et al. (2018), or some others cited in this paper for a
copy of the original image.

https://dementia.talkbank.org/access/English/Pitt.html
https://dementia.talkbank.org/access/English/Pitt.html
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AD HC Test
Statistics

Utterance
Count

13.93 13.79 U=135.0
(SD=9.54) (SD=5.21) p=0.25

MMSE
Score

17.06 29.11 U=47.5
(SD=5.46) (SD=0.98) p=0.00

Table 1: Mean utterance count and MMSE score for the
AD and HC groups, with standard deviations in paren-
theses. Statistical significance (p) for differences be-
tween groups is reported along with the Mann-Whitney
U test statistic.

Ref.:     and UM THAT 'S  UH  that  's  about   all i can see

Aligned: *** ** **** ** not **** ** *****  all i can see

Figure 2: The reference (Ref.) and aligned ASR out-
put for a sample utterance from the ADReSS Challenge
corpus. The reference transcript is human-transcribed
speech with gold disfluent words (red, capitalized) and
fluent words (black). Aligned refers to the desired align-
ment of ASR output with the reference text for making
meaningful FER and DER evaluations (Jamshid Lou
and Johnson, 2020a).

tion was violated) across the two speaker groups,
and we also report the test statistic (U ) and signifi-
cance value (p) for each group in Table 1.

3.1 ASR Setup

We used the phone call enhanced model (16khz)
of the Google Cloud-based Speech Recognizer
to automatically transcribe the audio files in the
ADReSS Challenge corpus to facilitate our compar-
isons of manually and automatically generated tran-
scriptions. Manually segmented utterances were
fed to the speech recognizer for transcription. The
overall word error rate (WER) for the automati-
cally generated transcripts was 69.47%. To evalu-
ate more fine-grained performance of the speech
recognizer, we estimated the fluent and disfluent
error rates (FER and DER). We provide the equa-
tions for computing both below, where df , sf , if ,
and nf refer to the number of deleted, substituted,
inserted, and total fluent words, respectively, and
dd, sd, id, and nd refer to the number of deleted,
substituted, inserted, and total disfluent words, re-
spectively (Jamshid Lou and Johnson, 2020a):

FER =
df + sf + if

nf
(2)

Group FER DER

AD 53.30% 77.60%
HC 47.30% 80.70%
Overall 50.20% 78.80%

Table 2: Rates of ASR error on the ADReSS Challenge
dataset, both at the class level (AD and HC) and overall.
For DER calcualtion, we consider all the disfluencies in
Table 6 as well as the Filled pauses (e.g. uh, um)

Repetition Retracing

DER 76.50% 61.10%

Table 3: DER of broad disfluency categories (repeti-
tion and retracing, as defined in Table 6).

DER =
dd + sd + id

nd
(3)

To calculate DER,4 we considered word repeti-
tion, multiple repetition, phrase repetition, word
retracing, and phrase retracing, with additional
details regarding each disfluency type provided in
Table 4. We show an alignment between gold and
automatically generated transcriptions for an ex-
ample utterance from the ADReSS Challenge cor-
pus in Figure 2. Computing FER for this example
would set df = 4, sf = 0, if = 0, and nf = 8, re-
sulting in FER=0.5. Computing DER for the same
sample would set dd = 3, sd = 1, if = 0, and
nf = 4, resulting in DER=1.0. We report FER and
DER across the ADReSS Challenge corpus for AD,
HC, and all participants in Table 2 and the break-
down of DER for broad disfluency types (repetition,
encompassing word repetition, multiple repetition,
and phrase repetition, and retracing, encompassing
word retracing and phrase retracing) in Table 3.

