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Abstract

Large language models have achieved success
on a number of downstream tasks, particularly
in a few and zero-shot manner. As a conse-
quence, researchers have been investigating
both the kind of information these networks
learn and how such information can be encoded
in the parameters of the model. We survey
the literature on changes in the network during
training, drawing from work outside of NLP
when necessary, and on learned representations
of linguistic features in large language models.
We note in particular the lack of sufficient re-
search on the emergence of functional units –
subsections of the network where related func-
tions are grouped or organized – within large
language models, and motivate future work that
grounds the study of language models in an
analysis of their changing internal structure dur-
ing training time.

1 Introduction

Recent advances in self-supervised learning, dis-
tributed training, and architecture improvements
have enabled training massive language mod-
els (Devlin et al., 2019; Brown et al., 2020; Radford
et al., 2019; Ma et al., 2020; Liu et al., 2019). As
these models have grown larger, so has their per-
formance and generalization to new tasks. Further-
more, these techniques have also shown substan-
tial improvements in learning multilingual (Chen
et al., 2020) and multimodal representations (Rad-
ford et al., 2021). These large language models
(LLMs) have advanced the state of the art in few-
and zero-shot tasks (Radford et al., 2019; Brown
et al., 2020; Radford et al., 2021). However, the
size of these models makes them difficult to eval-
uate, examine, and audit. What structures emerge
from training these neural networks? What internal
representations do these networks learn?

In part, this opacity is implicit in the models
themselves. Many of the fascinating capabilities of

LLMs are “implicitly induced, not explicitly con-
structed” emergent properties (Bommasani et al.,
2021). Emergent properties are those that result
from the structural relations and interactions be-
tween a system's components (Ablowitz, 1939;
Callebaut and Rasskin-Gutman, 2005). One way
of characterizing the emergence of useful proper-
ties from complexity is through self-organization,
wherein complex systems come to develop ordered
patterns from the interactions of their components
(Gershenson et al., 2020). Interactions between
the parts of a system can produce complex global
behavior, for example in the collective behavior of
ants, flocking in birds (Cucker and Smale, 2007),
or in the brain and central nervous system (Dresp-
Langley, 2020; Brown, 2013). In the context of
deep learning models, qualitatively different be-
havior has been observed during phase transitions
in model size or training steps (Steinhardt, 2022).
Current research on understanding the generaliza-
tion abilities of LLMs has largely focused on the
degree to which they learn various linguistic fea-
tures (e.g. syntax) that would support performance
on diverse downstream tasks. Our goal instead is to
motivate research that grounds the learning of these
higher-level representations, and from there, LLMs
generalization abilities, in the emergent structures
that result from self-organization within the net-
works.

To analyze LLMs themselves, we survey current
research on the following topics and identify gaps
in the literature. First, we turn to the development
of internal representations of important features of
language (e.g. syntax). Second, we look at the
structure of the network (neurons, weights, etc.),
how it evolves over time, and the emergence of
functional units therein. In each case, we include
not only research related to trained models, but also
the changes that result over training time (termed
training dynamics). Most research has focused
on the aforementioned internal representations and
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their connection to the downstream performance
and generalization ability of LLMs, with only lim-
ited work on how the network structure changes
over time and that change’s connection to those
representations. We aim to motivate research that
not only applies work on the emergent structures
within networks from outside of NLP to LLMs, but
also develops a language-specific account of useful
functional units that emerge in LLMs. Moreover,
we identify methods for studying emergence and
self-organization in complex systems with poten-
tial applications to analyzing LLM training dynam-
ics and behavior. We conclude with a survey of
explainability methods that allow researchers to
connect structure with function.

2 Internal Representations

Linguistic Structure Representations A signifi-
cant current area of research is dedicated to inter-
preting language models from a linguistic point of
view. The motivation is to know to what extent
models “understand” language, and more specif-
ically, to what extent their generalizations over
language agree with the generalizations about lan-
guage described by linguistics. Following the
hierarchy of language levels (morphology, syn-
tax, discourse) (Dalrymple, 2001), experiments
in probing studies typically address models’ pro-
ficiency on a certain level of language. This
line of research typically comes down to analyz-
ing how linguistic structures are represented in
a model’s knowledge. Such structures represent
syntagmatic/paradigmatic mechanisms of language
(how language units combine and alternate, respec-
tively). It is believed (McCoy et al., 2020) that
rediscovering these structures would help models
get closer to humans performance on a variety of
tasks.

Probing Methods to Test for Linguistic Struc-
ture Probing tasks measure the linguistic aware-
ness of a model’s components, such as layers (Ten-
ney et al., 2019) or groups of neurons (Durrani
et al., 2020), by training an auxiliary model, the
probe, on annotated data. Datasets providing such
linguistically annotated data are called probing
datasets, and cover a wide variety of properties
(parts of speech, parse trees, etc.). A high perfor-
mance of a probe model on a linguistic task implies
that the representation tested encodes the property
of interest. Several studies using probing methods
have reported high accuracy predictions in identi-

fying the underlying linguistic structure (Belinkov
et al., 2017a,b; Peters et al., 2018; Tenney et al.,
2019; Conneau et al., 2018; Zhang and Bowman,
2018; Alain and Bengio, 2017; Hewitt and Man-
ning, 2019; Hewitt and Liang, 2019).

However, high performance may have confound-
ing factors; there is uncertainty on whether the
probing tasks properly test if representations ac-
tually encode linguistic structure and on how to
interpret the results of probes (Hewitt and Liang,
2019; Zhang and Bowman, 2018; Voita and Titov,
2020; Pimentel et al., 2020b). Toward that end,
the following section reviews several probing ap-
proaches in the context of language models, and
the evaluation criteria used to determine the profi-
ciency of a probe.

Grammatical and Semantic Probing Given the
excellent performance of pre-trained representa-
tions on numerous linguistic tasks (Kitaev and
Klein, 2018; He et al., 2018; Strubell et al., 2018;
Lee et al., 2018), several studies have explored how
semantic and grammatical knowledge are encoded
within language models. Syntactic and morpho-
logical probing encompasses tasks that identify
grammatical structure underlying the vector rep-
resentations within pre-trained models, whereas
semantic probing tasks investigate what meaning
is conveyed within the representation.

