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Abstract
Medical dialogue systems have the potential to
assist doctors in expanding access to medical
care, improving the quality of patient experi-
ences, and lowering medical expenses. The
computational methods are still in their early
stages and are not ready for widespread ap-
plication despite their great potential. Exist-
ing transformer-based language models have
shown promising results but lack domain-
specific knowledge. However, to diagnose like
doctors, an automatic medical diagnosis ne-
cessitates more stringent requirements for the
rationality of the dialogue in the context of rel-
evant knowledge. In this study, we propose a
new method that addresses the challenges of
medical dialogue generation by incorporating
medical knowledge into transformer-based lan-
guage models. We present a method that lever-
ages an external medical knowledge graph and
injects triples as domain knowledge into the ut-
terances. Automatic and human evaluation on
a publicly available dataset demonstrates that
incorporating medical knowledge outperforms
several state-of-the-art baseline methods.

1 Introduction

Medical dialogue systems, which have gained in-
creasing attention, aim to communicate with pa-
tients to enquire about diseases beyond their self-
reported and make an automatic diagnosis (Wei
et al., 2018; Xu et al., 2019; Lin et al., 2019). It
has the potential to substantially automate the di-
agnostic process while also lowering the cost of
gathering information from patients (Kao et al.,
2018). In addition, preliminary diagnosis findings
that are generated by a medical dialogue system
may help doctors make a diagnosis more quickly.
Because of these advantages, researchers work on
addressing sub-problems in a medical dialogue sys-
tem, such as natural language understanding (Lin
et al., 2019; Shi et al., 2020).

However, the dialogue system for medical di-
agnosis, on the other hand, has specific require-

Figure 1: An example of medical dialogue between a
patient (left) and a doctor (right).

ments for dialogue reasoning in the context of med-
ical knowledge. The diagnosis elicited by the dia-
logue system should be associated with the under-
lying medical condition and coherent with medical
knowledge. In the absence of medical knowledge,
traditional generative dialogue models frequently
use neural sequence modelling (Sutskever et al.,
2014; Vaswani et al., 2017) and cannot be directly
applied to the medical dialogue scenario.

Recently, transformer-based language mod-
els (LMs) (Devlin et al., 2019; Radford et al.,
2019; Song et al., 2019) are fine-tuned for med-
ical dialogue tasks. Zeng et al. (2020) col-
lected a MedDialog dataset and fine-tuned various
transformer-based LMs which includes a vanilla
transformer (Vaswani et al., 2017), GPT (Radford
et al., 2019) and BERT-GPT (Wu et al., 2020;
Lewis et al., 2020) for medical dialogue genera-
tion task. Yang et al. (2020), in another study,
presented a CovidDialog dataset and then train di-
alogue generation models based on Transformer,
GPT-based model, and BART (Lewis et al., 2020)
and BERT-GPT for medical dialogue generation
tasks. These LMs are trained on huge corpus but
may not provide a good representation of specific
domains (Müller et al., 2020) and need an adequate
amount of task-specific data (Dou et al., 2019) in
order to establish correlations between diseases and
symptoms (see Figure 1). Instead of using publicly
available models, we can pre-train a model that
emphasizes domain-specificity. On the other hand,
pre-training is time-intensive and computationally
costly, making it unavailable for most users.

Furthermore, while it is possible to inject



111

domain-specific knowledge into LMs during pre-
training, this method of acquiring knowledge can
be expensive and inefficient. For instance, pre-
training data must contain many occurrences of
the words "Panadol" and "headache" occurring to-
gether for the model to learn that "Panadol" can
treat headaches. What other options do we have to
make the model an expert in its field besides this
one? The knowledge graph (KG), also known as
an ontology, was a good solution in the early stages
of research. SNOMED-CT (Bodenreider, 2008), in
the medical field, and HowNet (Dong et al., 2010),
in the field of Chinese conception, are two exam-
ples of KGs developed as knowledge was distilled
into a structured form. If KG can be incorporated
into the LM, it will provide domain knowledge to
the computational method, enhancing its effective-
ness on domain-specific tasks while significantly
lowering the expense of pre-training. To address
the limitations mentioned above, this article de-
scribes a method for incorporating domain-specific
external knowledge into transformer-based LMs
for medical dialogue generation tasks. Our contri-
butions are as follows:

• We presented a new method that incorporates
medical knowledge to transformer-based lan-
guage models;

• The proposed method first injects knowledge
from a medical knowledge graph into an utter-
ance. Next, the embedding layer transforms the
utterance tree into an embedding that is fed to the
masked self-attention of a transformer, followed
by the decoder to generate the response.

• To evaluate the performance of the proposed
method, we performed both automatic and hu-
man evaluations. Our results demonstrated that
incorporating medical knowledge improves the
performance compared to several state-of-the-art
baselines on the MedDialog dataset.