3.2 Disfluency Annotator Setup
We leverage the self-attentive neural parsing model
(Jamshid Lou and Johnson, 2020b) to automati-
cally detect disfluencies in the ASR-generated tran-
scripts. The model is trained to jointly parse and
detect disfluency using contextualized word em-
beddings (BERT (Devinney et al., 2020) or ELMO
(Peters et al., 2018)) and currently produces state-
of-the-art performance with a parsing accuracy of

4Although the original DER formulation counts the num-
ber of copies, we replace this with the number of deletions
since we expect the ASR to transcribe disfluent as well as
fluent words.
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93.9% and a disfluency detection F1-score of 0.924
on the Switchboard development set (Jamshid Lou
and Johnson, 2020b) in the joint task. We use the
pretrained version of the disfluency detector and
parser.5 This version is self-trained on the Switch-
board gold parse trees (Marcus et al., 1999) and
Fisher Corpus Part 1 (Cieri et al., 2004) and Part 2
(Cieri et al., 2005) silver parse trees, using BERT-
base-uncased word representations.

4 Methods

4.1 Verbal Disfluency Types
We consider several disfluency types in this inves-
tigation: word repetition, phrase repetition, word
retracing, and phrase retracing. We limit our scope
to these disfluency types for two primary reasons:
(1) these verbal disfluency types are annotated in
our corpus of interest, and (2) automatic detection
of these types is challenging. We provide examples
of each of these in Table 4.6 Word and phrase repe-
tition indicate repeated utterance of the same word
or phrase in such a way that is disfluent with the
natural flow of speech, whereas word and phrase
retracing indicate verbal “backtracking” to correct
a previously uttered word or phrase. In Table 5,
we report the frequencies of these disfluency types
across speaker groups.

4.2 Automatic Disfluency Annotation
We leveraged the self-attentive neural disfluency
annotator described in §3.2, trained on the Penn
Treebank-3 SWBD corpus (Marcus et al., 1999)
and the Fisher I and II corpora (Cieri et al.,
2004, 2005) using a semi-supervised approach
(Jamshid Lou and Johnson, 2020b). This multi-
task learning setup enables the model to predict
both parse trees and disfluency tags for utterances.
The disfluency annotator adds word-level annota-
tions to disfluent words, or those acting as EDITED,
INTJ, or PRN nodes (illustrated in Figure 1).

We preprocessed both the reference and ASR-
generated transcripts by removing punctuation and
(for the reference transcripts) existing disfluency
tags. We then fed the disfluency annotator one
utterance per line, in turn producing both a parse
tree and a disfluency-tagged version of the utter-
ance as output. Figure 3 shows an example ut-

5https://github.com/pariajm/english-f
isher-annotations

6Although multiple repetition is coded distinctly from sin-
gle word repetition under the CHAT transcription protocol,
we consider both as members of the word repetition category.

Disfluency
Type Example

Word
Repetition

the [/] the cabinet door has just
swung open

Multiple
Repetition

there’s nothing going on outside
there’s just bushes [x 3].

Phrase
Repetition

〈what are〉 [/] what are the
instructions ?

Word
Retracing

and there are dishes [/ /] &uh
&uh two cups and a saucer on
the sink

Phrase
Retracing

and outside the window there’s a
〈walk with a〉 [/ / ] &c curved
walk with a garden .

Table 4: Example of different types of disfluencies
from transcripts annotated using the CHAT protocol
(MacWhinney, 2000). Disfluencies are bold-faced fol-
lowed by disfluency markers. Angle brackets indicate
phrase-level disfluencies, whereas [x n] indicates that
the word before the marker is repeated n times.

terance with: (1) the actual text and disfluency
tags from the ADReSS Challenge corpus, consid-
ering the disfluency types referred in Table 4; (2)
the gold disfluency tags formatted as the expected
output from the automatic disfluency annotator;
and (3) the predicted word-level disfluency tags
from the automatic disfluency annotator. Phrase
repetition accuracy for the utterance in Figure 3
would be 100% as both the words in the repeated
phrase (highlighted in red) are predicted correctly,
whereas phrase retracing accuracy would be 0%,
as no words in the retraced phrase (highlighted in
blue) are predicted as disfluent.