Earlier work using part of speech (POS) and
morphological tagging (Belinkov et al., 2017a) in-
dicated that syntactic information may be encoded
in layers of neural models. More recently, investi-
gations have considered whether models learn to
embed entire parse trees in their representations.
In Hewitt and Manning (2019), the authors out-
line structural probing as a method to identify hi-
erarchical, tree-like, structures from vector repre-
sentations of language via the syntactic distance
between embeddings. Their results across several
large language models suggested that Transformer
model encodings possess some hierarchical linguis-
tic structure.

Several studies conducted probing experiments
in multilingual settings. Chi et al. (2020) high-
lighted syntactic generalizations in multilingual
language models via structured probing, and Şahin
et al. (2020) propose a framework for multilingual
morpho-syntactic probing, with 15 probing tasks
for multiple languages, showing that, while cross-
lingual typological regularities can be found with
probing, probing dataset properties strongly impact
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the results (see Section 2.2 for more details about
multilingual models).

Probes have also been used to measure semantic
information within language model representations.
The authors of Belinkov et al. (2017b) posed a
semantic-class labeling task and found that higher
layers of a model tend to perform better at seman-
tic tagging. Similarly, semantic labeling tasks have
been used to indicate that contextualized represen-
tations may encode multiple meanings within a
single vector (Yaghoobzadeh et al., 2019). Con-
trarily, edge probing, developed by Tenney et al.
(2019), implied that contextualized embeddings
show larger gains on syntactic tasks as opposed
to semantic ones (with only modest performance
gains against non-contextualized baselines). There
is no general evidence on how exactly language
levels are distributed across model layers (Rogers
et al., 2020).

Information Theoretic Probing Information-
theoretic probing characterize tasks as a way of esti-
mating the mutual information between an internal
representation and the linguistic property of inter-
est (Pimentel et al., 2020b; Pimentel and Cotterell,
2021; Voita and Titov, 2020; Pimentel et al., 2020a).
Many of these approaches highlight the need to for-
malize the “effort” required in encoding a linguistic
property, often via some form of a control function
(Pimentel et al., 2020b). Counter-intuitively, work
from Pimentel et al. (2020b) suggest that the “best”
probes are ones that always perform highest on the
task; their argument is that “learning” the task is
equivalent to encoding the linguistic property in
the initial representations. They provide approxi-
mations to calculate information gain, finding that
BERT models contain only 12% more information
than non-contextualized baselines.

Criticisms of accuracy-based performance met-
rics have argued that these methods are sensitive
to structure, randomization, and hyperparameter
selection (Voita and Titov, 2020; Hewitt and Liang,
2019; Zhang and Bowman, 2018; Pimentel et al.,
2020b). As an alternative, the minimum description
length (MDL) offers an information theoretic view
on probe quality (Voita and Titov, 2020). Formally,
it describes the “minimum number of bits required
to transmit labels, knowing the representations”,
where better probes are those with smaller code-
lengths, as they suggest the information available
in the representation is sufficiently accessible to
solve the task. Prior studies have shown the MDL

metric is robust and resilient to randomness (Voita
and Titov, 2020). In comparison to the original
POS tagging of Hewitt and Liang (2019), the MDL
metric consistently distinguishes between the lin-
guistic versus the control tasks across differences
in hyperparameters and random seeds. Similarly,
following Zhang and Bowman (2018), evaluation
using MDL revealed longer codelengths for ran-
domly initialized models as opposed to pre-trained
ones.

2.1 Evaluating Probing Performance

Several studies have highlighted the need for inter-
pretable performance scores on probes (Belinkov
et al., 2017b; Peters et al., 2018; Tenney et al., 2019;
Conneau et al., 2018; Zhang and Bowman, 2018;
Alain and Bengio, 2017; Hall Maudslay and Cot-
terell, 2021). Two common themes have emerged
for evaluating the proficiency of a probe: selec-
tivity through control tasks and high informatic
overlap via control functions (Hewitt and Liang,
2019; Pimentel et al., 2020b; Zhu and Rudzicz,
2020). Recent work suggests that both approaches
yield comparable results empirically with similar
error terms theoretically (Zhu and Rudzicz, 2020).

Control Tasks Selectivity is the trade-off be-
tween complexity and performance of the linguistic
task. A “good” probe refers to one that performs
highly on linguistic tasks, but poorly on control
tasks, thus limiting the ability for a probe to “mem-
orize” the task (Hewitt and Liang, 2019).

Arguments preferring “simpler” probes claim
that these models should find “accessible” informa-
tion within the representations (Shi et al., 2016).
The simplest probes employ linear functions, yet
more complex probes have been commonly used,
including multi-layer perceptrons (MLP) or kernel
methods (Belinkov et al., 2017a; Conneau et al.,
2018; White et al., 2021; Adi et al., 2017), suggest-
ing that some linguistic properties may be encoded
non-linearly. Linear functions and MLPs are still
commonly in use (Tenney et al., 2019).

Prior works within the probing literature have
also explored how the size of training data can in-
fluence the performance of the probe (Zhang and
Bowman, 2018; Hewitt and Liang, 2019). In an
investigation considering probes of pre-trained lan-
guage models and an untrained baseline on two
syntactic tasks: POS tagging and Combinatorial
Categorical Grammar (CCG) super-tagging (Hock-
enmaier and Steedman, 2007), probes with an un-
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trained baseline model could surprisingly attain
high performance compared to pre-trained models
(Zhang and Bowman, 2018). However, the probe
performance decreased dramatically when reduc-
ing the amount of available training data when com-
pared to the pre-trained models. This suggested
trained encoders captured enough syntactic infor-
mation, beyond simple word-identities, which en-
abled these representations to achieve high perfor-
mance on the linguistic tasks.