2 Methodology

Problem Definition: Given a dialogue, we process
a patient-doctor dialogue as a set of pairs {(si, ti)},
where source si is the dialogue from a patient and
target ti is a doctor’s response. A dialogue genera-
tion model generates t from s.
Overview of Architecture: As illustrated in Fig-
ure 2, the proposed method contains four mod-
ules, i.e., knowledge layer, embedding layer,

Figure 2: Overall architecture of proposed method

masked transformer encoder, where we extend self-
attention to mask-self attention, and transformer de-
coder. Our knowledge layer injects relevant triples
into an input utterance (i.e., conversation) from a
KG, converting it to a knowledge-rich utterance
tree. Simultaneously, the utterance tree is fed into
the embedding layer for token-level representation.
The representation from an embedding layer is fed
to the masked transformer encoder and decoder to
generate a response. We will describe each of these
modules in detail in the following discussion.

2.1 Knowledge layer

The knowledge layer incorporates domain-specific
(medical) knowledge into utterances and trans-
forms them into utterance trees. The knowledge
layer generates an utterance tree given an input ut-
terance (s) and a KG. This method involves two
stages: query of medical knowledge, referred to as
K-Query, and injection of knowledge, referred to as
K-Inject. K-Query extracts all entity names from
the utterance s and queries their correlating triples
from knowledge k. K-Query can be expressed as
follows:

E = K_Query(s,KG), (1)

Where E is a set of associating triples. K-Inject
then injects the queried E into the utterance s by
combining the triples in E to their corresponding
positions, resulting in an utterance tree t. An ut-
terance tree can have different branches; however,
its depth is limited, indicating that entity names
in triples will not iteratively derive branches. The
formulation for K-Inject is as follows:

t = K_Inject(s, E) (2)

Knowledge graph: To generate knowledge, we
use the medical knowledge graph released by Liu
et al. (2021), which is centered on organs and re-
lated disorders. A set of 52.6K triplets (head, re-
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lation, tail) containing medical information was
retrieved. The head and tail represent entities such
as organs or diseases. In contrast, the relation in-
dicates the relationship between entities, such as
function and treatment. In this study, we employed
the English language vocabulary, which has 2,603
triples in total.

2.2 Embedding layer

The embedding layer aims to transform the utter-
ance tree into embedded representations that can
be forwarded to the transformer’s encoder and then
decoder to generate the dialogue. Our embedding
layer consists of token, position, and segment em-
bedding layers. However, it differs in that the pro-
posed method’s embedding layer receives an ut-
terance tree rather than a token sequence as input.
Below, we discuss a method adopted to transform
an utterance tree into a sequence that retains its
structural information.

Token embedding: In our study, the token em-
bedding, including the vocabulary used, is consis-
tent with the original transformer-based LM (see
section 3.3). Each token in the expression tree is
transformed into a H dimensional embedding vec-
tor by a trainable lookup table. Token embeddings
made using the proposed method differ from those
made using the original LMs. The utterance tree
tokens must first be rearranged before embedding
can occur. After incorporating tokens in the branch,
we reverse the order of the tokens in the follow-
ing nodes. Even though this process is simple, it
makes the utterance hard to read and loses impor-
tant structural information that can be solved using
soft-position.

Soft-position embedding: Without position em-
bedding, encoders within a transformer will behave
similarly to a bag-of-words (BoWs) method, lead-
ing to a loss of structural information (i.e., the order
of tokens). The position embedding contains all
of the structural information in the encoder’s input
sentence, allowing us to reconstruct the unreadable
rearranged utterance. As an alternative to using
the transformer encoder’s self-attention score for
words that appear to be connected but are not, we
used masked self-attention (see section 2.3).

Segment embedding: Like the transformer en-
coder, the proposed method uses segmentation em-
bedding to detect utterances when multiple utter-
ances are included. For instance, when two utter-
ances are fed, [SEP] is used to incorporate them.

A sequence of segment tags is used to denote the
combined utterance.

2.3 Transformer Encoder with Masked-Self
Attention

We present a mask-self-attention to avoid false se-
mantic changes, which is a self-attention extension.
Mask-self-attention is defined as follow:

Qi+1,Ki+1, V i+1 = hiWq, h
iWk, h

iWv (3)

Si+1 = softmax(
Qi+1Ki+1

√
dk

) (4)

hi+1 = Si+1V i+1 (5)

where Wq, Wk, and Wv are model parameters
that can be trained. The hidden state of the i− th
mask-self-attention blocks is hi. The scaling factor
is dk. This process improves the representation but
does not affect the original utterance’s meaning.

2.4 Transformer Decoder
The knowledge enriched representation from the
transformer encoder is fed to the decoder of an
original LM to generate a response. The working
process of the decoder layers is similar to that of
the vanilla transformer decoder layers.

3 Experiments

3.1 Datasets
In this study, we used the English version of Med-
Dialog (Zeng et al., 2020) dataset. Table 1 presents
statistics of the MedDialog dataset.