Table 6 illustrates the performance of the auto-
matic disfluency annotator at predicting different
disfluency types for the ADReSS Challenge train-
ing set, providing evidence that retracing/correction
(especially at the phrase level) is harder to predict
than repetition. The annotator often fails to de-
tect cases of multiple repetition (accuracy=11.11%,
making it lowest among all disfluency types in Ta-
ble 6), likely because it was intermixed with word-
level repetition in the training data.

4.3 Disfluency Removal

We implement two methods for removing disfluen-
cies from transcribed speech, described further in

https://github.com/pariajm/english-fisher-annotations
https://github.com/pariajm/english-fisher-annotations
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Disfluency AD HC

Word Repetition 96 29
Phrase Repetition 27 17
Word Retracing 48 35
Phrase Retracing 67 46

Total 238 127

Disfluency-Tagged 317 176

Table 5: Frequencies of disfluency types across AD
and HC participants, where Total refers to the sum of
all of our disfluency types of interest (rows 1–4), and
Disfluency-Tagged refers to the sum of all disfluencies
reported (including those not in the focus of this inves-
tigation).

Disfluency Type Accuracy

Word Repetition 72.65%
Phrase Repetition 73.61%
Word Retracing 50.00%
Phrase Retracing 42.64%

Table 6: Percentages of disfluent words in the
manually-transcribed ADReSS Challenge training set
tagged with different disfluency labels (considering
multiple repetition as a subset of word repetition) by
the Fisher annotator.

§4.3.1 and §4.3.2.

4.3.1 Gold Disfluency Removal
We removed gold labelled disfluencies from the
manually created reference transcripts. We did
this by removing different CHAT transcription tags
corresponding to repetition and retracing behaviors.
Thus, the text in Figure 3 was converted to:

• Repetition Removal: his sister has her hand
up finger up to her mouth like she’s saying.

• Retracing Removal: his sister has her has
her finger up to her mouth like she’s saying.

4.3.2 Fisher Disfluency Removal
We removed disfluencies predicted by the Fisher
tagger (described in §4.2) from the automatically
transcribed speech. To remove words of a particular
disfluency type, we matched the relevant segment
of text with the predicted tag (see Figure 3) and re-
moved the words tagged as E (representing errors,
or disfluencies). For instance, to remove retrac-
ing, the blue segments of actual text and predicted
tags in Figure 3 are matched, and since none of the

Actual text: his sister <has her> 

[/] has her <hand up> [//] finger 

up to her mouth like she's saying.

       

Gold tag: his _ sister _ has E her 

E has _ her _ hand E up E finger _ 

up _ to _ her _ mouth _ like _ she 

_ 's _ saying _

Predicted tag: his _ sister _ has E 

her E has _ her _ hand _ up _ 

finger _ up _ to _ her _ mouth _ 

like _ she _ 's _ saying _

 

Figure 3: Example utterance annotated by automatic
disfluency annotator. Actual text represents the gold
label annotated utterance from the ADReSS Challenge
training set. Gold tag represents the expected word
level annotation given the gold labels, whereas Pre-
dicted tag shows the predicted disfluency annotations
(fluent words are followed by _ tags and disfluent words
are followed by E tags) by the disfluency tagger. Repe-
tition is highlighted in red and retracing in blue.

words are predicted as E, none are removed. Thus,
after the removal of disfluencies according to the
Fisher tagger, the text in Figure 3 was converted to:

• Repetition Removal: his sister has her hand
up finger up to her mouth like she’s saying.

• Retracing Removal: his sister has her has
her hand up finger up to her mouth like she’s
saying.

4.4 Classification Setup
4.4.1 Input and Output
The ADReSS Challenge training corpus included
data from N=108 participants. The input for a
given data point was a sequence of words from the
processed transcript, and the output was the class
of the speaker: 0 for HC, or 1 for AD. Transcripts
were preprocessed to remove disfluency markers,
punctuation, and digits. When multiple repetition
markers followed a word in any utterance, the word
was added the specified number of times, and the
marker was then removed.