An extensive study on selectivity proposed sev-
eral control tasks for POS tagging and dependency
edge prediction (Hewitt and Liang, 2019). Across
an array of probe architectures (linear, MLP-1,
MLP-2) and hyperparameters, this investigation
considered the effect of the hidden state dimen-
sionality (size), number of training examples, regu-
larization, and early stopping. The most effective
probes were those with constrained hidden dimen-
sions, yielding the most selective probes.

Control Functions Control functions compare
the mutual information against a property of inter-
est and the representation before and after the func-
tion is applied. The objective is used to measure the
information gain of the representation. In Pimentel
et al. (2020b), control functions were used to com-
pare BERT contextualized models against FastText
(Bojanowski et al., 2017) and a one-hot encoding
on POS tagging. Curiously, their results suggested
that BERT models only marginally improved infor-
mation gain against these simpler baselines.

2.2 Emerging Multilingual Structures
Multilingual large language models, such as multi-
lingual BERT (mBERT) (Devlin et al., 2019; De-
vlin, 2018) XLM (Conneau and Lample, 2019) or
XLM-R (Conneau et al., 2020a) have shown im-
pressive results when used for (zero-shot) cross-
lingual transfer; that is, when the pre-trained mul-
tilingual language model is used as the basis for a
task-specific model that is applied to a language in
which it was not trained for. Their efficiency was
proven in a wide variety of tasks, such as sentiment
analysis, natural language inference, and question
answering, to name a few.

Prior to the immense popularity of Transformer-
based models, two approaches of using word
embeddings for cross-lingual tasks have shown
promising results. In the first, representations are
learned separately from individual languages and
then aligned to a shared space, thus producing

cross-lingual word embeddings (Ruder et al., 2019),
that in turn, are used on the target language. In the
second, multilingual representations are learned by
jointly training over multiple languages. Artetxe
and Schwenk (2019), for example, trained a BiL-
STM over 93 languages using parallel corpora, pro-
ducing “universal” embeddings that were success-
fully used in various tasks.

The same two approaches are being explored
with large language models. In Conneau et al.
(2020b), monolingual BERT models that were
trained separately for different languages produced
similar (easily-aligned) representations. Pires et al.
(2019) and Vulić et al. (2020) further showed – as
expected – that the similarity depends on the typo-
logical distance between the languages. Universal
language-agnostic embeddings also emerge when
training multilingual models, even when no explicit
connection (such as parallel corpora or bilingual
dictionaries) between the languages is used during
training, such as in the case of mBERT.

Multiple works looked into the factors that con-
tribute to the successful transfer. These include
domain and language similarity, shared parame-
ters, and perhaps the most straightforward factor:
common (sub-) words between the languages (Wu
and Dredze, 2019; Conneau et al., 2020b; Pires
et al., 2019). Interestingly, Conneau et al. (2020b)
and K et al. (2020) showed that the universal rep-
resentations do not heavily depend on shared vo-
cabulary; instead, multilinguality emerges directly
from the fact that parameters are shared in training,
from the structure of the network, and is affected
by common characteristics of the languages, such
as word order (Dufter and Schütze, 2020). Pires
et al. (2019) discovered that mBERT can also suc-
cessfully transfer between languages with differ-
ent scripts, and that generalization goes beyond
the lexical level, and Chi et al. (2020) found that
syntactic features representations in mBERT over-
lap between languages. Still, Ahmad et al. (2021)
have shown that augmenting mBERT with syntac-
tic information can improve cross-lingual transfer
performance.

The size of each language's corpus in the lan-
guage model's training set has been shown to be
decisive for transfer to that language. Thus, low-
resource languages often benefit more from the
joint training (Wu and Dredze, 2020), while lan-
guages with abundant resources often achieve bet-
ter performance when trained on their own (Nozza
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et al., 2020; Lewis et al., 2020).

2.3 Training Dynamics of Internal
Representation Development

Training dynamics is an emerging field of research,
promising to improve our understanding of knowl-
edge acquisition in neural networks and offering in-
sights into the utility of pre-trained models and em-
bedded representations for downstream tasks. Most
studies of Transformers (e.g. RoBERTa (Zhuang
et al., 2021)) and LSTMs (Hochreiter and Schmid-
huber, 1997) agree that models acquire linguistic
knowledge early in the learning process.

Local syntactic information, such as parts of
speech, is learned earlier than information encod-
ing long-distance dependencies (e.g. topic) (Liu
et al., 2021; Saphra, 2021). Exploration of AL-
BERT (Lan et al., 2019) and LSTM-based networks
reveals different learning patterns for function and
content words with more fine-grained distinctions
within these categories including part of speech
and verb form (Saphra, 2021; Chiang et al., 2020).

Differences in learning trajectory were also ob-
served between layers. In LSTMs, recurrent lay-
ers become more task-independent over the course
of training, while embeddings become more task-
specific (Saphra, 2021). In Transformer-based ar-
chitectures, i.e.: ALBERT and ELECTRA, Chiang
et al. (2020) observe differences in performance
patterns between the top and last layers. Simi-
larly to other areas of research in NLP, most of
the literature on training dynamics concentrate on
English-language models. Another possible direc-
tion for future work is extending studies conducted
on LSTMs to more widely used Transformers.

2.4 Critique of Testing Methods
Recent research has complicated the picture of
grammar learning presented in Sections 2, 2.2,
and 2.3. Specifically, there have been two sepa-
rate but related types of critique leveled at probing
and grammar learning. First, specific to probing,
researchers question whether probes really iden-
tify linguistic representations at all. Secondly, and
more fundamentally, it is unclear to what degree
language models even learn grammar.

Hall Maudslay and Cotterell (2021) suggest that
semantic “cues” may contaminate syntax probes,
making it difficult to evaluate their scores. By
employing “Jabberwocky probing”, where pseudo-
words with no lexical meaning replace the original
components of the sentence in a way that preserves

grammar, the authors discovered that performance
of syntactic probes considerably dropped for large
language models, calling into question whether syn-
tactic probes actually isolate syntactic knowledge
withing language models.

