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Abstract

Incremental disfluency detection provides
a framework for computing communicative
meaning from hesitations, repetitions and false
starts commonly found in speech. One applica-
tion of this area of research is in dialogue-based
computer-assisted language learning (CALL),
where detecting learners’ production issues
word-by-word can facilitate timely and ped-
agogically driven responses from an automated
system. Existing research on disfluency detec-
tion in learner speech focuses on disfluency
removal for subsequent downstream tasks, pro-
cessing whole utterances non-incrementally.
This paper instead explores the application of
laughter as a feature for incremental disfluency
detection and shows that when combined with
silence, these features reduce the impact of
learner errors on model precision as well as
lead to an overall improvement of model perfor-
mance. This work adds to the growing body of
research incorporating laughter as a feature for
dialogue processing tasks and provides further
support for the application of multimodality in
dialogue-based CALL systems.

1 Introduction

Speech disfluencies such as hesitations, repetitions
and false starts are an inherent artefact of spoken
language. Systematic in their structure, disfluencies
comprise of a reparandum phrase, optional inter-
regnum phrase and repair phrase (Levelt, 1983).

I’d like a
[

coffee︸ ︷︷ ︸
reparandum

+ {uh}︸︷︷︸
interregnum

tea︸︷︷︸
repair

]
please

Following the notation scheme described by
Shriberg (1994), the example above shows the com-
ponents of a disfluency. The speaker changes their
drink order by replacing “coffee” with the intended
word “tea”. The + represents the ‘interruption
point’, often marked prosodically with features
such as silence or reparandum word cutoff. The

following, optional interregnum phrase can con-
tain filled pauses such as “uh” like in the example,
edit terms such as “I mean” and finally discourse
markers such as “you know”.

Detecting such disfluencies is of particular inter-
est in the context of dialogue-based CALL, where
learners interact with an automated system in or-
der to practice conversation in the language that
they are learning. In the task-based scenario where
a learner is practicing ordering a drink at a café,
having a system that can identify and appropri-
ately respond to learners’ disfluencies in real-time
is highly desirable and not something that is avail-
able in existing approaches thanks to the lack of
incremental processing (Bibauw et al., 2019).

With the above in mind, this work builds on in-
cremental disfluency detection research and applies
it to a language learning setting. The nature of dis-
fluencies in learner speech are explored and learner
errors are identified as an area of difficulty in ex-
isting approaches. Subsequently, the non-lexical
features of laughter and silence are suggested as
possible solutions to this issue and their impact is
tested and compared to a baseline model. Findings
are reported and considerations for future work in
this area are discussed.

2 Related Work

Disfluency detection is a widely studied area of re-
search, with the most successful approaches lever-
aging BERT transformer models to achieve high
accuracy (e.g. Bach and Huang, 2019; Jamshid Lou
and Johnson, 2020; Rocholl et al., 2021). These
models operate non-incrementally using whole sen-
tences as inputs, often with a view to remove the
disfluencies from transcripts all together.

This is also the case for research on disfluency
detection in learner speech, which has been applied
to improve the downstream tasks of grammatical
error detection and correction using bi-directional
LSTMs (Lu et al., 2019) as well as end-to-end mod-
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els (Lu et al., 2020). Approached as a sequence
labelling task, disfluencies are flattened and mod-
els are trained to detect the reparandum phrase.
This approach is not suited to spoken dialogue sys-
tems, however, which benefit from word-by-word
processing and the retention of all parts of the dis-
fluency in order to generate meaningful and timely
responses (Schlangen and Skantze, 2009). In a
language learning context, such capabilities would
not only enable conversational systems to better
employ incremental feedback strategies such as
prompting but also provide insight into the nature
of individual learners’ disfluency behaviours.

Incremental disfluency detection addresses the
issues described above and forms a smaller subsec-
tion of research. Restricted by their left-to-right
operability, incremental systems detect disfluency
at the point of repair onset and subsequently ‘look-
back’ for the reparandum phrase. To date, there
has only been one research paper related to in-
cremental disfluency detection for learner speech,
where Moore et al. (2015) reported poor perfor-
mance when using an incremental dependency
parser trained on native data. Various approaches
have been tested using the Switchboard Corpus
(Godfrey et al., 1992), however. These are de-
scribed below.