Table 1: Dataset Statistics

Dataset MedDialog-EN

# dialogues 257,332
# utterances 514,664

# tokens 44,527,872
#diseases 172

Avg. # of utterances 2
Max # of utterances 2
Min # of utterances 2

Avg. # of tokens 87
Max # of tokens 3,672

Min # tokens 1

3.2 Experimental Settings
We used five different LMs, and all configuration
and pre-training settings are consistent with the
original LMs used (see section3.3). Adam (Kingma
and Ba, 2014) optimizer is used to train our model
at 1e-6 initial learning rate. We used a batch size
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Table 2: Results: Automatic (BLEU2, BLEU4, METEOR, NIST − 4) and Human (5-point scale) evaluation

Automated Evaluation for MedDialog-EN Human Evaluation

Model BLEU2 BLEU4 METEOR NIST-4 Avg. Score

BERT-GPT (Wu et al., 2020) 5.72 4.82 0.28 0.42 3.70
BERT-GPT+Knowledge (Ours) 9.38 6.07 17.62 0.61 4.00

Performance Increase 3.66↑ 1.25↑ 17.34↑ 0.19↑ 0.30↑

Transformer (Vaswani et al., 2017) 2.13 2.28 11.57 0.03 2.70
Transformer+Knowledge (Ours) 2.48 2.46 12.32 0.31 3.00

Performance Increase 0.35↑ 0.18↑ 0.75↑ 0.28↑ 0.30↑

mT5 (Xue et al., 2020) 2.59 0.84 0.20 0.41 2.70
mT5+Knowledge (Ours) 7.32 3.63 1.11 0.94 3.00

Performance Increase 4.73↑ 2.79↑ 0.91↑ 0.53↑ 0.80↑

BART (Lewis et al., 2020) 15.92 9.72 0.70 2.03 3.90
BART+Knowledge (Ours) 17.25 11.07 1.73 2.07 4.15

Performance Increase 1.33↑ 1.35↑ 1.03↑ 0.04↑ 0.250↑

T5 (Raffel et al., 2019) 7.05 1.79 0.95 1.05 3.50
T5+Knowledge (Ours) 15.20 8.96 1.73 1.78 4.00

Performance Increase 8.15↑ 7.17↑ 0.78↑ 0.73↑ 0.50↑

of 64 for 50 epochs. We used grid-search optimiza-
tion to derive the optimal parameters. We divided
all datasets into training, validation, and test sets,
with an 80:10:10 ratio for all experiments. The
number of heads in multi-head attention is set to
12. The trained models were evaluated using auto-
matic metrics such as NIST-4 (Doddington, 2002),
BLEU2, BLEU4 (Papineni et al., 2002), and ME-
TEOR (Lavie and Agarwal, 2007).

3.3 Baselines

We compared our results with state-of-the-art
LMs that are used in previous studies for med-
ical dialogue generation tasks. To be precise,
we used BERT-GPT (Wu et al., 2020), Trans-
former (Vaswani et al., 2017), mT5 (Xue et al.,
2020), BART (Lewis et al., 2020), and T5 (Raffel
et al., 2019) to compare the performance.

3.4 Results

Automated Evaluation: Table 2 demonstrates the
automatic evaluation results achieved by different
LMs, with and without knowledge. The results
show that adding medical knowledge to LMs im-
proves the performance across all evaluation met-
rics. For the MedDialogue-EN, we observed an
increase in BLEU2 score ranging from 0.35% to
8.15%, for BLEU4, the improvement range is
0.18% to 7.17%, For METEOR, the increase is
from 0.91% to 17.34%, and finally, for NIST-4, the
increase in performance is in the range of 0.04%

to 0.73%. From the results in Table 2, we can con-
clude that adding medical knowledge to LMs is
beneficial and increases the performance of medi-
cal dialogue generation tasks.
Human Evaluation: We randomly selected 100 di-
alog examples for human evaluation. Five medical
doctors were asked to rate the generated responses
independently on a scale of 1 to 5. The greater the
score, the better. The final results are obtained by
averaging the ratings provided by various experts.
From the human evaluation scores (right column)
in Table 2, we deduce that incorporating medical
knowledge into LMs generates a more accurate,
clinically informative, and human-like response.

4 Conclusion

We present a method for enabling LMs with KGs
to achieve domain knowledge like doctors. The
proposed method transforms an utterance into a
knowledge-enriched utterance tree by injecting
medical knowledge from KG. The embedding layer
converts the utterance tree into an embedding fed
to the masked self-attention of a transformer, fol-
lowed by the decoder to generate the response us-
ing medical dialogue history. Experimental results
demonstrated that our method outperforms state-
of-the-art LMs trained on general data. Further,
through human evaluation, we conclude that gener-
ated responses are informative and doctor-like. In
future, we aim to expand this work to other tasks
and datasets.
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