A more fundamental issue for syntax learning
in language models has been their performance
when trained on perturbed or permuted data. Sinha
et al. (2021) use a variety of word order permu-
tations that preserve distributional information to
isolate whether what language models learn is ac-
tually syntax. Word order has been assumed to
be important not only for natural language under-
standing by humans but also by language models,
particularly for learning syntax. Surprisingly then,
word order appears to have less influence than one
would expect on the downstream performance of
language models and their performance on prob-
ing tasks. In part, the authors note that some syn-
tax information can be acquired during fine-tuning
to sufficiently answer tasks that require it. More-
over, in the context of syntax probes, the authors
note that “while natural word order is useful for at
least some probing tasks, the distributional prior of
randomized models alone is enough to achieve a
reasonably high accuracy on syntax sensitive prob-
ing”. Furthermore, the results distinguish between
parametric and non-parametric probes, where per-
formance on the latter using randomization models
degrades significantly. This degradation provides
evidence that non-parametric probes are able to test
for syntax learning in ways that parametric probes
cannot. Similarly, O’Connor and Andreas (2021)
use syntax-level perturbations and ablations to con-
clude that the information in context windows most
useful to language models are local ordering statis-
tics and content words, e.g. nouns, verbs, adverbs,
and adjectives. In other words, it does not appear
that language models make use of syntactic or other
structural information in the context window.

2.5 Further Research
Despite recent probing studies providing a closer
look at how linguistic structures are distributed in
language models, it is an open question to what ex-
tent this knowledge acquisition differs from that of
humans. While grammatical structures tend to be
learned much faster than downstream knowledge
(Conneau et al., 2018), there is still room for the
study of more specific questions, such as whether
models require more time to acquire the grammar
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of polysynthetic languages, as has been reported
for humans (Kelly et al., 2014).

Another remaining open question is whether lin-
guistic structure knowledge can be transferred be-
tween models with the neurons initialization mech-
anism (Durrani et al., 2021). While rough re-use of
neurons is proven to be helpful in model initializa-
tion (Sanh et al., 2019), for instance, such neuron
“surgery” would potentially lead to even quicker
acquisition of grammatical knowledge.

Generally speaking, the performance of multi-
lingual models is inferior to that of monolingual
ones, especially when enough resources are avail-
able. Yet, high-quality multilingual models remain
a desired objective that can particularly benefit low-
resource languages. Further understanding the fac-
tors that enable learning language-independent rep-
resentations is key for developing better multilin-
gual training or cross-lingual fine-tuning strategies,
especially for transfer between less similar lan-
guage pairs. A particularly interesting question is
whether some tasks require more language-specific
adaptation, because, for instance, they depend on
linguistic information that is currently not general-
ized well enough in multilingual LLMs.

3 Self-Organization and the Emergent
Structure of Networks

3.1 Network Structure
Inspired by the architecture of biological neural
networks (BNNs) and their adaptability to various
tasks, where neurons and circuits are capable of
self-organization, many researchers have investi-
gated how Artificial Neural Networks (ANNs) can
be seen as emergent structures, where interpretabil-
ity of an ANN's parameters can help us to inspect
their functional modularity. Broadly, researchers
have approached this by identifying patterns in the
weights or neurons especially through subgraphs
of the network.

Branch specialization is the organization of
branches – or “sequences of layers which tem-
porarily don’t have access to ‘parallel’ information
which is still passed to later layers” (Voss et al.,
2021) – of the network into functional units, across
different architectures and tasks (Zhang et al., 2020;
Bunel et al., 2020; Voss et al., 2021; Rössig and
Petkovic, 2021). It is somewhat similar to how
neurons are connected by synapses, forming small
functional units called neural circuits that can be
specialized for specific tasks, such as to “medi-

ate reflexes, process sensory information, gener-
ate locomotion and mediate learning and memory”
(Byrne et al., 2012; Luo, 2021). In their work on
AlexNet, Voss et al. (2021) provided initial evi-
dence of self-organization of neurons and circuits
(subgraphs) into functional units in a neural net-
work. This self-organized emergent structure is
consistent “across different architectures and tasks”.
A look at evolving neural structures gives another
perspective. Inspired by neural architecture search
(NAS), So et al. (2019) presented “a first neural ar-
chitecture search conducted to find improved feed-
forward sequence models”, where the search space
contains five branch-level search fields. Recently,
So et al. (2021) introduced Primer (PRIMitives
searched TransformER), which can add improve-
ments in the pre-training and one-shot downstream
task transfer regime. However, branches are used
just for the initialized multi-head attention.

Weight banding is the uniformity in the orga-
nization of the weights in a final layer. In neural
networks, weights are parameters that can trans-
form the input data between the network's hidden
layers. Weight banding resembles another biolog-
ical phenomenon when a neuron multiplies each
input with a synaptic weight, which is represented
as a number that highlights the importance assigned
to that input. The weighted inputs are summed up
in what represents the neuron's output (Iyer et al.,
2013). Petrov et al. (2021) note that many vision
models display a uniform pattern in their final layer.
They investigate the nature of this structural phe-
nomenon, connecting it ultimately to architectural
choices in the network and noting that weight band-
ing can serve as a method of preserving spatial
information.

Clustering is the grouping of neurons or subnet-
works into units that can be used for specific tasks
(Hod et al., 2021). Starting from the fact that modu-
lar systems allow us to have a better understanding
of a system if we can inspect the function of indi-
vidual modules, different clustering methods for
neural networks were proposed. Li et al. (2020) de-
signed a modular neural network based on feature
clustering to decompose features into clusters with
each module processing different features. These
modules work in parallel for a singular task. Filan
et al. (2021) proposed a spectral clustering algo-
rithm for decomposition of trained networks into
clusters, finding that networks can have some sense
of modularity and suggested further work related
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to clusterability in various domains.
Modularity focuses on the reusability of sub-

networks for multiple tasks (Happel and Murre,
1994; Shukla et al., 2010; Csordás et al., 2021). In
Csordás et al. (2021) neural networks trained on
algorithmic tasks appear to fail to learn general,
modular, compositional algorithms, and require
specific subset weights to handle a particular com-
bination of the input tokens. With these findings,
Csordás et al. (2021) suggest further research about
“function dependent weight sharing in the neural
networks”. Reusable multi-task subnetworks may
also be discovered via Neural Architecture Search
(NAS) methods (Pham et al., 2018). Pasunuru and
Bansal (2019) leverage a technique called multi-
task architecture search (MAS) to find multi-task
cell structures in RNNs, capable of generalization
to unseen tasks.