Following a noisy channel approach, Hough and
Purver (2014) implemented a pipeline of Random
Forest classifiers detecting interregna, repair and
reparandum phrases separately using input features
derived from trigram language models for words
and POS tags. Simplifying the task to a one model,
multi-class sequence labelling problem using deep
neural networks, Hough and Schlangen (2015) suc-
cessfully applied a RNN using only word embed-
dings and POS tags as input features. This ap-
proach was extended further, using LSTMs for
the joint tasks of utterance segmentation (Hough
and Schlangen, 2017) as well as multi-task learn-
ing with utterance segmentation, POS tagging and
language modelling (Rohanian and Hough, 2020).
Current state-of-the-art performance is achieved by
Rohanian and Hough (2021), who incrementalised
a BERT-based disfluency detector by using utter-
ance predictions from a GPT-2 language model as
inputs to the model.

With the exception of word timings (Hough
and Schlangen, 2017; Rohanian and Hough, 2020,
2021) the incremental approaches outlined above
have yet to explore the impact of non-lexical fea-

tures on disfluency detection, despite having been
successfully integrated into non-incremental set-
tings (Zayats et al., 2016; Lu et al., 2020). Consid-
ering the fact that incremental detection begins at
repair onset, it seems likely that leveraging paralin-
guistic information associated with the interruption
point will be beneficial to detection. Approaches
to such integration are explored in this work.

3 Disfluencies in Learner Speech

On average, disfluencies occur at a higher rate in
learner speech compared to native speech (Hilton,
2008; De Jong et al., 2013). Learner speech dis-
fluency datasets also contain longer reparandum
phrases compared to native equivalents (Lu et al.,
2020). This is in part thanks to language learners
having a lower degree of ‘automatisation’ in the
language they are learning (Temple, 1992) and is
cited by Moore et al. (2015) as the reason why
disfluencies in learner speech are more difficult to
detect automatically.

Another artefact of learner speech disfluencies is
their co-occurrence with learner errors. The exam-
ples below highlight how errors interact with disflu-
encies in the NICT-JLE Corpus used for this study.
The disfluency phrases are labelled and words in
bold indicate learner errors.

(1) My computer [use + {er} is used] by [all
family + my family]

(2) She [[wanted shopping + wanted shop] + {er}
wanted to go shopping]

(3) [[I don’t + I’m not have watching movie] + I
don’t have no time to watch movie]

As the examples show, learner errors can occur
in the reparandum phrase, the repair phrase, or
both. The first example shows an instance where
the learner error occurs in the reparandum phrase
and is then subsequently repaired to its correct form.
The second example shows how this can occur in
a nested disfluency, where the inner disfluency in-
stance contains learner errors in both the reparan-
dum and repair phrases, with the outer disfluency
instance being without error. The third example
shows an instance where the initial reparandum
phrase is correct but the subsequent repair phrases
both contain errors.

The presence of learner errors is often cited as
a contributing factor to the difficulty of other NLP
tasks for learner language data such as parsing
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(Napoles et al., 2016) and POS tagging (Nagata
et al., 2018). With this in mind, it was hypothesised
that learner errors would have a similar negative
effect on disfluency detection and so their impact
was tested as part of this experimentation.

4 Silence and Laughter

Incorporating instances of silence is a successful
method of increasing model performance in non-
incremental disfluency detection research. Silence
has been encoded explicitly using its presence or
absence as an input feature (Liu et al., 2005; Fergu-
son et al., 2015), implicitly through the inclusion of
audio features such as filter banks (Lu et al., 2020)
and even as a prediction of prosodic cues from
text (Zayats and Ostendorf, 2019). Research into
the nature of silence in learner speech has shown
that non-native speakers are more likely to pause
mid-clause than native speakers during linguistic
processes such as repair (Tavakoli, 2011). With
this in mind, it seems likely that including silence
features will have a positive impact on the model
performance and so is tested here.