4.4.2 Model
We used Bert-for-Sequence-Classification7 to im-
plement our model, experimenting with bert-base-

7https://github.com/huggingface/trans
formers

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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uncased as our base model and using the follow-
ing hyperparameters: learning rate = 2e-5, batch
size = 4, epochs = 8, max input length of 256 (a
length sufficient to cover most cases). The standard
default tokenizer was used. Two special tokens,
[CLS] and [SEP], were added to the beginning and
the end of each transcript utterance. We chose
these model and parameter settings since they at-
tained promising performance in previously pub-
lished work (Yuan et al., 2020) with leave-one-out
cross-validation on the ADReSS Challenge dataset.

5 Experiments

5.1 Experimental Setup
To evaluate the impact of disfluency presence and
type on classifying AD status, we performed exper-
iments considering the following conditions:

• ALLTEXT: The baseline condition using the
original manually-created transcripts, com-
plete with gold disfluencies, preprocessed as
defined in §4.4.

• ASR: Transcripts are generated using ASR
(explained in §3.1), and the ASR-generated
transcripts are fed to the model.

• -REP.: Repetitions (both word- and phrase-
level) are removed from ALLTEXT transcripts
using either the gold or Fisher disfluency re-
moval method.

• -RET.: Incidents of retracing (both word- and
phrase-level) are removed from ALLTEXT us-
ing either the gold or Fisher disfluency re-
moval method.

• -DISF.: Transcripts are processed so that all
cases of word- or phrase-level repetition or
retracing are removed. When using the Fisher
disfluency removal method, this includes all
disfluency-tagged words.

We report accuracy, precision, recall, and F1 for
each condition. When performing development
experiments, we observed large performance differ-
ences across folds. Such brittleness has also been
reported previously (Yuan et al., 2020), and may be
attributed to the use of a large model (BERT) for
classification on a small dataset. To address this,
we perform three runs, each using different ran-
dom seeds, of five-fold cross-validation and report
averages and standard deviations across runs.

5.2 Results

We report our evaluation results in Table 7. As ex-
pected, we observe the highest performance in the
baseline condition (ALLTEXT), which is compara-
ble to the results in previous literature (Balagopalan
et al., 2020a). The ASR condition exhibits the
worst performance, with accuracy, F1 for AD, and
F1 for HC decreasing 17.7%, 14%, and 33% re-
spectively relative to the baseline. This underscores
one of our primary motivations in conducting this
work—namely, that ASR has a high error rate in
real-world settings and particularly in this task en-
vironment, and moreover that its mistagging (or
in some cases, purposeful removal) of disfluency
has a deleterious impact on dementia detection per-
formance. We observe from Tables 2 and 3 that
DER is much higher than FER for ASR output.
ASR tends to delete or replace repetitive words, in-
creasing overall word error rate and leading to poor
performance in the AD detection task. Prior work
has clearly suggested that disfluencies are impor-
tant indicators of cognitive health status (Lopez-de
Ipina et al., 2017; Mueller et al., 2018).

Furthermore, performance clearly degrades rela-
tive to the baseline when gold disfluencies are re-
moved (-REP.G, -RET.G, and -DISF.G). Although
retracing removal caused a slightly higher decrease
in accuracy than repetition removal, there is no
significant difference in performance between the
-REP.G and -RET.G conditions across metrics. Ac-
curacy and F1 decrease 5.6% and 6% (for both AD
and HC) compared to the baseline when all gold
disfluencies are removed from the transcripts.

Removal of Fisher disfluencies also leads to per-
formance degradation across all metrics. Since the
Fisher disfluency annotations are more limited than
the gold disfluency labels, performance in this con-
dition (-REP.F , -RET.F , and -DISF.F ) degrades
less than is observed with gold disfluency removal.
Accuracy, F1 for AD, and F1 for HC decrease 3%,
4%, and 2% respectively compared to the baseline
when all Fisher-predicted disfluencies are removed.