3.2 Training Dynamics of Network Changes
Understanding the change in network structure over
time is equally as important as identifying structure
in trained models. Here, the focus is on how the
parameters of the model change over the course
of training, which can give insight into the types
of inductive biases that develop and shed light on
the nature of LLMs’ abilities to generalize. The
most recent work covering this in the context of
LLMs focuses on parameter norm growth, which
refers to the growth of the ℓ2 norm during training
time. According to Merrill et al. (2021), neural
networks learn successfully due to inductive biases
introduced during training. Norm growth induces
saturation in Transformer models, which reduces
the attention heads to “generalized hard attention”.
The authors find that computations for argmax and
mean are reducible to saturated attention, which
partially explains why saturated Transformer mod-
els can learn counter languages, a kind of formal
language, and may play a broader role in explaining
their generalization abilities.

3.3 Further Research
As we have noted, most of the work on network
structure is currently outside of NLP, either dealing
with general ANNs or specific to Computer Vision
with AlexNet and general convolutional networks
trained on ImageNet (Voss et al., 2021; Petrov et al.,
2021). This work should be replicated in the con-
text of LLMs to test for the existence of language-
specific functional units and, more generally, deter-
mine whether there are internal network structures

that support the learned representations we discuss
in Section 2. Likewise, since this research is still in
its infancy, it is focused on simple emergent struc-
tures. Future research can incorporate higher-order
emergent structures (Baas, 2000), new methods of
structure detection in networks (Aktas et al., 2019),
and even detection of structures whose form is not
explicitly specified (Shalizi et al., 2006).

Additionally, by viewing the neural networks
in question as time-evolving complex systems we
can leverage older research on self-organization
that has yet to be applied to understanding LLMs.
In particular, Ball et al. (2010) provide a method
for quantifying self-organization based on persis-
tent mutual information. Likewise, Shalizi et al.
(2004) ground self-organization in information the-
ory and Shalizi (2003) extends this method to a
general class of undirected graphs. Methods such
as these can be used to identify and quantify self-
organization in LLMs and better understand their
emergent behavior.

4 Connecting Structure to Function:
Explainable AI (XAI)

The rapid increase in the adoption of AI models in
recent years and their growing impact on human
lives created a need for techniques that offer insight
into the models internal operations.

Since attention-based models (Vaswani et al.,
2017) have become state-of-the-art tools in NLP,
there have been numerous attempts to provide some
understanding of their predictions by visualizing
the attention layer. However, these approaches
have been criticized for their inability to produce
meaningful and coherent interpretations (Wiegreffe
and Pinter, 2019; Bastings and Filippova, 2020;
Serrano and Smith, 2019). To address these limi-
tations, Ghaeini et al. (2018) examine the saliency
of attention and LSTM gating signal in the inter-
mediate layers of ESIM models, an architecture de-
signed for natural language inference tasks (Chen
et al., 2017). Their results show that visualizing
attention saliency allows identifying which parts
of the premise and hypothesis contribute most to
the final score. Moreover, attention saliency maps
compared across different ESIM models reveal dif-
ferences in focus that reflect the differences in their
predictions. According to this study, using saliency
is much more effective than using attention alone.

Another approach to revealing how decisions are
formed across network layers is erasure, where fea-
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tures are deemed irrelevant if their removal has a
minor effect on the prediction. De Cao et al. (2020)
extend this method to learned masking and adapt
it to measure the importance of intermediate states
rather than the inputs. They run the proposed DIFF-
MASK method on BERT (Devlin et al., 2019) and
find that separator tokens play an important role
in the input layer for question answering but not
for sentiment classification, a task where adjectives
and nouns are kept for much longer. Given that
separators serve as delimiters between the ques-
tion and the context, these differences shed light on
the connection between the internal latent structure
and the task, marking a step toward gaining some
understanding of the information flow in the model.

Applying neural models to the NLP domain
poses specific challenges. This opens the way for
research on the extent to which language-specific
characteristics, such as compositionality of mean-
ing, are reflected in the internal representations of
neural networks. The work by Li et al. (2016) lever-
ages several methods including variance-based and
first-derivative saliency (a technique inspired by
back-propagation), to study how models deal with
compositionality of meaning, e.g., negation, in-
tensification and combining meaning from differ-
ent parts of the sentence. The study of recurrent,
LSTM and bi-LSTM networks across time steps
finds that, as decoding proceeds, the task (language
modelling) gradually prevails overbuilding word
representations.

An integrated gradients (Sundararajan et al.,
2017) based method of finding neurons that en-
code individual facts has been proposed by Dai
et al. (2021). This approach builds on the ob-
servation that large pre-trained language models
can remember factual knowledge from the training
corpus. The authors find that knowledge neurons
are located in the feed-forward network of BERT
and view these two-layer perceptron modules as
knowledge memories in the Transformer architec-
ture. The method allows for explicit editing of spe-
cific factual knowledge by manipulating the corre-
sponding knowledge neurons with only a moderate
influence on unrelated knowledge. These findings
are in line with a work by Meng et al. (2022) that
localizes factual knowledge to the feed-forward
layer. Further, this approach makes a distinction
between the notions of knowing and saying a fact
and concludes that, while the feed-forward layers
encode the former, the latter is attended to by the

late self-attention.
Other approaches, e.g. SHAP, DeepLift and

LIME (Lundberg and Lee, 2017; Shrikumar et al.,
2019; Ribeiro et al., 2016) can reveal dependencies
missed by the methods discussed here. In NLP,
the key challenges include performance and, where
applicable, choosing an adequate baseline for word
embeddings. The dynamic progress of research
in natural language processing has led researchers
to review and analyze existing methods of inter-
preting neural models (Belinkov and Glass, 2019;
Danilevsky et al., 2020). While the emerging field
of explainable AI (XAI) is seeing faster growth, a
path for research and discussion on the desired eval-
uation criteria of interpretation methods is opening
up (Jacovi and Goldberg, 2020).

5 Conclusion and Future Directions

In this paper, we provide an overview of research
on network structure, linguistic feature learning,
their training dynamics, and explainability research
that aims to connect network structure and func-
tion. In doing so, we highlight gaps in the liter-
ature and opportunities for future research, both
in each individual research area and as a broad
proposal for grounding research in understanding
large language models. We highlight a few areas
of future research as particularly important given
the gaps in the current literature. For the study of
how, and whether, linguistic structures are learned
by language models, more work is needed to under-
stand the training dynamics of this learning across
a variety of model scales and architectures. More
fundamentally, there is disagreement about what
it means for a model to “encode” linguistic struc-
tures such as syntax, particularly in a multilingual
setting.

More broadly, nascent work on the self-
organization of neurons and subnetwork structures
that emerge during training time has largely not
been applied to LLMs, or neural networks in NLP
more generally. Research in Computer Vision has
shown the existence of emergent functional units
with functions that are semantically meaningful
to humans. In the context of LLMs, such struc-
tures may provide a basis for understanding the
nature of linguistic features that LLMs purportedly
learn, especially when comparing the development
of each during training time. Additional research
is needed to not only determine whether such struc-
tures emerge in LLMs, but also to apply and ex-
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tend the literature on self-organization in complex
systems. This research can also be used for ex-
plainability. Currently, assessment of the quality
of interpretations of the information flow in neu-
ral models is not straightforward. Identification of
modular and emergent structures within networks
may be viewed as a way of moving away from
the binary definition of faithfulness as postulated
by Jacovi and Goldberg (2020). Evidence for the
existence of structures aligning with human per-
ception of language, if found, can help to enable
separate consideration of plausibility from a human
perspective, as proposed in the same study. More
broadly, we propose grounding the study of LLMs
properties in the analysis of the self-organization
of weights and neurons into emergent structures.

References
Reuben Ablowitz. 1939. The theory of emergence. Phi-

losophy of Science, 6(1):1–16.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi,
and Yoav Goldberg. 2017. Fine-grained analysis
of sentence embeddings using auxiliary prediction
tasks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Wasi Ahmad, Haoran Li, Kai-Wei Chang, and Yashar
Mehdad. 2021. Syntax-augmented multilingual
BERT for cross-lingual transfer. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4538–4554, Online.
Association for Computational Linguistics.

Mehmet Aktas, Esra Akbas, and Ahmed El Fatmaoui.
2019. Persistence homology of networks: methods
and applications. Applied Network Science, 4.

Guillaume Alain and Yoshua Bengio. 2017. Under-
standing intermediate layers using linear classifier
probes. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Workshop Track Proceedings. OpenRe-
view.net.

Mikel Artetxe and Holger Schwenk. 2019. Massively
Multilingual Sentence Embeddings for Zero-Shot
Cross-Lingual Transfer and Beyond. Transactions of
the Association for Computational Linguistics, 7:597–
610.

Nils A. Baas. 2000. Emergence, hierarchies, and hyper-
structures. In Christopher G. Langton, editor, Artifi-
cial Life III, page 515–537. Addison-Wesley Long-
man Publishing Co., Inc., USA.

Robin C. Ball, Marina Diakonova, and Robert S.
MacKay. 2010. Quantifying emergence in terms of
persistent mutual information. Adv. Complex Syst.,
13:327–338.

Jasmijn Bastings and Katja Filippova. 2020. The ele-
phant in the interpretability room: Why use attention
as explanation when we have saliency methods? In
Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 149–155, Online. Association for Com-
putational Linguistics.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2017a. What do neural
machine translation models learn about morphology?
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 861–872, Vancouver, Canada.
Association for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2017b. Eval-
uating layers of representation in neural machine
translation on part-of-speech and semantic tagging
tasks. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1–10, Taipei, Taiwan.
Asian Federation of Natural Language Processing.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas
Card, Rodrigo Castellon, Niladri Chatterji, Annie S.
Chen, Kathleen Creel, Jared Quincy Davis, Dorottya
Demszky, Chris Donahue, Moussa Doumbouya, Esin
Durmus, Stefano Ermon, John Etchemendy, Kawin
Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale,
Lauren Gillespie, Karan Goel, Noah D. Goodman,
Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny
Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar
Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Kr-
ishna, Rohith Kuditipudi, and et al. 2021. On the
opportunities and risks of foundation models. CoRR,
abs/2108.07258.

Steven Ravett Brown. 2013. Emergence in the central
nervous system. Cognitive Neurodynamics, 7(3).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

154

http://www.jstor.org/stable/184327
https://openreview.net/forum?id=BJh6Ztuxl
https://openreview.net/forum?id=BJh6Ztuxl
https://openreview.net/forum?id=BJh6Ztuxl
https://doi.org/10.18653/v1/2021.acl-long.350
https://doi.org/10.18653/v1/2021.acl-long.350
https://doi.org/10.1007/s41109-019-0179-3
https://doi.org/10.1007/s41109-019-0179-3
https://openreview.net/forum?id=HJ4-rAVtl
https://openreview.net/forum?id=HJ4-rAVtl
https://openreview.net/forum?id=HJ4-rAVtl
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://aclanthology.org/I17-1001
https://aclanthology.org/I17-1001
https://aclanthology.org/I17-1001
https://aclanthology.org/I17-1001
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
https://doi.org/10.1007/s11571-012-9229-6
https://doi.org/10.1007/s11571-012-9229-6


Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Rudy Bunel, Ilker Turkaslan, Philip H.S. Torr, M. Pawan
Kumar, Jingyue Lu, and Pushmeet Kohli. 2020.
Branch and bound for piecewise linear neural net-
work verification. Journal of Machine Learning Re-
search, 21.

John H Byrne, D Ph, and The Ut. 2012. Introduction
to Neurons and Neuronal Networks. Cellular and
Molecular Neurobiology, 1.