5.3 Distinctive Effects of Disfluency Removal

To further investigate why disfluency removal in-
fluences classification performance, we experiment
with measures of syntactic complexity, context-free
grammar rules, and measures of vocabulary rich-
ness8 to identify linguistic features having mod-

8https://github.com/vmasrani/dementia
_classifier

https://github.com/vmasrani/dementia_classifier
https://github.com/vmasrani/dementia_classifier
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Accuracy Precision Recall F1
AD HC AD HC AD HC

ALLTEXT 0.843±.015 0.88±.017 0.82±.020 0.80±.028 0.89±.019 0.84±.016 0.85±.013

ASR 0.670±.037 0.69±.062 0.54±.032 0.72±.060 0.52±.121 0.70±.023 0.52±.065

-REP.G 0.797±.034 0.81±.044 0.79±.034 0.78±.049 0.80±.053 0.80±.021 0.79±.036
-RET.G 0.787±.024 0.77±.043 0.80±.012 0.81±.015 0.76±.060 0.80±.017 0.78±.035
-DISF.G 0.787±.020 0.78±.025 0.77±.028 0.76±.040 0.81±.030 0.78±.026 0.79±.020

-REP.F 0.827±.015 0.86±.021 0.80±.010 0.78±.011 0.88±.021 0.82±.014 0.84±.014
-RET.F 0.820±.010 0.86±.013 0.79±.021 0.78±.032 0.87±.019 0.82±.013 0.83±.006
-DISF.F 0.813±.006 0.85±.018 0.78±.004 0.76±.000 0.87±.018 0.80±.008 0.83±.010

Table 7: Five-fold cross-validation results, averaged across three runs with different random seeds on the ADReSS
Challenge training set. The subscript G refers to gold disfluency removal and F refers to Fisher disfluency removal.

erate to high correlation with disfluency (as mea-
sured by normalised disfluency count, repetition
count, and retracing count). We find that disflu-
ency count (considering all disfluencies in Table
4) has significant, high negative Spearman corre-
lation (r = −0.55, p < 0.001) with type token
ratio (TTR). This indicates that verbal disfluencies
are highly negatively correlated with vocabulary
richness, which is in turn an important feature of
AD detection (Masrani, 2018). Some context-free
grammar rules (INTJ, INTJ_to_UH, VP_to_VBG,
VP_to_AUX) and syntactic complexity features
(constituency parse tree height), also key features
for AD detection (Masrani, 2018), exhibit moder-
ate correlation with disfluency frequency. Such
results show that vocabulary richness and the syn-
tactic structure of language are vulnerable to the
deletion of disfluencies, which may in turn lead to
classification performance degradation.

6 Discussion

From our corpus analyses, we find that members of
the AD group exhibit more verbal disfluency (Table
2), with increased rates of repetition and correction
relative to the HC group. This is in line with our
expectations, since disfluencies and speech errors
are correlated with cognitive functions such as cog-
nitive load, arousal, and working memory (Arciuli
et al., 2010; Daneman, 1991); with increased im-
pairment of these functions, hesitations and disflu-
encies increase. Previous studies have also reported
that verbal disfluency frequency can be an impor-
tant predictor of fine-grained cognitive status of
older adults (Farzana et al., 2020). Our evaluation
provides evidence that removing both gold-labelled

and Fisher-annotated verbal disfluencies leads to
changes in AD detection performance, opening
intriguing questions for follow-up work that may
further tease apart the nature of these contributions.

We speculate that some of these findings may
transfer to other conditions as well. For example,
studies have also reported that filled pauses are less
frequently uttered by children with autism spec-
trum disorder than typically developed children
(Gorman et al., 2016; Irvine et al., 2016). It is possi-
ble that incorporating richer disfluency information
in speech-based systems for autism detection and
monitoring may improve performance similarly to
that seen with AD detection.

7 Conclusion

Verbal disfluencies are an important indicator of
AD, and current ASR systems fail to capture and la-
bel word- and phrase-level disfluencies adequately.
Doing so is necessary to generate useful transcripts
with minimal human intervention, such that they
can be leveraged for successful AD detection. Our
future work will focus on training an end-to-end
ASR system on disfluent speech so that it can gen-
erate richer disfluency annotated transcripts, which
will pave the way for building end-to-end speech-
based dementia detection systems.
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