Werner Callebaut and Diego Rasskin-Gutman. 2005.
Modularity: Understanding the Development and
Evolution of Natural Complex Systems. The MIT
Press.

Peng-Jen Chen, Ann Lee, Changhan Wang, Naman
Goyal, Angela Fan, Mary Williamson, and Jiatao
Gu. 2020. Facebook AI’s WMT20 news translation
task submission. In Proceedings of the Fifth Confer-
ence on Machine Translation, pages 113–125, Online.
Association for Computational Linguistics.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1657–1668, Vancouver, Canada. Association
for Computational Linguistics.

Ethan A. Chi, John Hewitt, and Christopher D. Man-
ning. 2020. Finding universal grammatical relations
in multilingual BERT. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5564–5577, Online. Association
for Computational Linguistics.

Cheng-Han Chiang, Sung-Feng Huang, and Hung-yi
Lee. 2020. Pretrained language model embryology:
The birth of ALBERT. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6813–6828, On-
line. Association for Computational Linguistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020a. Emerging
cross-lingual structure in pretrained language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 6022–6034.
Association for Computational Linguistics.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020b. Emerging
cross-lingual structure in pretrained language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6022–6034, Online. Association for Computational
Linguistics.

Róbert Csordás, Sjoerd van Steenkiste, and Jürgen
Schmidhuber. 2021. Are neural nets modular? in-
specting functional modularity through differentiable
weight masks. In International Conference on Learn-
ing Representations.

Felipe Cucker and Steve Smale. 2007. Emergent be-
havior in flocks. IEEE Transactions on Automatic
Control, 52(5):852–862.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, and Furu
Wei. 2021. Knowledge neurons in pretrained trans-
formers. ArXiv, abs/2104.08696.

Mary Dalrymple. 2001. Lexical functional grammar.
Brill.

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yan-
nis Katsis, Ban Kawas, and Prithviraj Sen. 2020. A
survey of the state of explainable AI for natural lan-
guage processing. In Proceedings of the 1st Confer-
ence of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 447–459, Suzhou, China. Association
for Computational Linguistics.

Nicola De Cao, Michael Sejr Schlichtkrull, Wilker Aziz,
and Ivan Titov. 2020. How do decisions emerge
across layers in neural models? interpretation with
differentiable masking. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3243–3255, On-
line. Association for Computational Linguistics.

Jacob Devlin. 2018. Multilingual bert.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

155

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.7551/mitpress/4734.001.0001
https://doi.org/10.7551/mitpress/4734.001.0001
https://aclanthology.org/2020.wmt-1.8
https://aclanthology.org/2020.wmt-1.8
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/2020.emnlp-main.553
https://doi.org/10.18653/v1/2020.emnlp-main.553
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://openreview.net/forum?id=7uVcpu-gMD
https://openreview.net/forum?id=7uVcpu-gMD
https://openreview.net/forum?id=7uVcpu-gMD
https://doi.org/10.1109/TAC.2007.895842
https://doi.org/10.1109/TAC.2007.895842
https://aclanthology.org/2020.aacl-main.46
https://aclanthology.org/2020.aacl-main.46
https://aclanthology.org/2020.aacl-main.46
https://doi.org/10.18653/v1/2020.emnlp-main.262
https://doi.org/10.18653/v1/2020.emnlp-main.262
https://doi.org/10.18653/v1/2020.emnlp-main.262
https://github.com/google-research/bert/blob/master/multilingual.md
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Birgitta Dresp-Langley. 2020. Seven properties of self-
organization in the human brain. Big Data and Cog-
nitive Computing, 4(2).

Philipp Dufter and Hinrich Schütze. 2020. Identifying
elements essential for BERT’s multilinguality. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4423–4437, Online. Association for Computa-
tional Linguistics.

Nadir Durrani, Hassan Sajjad, and Fahim Dalvi. 2021.
How transfer learning impacts linguistic knowledge
in deep NLP models? In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4947–4957, Online. Association for Computa-
tional Linguistics.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and
Yonatan Belinkov. 2020. Analyzing individual neu-
rons in pre-trained language models. arXiv preprint
arXiv:2010.02695.

Daniel Filan, Stephen Casper, Shlomi Hod, Cody Wild,
Andrew Critch, and Stuart Russell. 2021. Cluster-
ability in neural networks. CoRR, abs/2103.03386.

Carlos Gershenson, Vito Trianni, Justin Werfel, and Hi-
roki Sayama. 2020. Self-Organization and Artificial
Life. Artificial Life, 26(3):391–408.

Reza Ghaeini, Xiaoli Fern, and Prasad Tadepalli. 2018.
Interpreting recurrent and attention-based neural
models: a case study on natural language inference.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4952–4957, Brussels, Belgium. Association for Com-
putational Linguistics.

Rowan Hall Maudslay and Ryan Cotterell. 2021. Do
syntactic probes probe syntax? experiments with
jabberwocky probing. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 124–131, Online. As-
sociation for Computational Linguistics.

Bart L.M. Happel and Jacob M.J. Murre. 1994. Design
and evolution of modular neural network architec-
tures. Neural Networks, 7(6-7).

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and argu-
ments in neural semantic role labeling. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 364–369, Melbourne, Australia. Association
for Computational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Julia Hockenmaier and Mark Steedman. 2007. Ccg-
bank: A corpus of ccg derivations and dependency
structures extracted from the penn treebank. Comput.
Linguist., 33(3):355–396.

Shlomi Hod, Stephen Casper, Daniel Filan, Cody Wild,
Andrew Critch, and Stuart J. Russell. 2021. De-
tecting modularity in deep neural networks. ArXiv,
abs/2110.08058.

Ramakrishnan Iyer, Vilas Menon, Michael Buice,
Christof Koch, and Stefan Mihalas. 2013. The Influ-
ence of Synaptic Weight Distribution on Neuronal
Population Dynamics. PLoS Computational Biology,
9(10).

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we
define and evaluate faithfulness? In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4198–4205, On-
line. Association for Computational Linguistics.

Karthikeyan K, Zihan Wang, Stephen Mayhew, and Dan
Roth. 2020. Cross-lingual ability of multilingual bert:
An empirical study. In International Conference on
Learning Representations.

Barbara Kelly, Gillian Wigglesworth, Rachel
Nordlinger, and Joseph Blythe. 2014. The acqui-
sition of polysynthetic languages. Language and
Linguistics Compass, 8(2):51–64.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

156

https://doi.org/10.3390/bdcc4020010
https://doi.org/10.3390/bdcc4020010
https://doi.org/10.18653/v1/2020.emnlp-main.358
https://doi.org/10.18653/v1/2020.emnlp-main.358
https://doi.org/10.18653/v1/2021.findings-acl.438
https://doi.org/10.18653/v1/2021.findings-acl.438
http://arxiv.org/abs/2103.03386
http://arxiv.org/abs/2103.03386
https://doi.org/10.1162/artl_a_00324
https://doi.org/10.1162/artl_a_00324
https://doi.org/10.18653/v1/D18-1537
https://doi.org/10.18653/v1/D18-1537
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.1016/S0893-6080(05)80155-8
https://doi.org/10.1016/S0893-6080(05)80155-8
https://doi.org/10.1016/S0893-6080(05)80155-8
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/P18-2058
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1371/journal.pcbi.1003248
https://doi.org/10.1371/journal.pcbi.1003248
https://doi.org/10.1371/journal.pcbi.1003248
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108


Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2020. MLQA: Evalu-
ating cross-lingual extractive question answering. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7315–
7330, Online. Association for Computational Lin-
guistics.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 681–691, San Diego, California.
Association for Computational Linguistics.

Wenjing Li, Meng Li, Junfei Qiao, and Xin Guo. 2020.
A feature clustering-based adaptive modular neural
network for nonlinear system modeling. ISA Trans-
actions, 100:185–197.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Zeyu Liu, Yizhong Wang, Jungo Kasai, Hannaneh Ha-
jishirzi, and Noah A. Smith. 2021. Probing across
time: What does RoBERTa know and when? In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 820–842, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Scott M Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Liqun Luo. 2021. Architectures of neuronal circuits.
Science, 373(6559):eabg7285.

Shuming Ma, Jian Yang, Haoyang Huang, Zewen Chi,
Li Dong, Dongdong Zhang, Hany Hassan Awadalla,
Alexandre Muzio, Akiko Eriguchi, Saksham Singhal,
et al. 2020. Xlm-t: Scaling up multilingual machine
translation with pretrained cross-lingual transformer
encoders. arXiv preprint arXiv:2012.15547.

R. Thomas McCoy, Junghyun Min, and Tal Linzen.
2020. BERTs of a feather do not generalize together:
Large variability in generalization across models with
similar test set performance. In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 217–227,
Online. Association for Computational Linguistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual knowl-
edge in gpt.

William Merrill, Vivek Ramanujan, Yoav Goldberg, Roy
Schwartz, and Noah A. Smith. 2021. Effects of pa-
rameter norm growth during transformer training:
Inductive bias from gradient descent. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1766–1781, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Debora Nozza, Federico Bianchi, and Dirk Hovy. 2020.
What the [mask]? making sense of language-specific
bert models.

Joe O’Connor and Jacob Andreas. 2021. What context
features can transformer language models use? In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 851–864,
Online. Association for Computational Linguistics.

Ramakanth Pasunuru and Mohit Bansal. 2019. Contin-
ual and multi-task architecture search.

Matthew E. Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018. Dissecting contextual word
embeddings: Architecture and representation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1499–
1509, Brussels, Belgium. Association for Computa-
tional Linguistics.

Michael Petrov, Chelsea Voss, Ludwig Schu-
bert, Nick Cammarata, Gabriel Goh, and
Chris Olah. 2021. Weight banding. Distill.
Https://distill.pub/2020/circuits/weight-banding.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le,
and Jeff Dean. 2018. Efficient neural architecture
search via parameter sharing.

Tiago Pimentel and Ryan Cotterell. 2021. A bayesian
framework for information-theoretic probing.

Tiago Pimentel, Naomi Saphra, Adina Williams, and
Ryan Cotterell. 2020a. Pareto probing: Trading off
accuracy for complexity. CoRR, abs/2010.02180.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020b. Information-theoretic probing for linguistic
structure. CoRR, abs/2004.03061.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. arXiv preprint
arXiv:2103.00020.

157

https://doi.org/10.18653/v1/2020.acl-main.653
https://doi.org/10.18653/v1/2020.acl-main.653
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://doi.org/https://doi.org/10.1016/j.isatra.2019.11.015
https://doi.org/https://doi.org/10.1016/j.isatra.2019.11.015
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://aclanthology.org/2021.findings-emnlp.71
https://aclanthology.org/2021.findings-emnlp.71
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.1126/science.abg7285
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
http://arxiv.org/abs/2202.05262
http://arxiv.org/abs/2202.05262
https://aclanthology.org/2021.emnlp-main.133
https://aclanthology.org/2021.emnlp-main.133
https://aclanthology.org/2021.emnlp-main.133
http://arxiv.org/abs/2003.02912
http://arxiv.org/abs/2003.02912
https://doi.org/10.18653/v1/2021.acl-long.70
https://doi.org/10.18653/v1/2021.acl-long.70
http://arxiv.org/abs/1906.05226
http://arxiv.org/abs/1906.05226
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.23915/distill.00024.009
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/2109.03853
http://arxiv.org/abs/2109.03853
http://arxiv.org/abs/2010.02180
http://arxiv.org/abs/2010.02180
http://arxiv.org/abs/2004.03061
http://arxiv.org/abs/2004.03061
https://doi.org/10.18653/v1/P19-1493


Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “why should I trust you?”: Explaining the pre-
dictions of any classifier. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 97–101, San Diego, California. As-
sociation for Computational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in bertology: What we know about
how bert works. Transactions of the Association for
Computational Linguistics, 8:842–866.

Ansgar Rössig and Milena Petkovic. 2021. Advances
in verification of ReLU neural networks. Journal of
Global Optimization, 81(1).

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019.
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