Language learners use laughter as a ‘trouble
management device’ during uncertainty (Looney
and He, 2021), when pre-empting a problematic ac-
tion (Petitjean and González-Martínez, 2015) and
after making an error (Gao and Wu, 2018). In an
analysis of UK university English proficiency in-
terviews of 23 Chinese students, Gao (2020) found
that laughter co-occurs with disfluencies in three
ways: (i), on its own between the reparandum and
repair phrase, (ii), alongside indicators of an in-
terruption point such as pauses and word cutoffs,
and (iii), simultaneously as laughed speech either
during the repair phrase or the whole disfluency.
Laughter has been shown to improve performance
of models for other dialogue processing tasks such
as dialogue act classification (Maraev et al., 2021)
but as of yet, has not been applied as a feature to
detect disfluencies in learner speech.

5 Experimentation Set Up

5.1 NICT-JLE Corpus

The National Institute of Information and Com-
munications Technology Japanese Learner English
(NICT-JLE) Corpus is a transcription-only corpus
of 1,281 English oral proficiency tests (approxi-
mately 300 hours of speech) of Japanese speaking
learners of English (Izumi et al., 2004). The test,

total words 1,165,785
disfluency instances per 100 words 7.54

edit terms per 100 words 11.55
learner errors per 100 words 11.10

Table 1: Dataset statistics for the NICT-JLE Corpus.

Figure 1: Diagram of the model structure used for ex-
perimentation.

known as the Standard Speaking Test (SST) is car-
ried out in an interview style between learner and
assessor, where the learner is asked to perform a
selection of various tasks. These include engaging
in open dialogue, a role-play scenario and a pic-
ture description task. Each transcribed interview
contains labels for edit terms and disfluencies, ‘non-
verbal sounds’ (including silence and laughter), as
well as meta-data such as the learners’ SST level,
gender and nationality. 167 of the interviews con-
tain additional labels for learners’ morphological,
grammatical and lexical errors.

For experimentation the corpus was lemmatized
using the NLTK WordNet Lemmatizer (Bird et al.,
2009) and POS-tagged by the Stanford POS-tagger
(Toutanova et al., 2003). Learner utterances (ex-
cluding those that contained Japanese) were ex-
tracted from the transcripts and split with 80% of
the data for training, 10% for heldout and 10% for
testing, ensuring that each dataset had an equal dis-
tribution of SST levels and that all transcripts in the
test set were taken from the subset that contained
tagged learner errors. Dataset statistics are sum-
marised in Table 11. Note that the figure for learner
error rates reflects the test set only.

5.2 Model
Following Hough and Schlangen (2017), the ap-
proach used for experimentation combines an
LSTM model with an HMM decoder. As visu-
alised in Figure 1, the model processes sequences
incrementally in a maximum window of nine words
to accommodate the repair start and the eight words
prior. Features are extracted from the trigram
wi−2...wi and used as inputs to the LSTM. The

1GitHub repository of adapted dataset: https://
github.com/lucyskidmore/nict-jle
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Model FrpS Frm Fe

baseline 0.757 0.723 0.982
+ silence 0.759 0.726 0.981

+ laughter 0.754 0.719 0.982
+ silence and laughter 0.766 0.732 0.982

Table 2: F-score results of the baseline compared to
silence and laughter models for repair start, reparandum
phrase and edit term detection.

LSTM network contains a hidden layer of 50 nodes
and an output layer of size ten, reflecting the size
of the tag set. Negative log likelihood is used as
the cost function, as well as stochastic gradient
descent over the parameters, including the word
embeddings. The learning rate is 0.005 and L2
regularisation is applied to the parameters with a
weight of 0.0001. The LSTM softmax output layer
is used as an input to the HMM where outputs
are updated incrementally with the best sequence
hypothesis from Viterbi decoding.

5.3 Input Features
The baseline model uses trigrams of POS tags
and fastText word embeddings (Bojanowski et al.,
2017) of size 50 as input features. Silence and
laughter features were derived directly from the
NICT-JLE transcripts. Each word was assigned
a vector, indicating the presence or absence of a
preceding short pause, long pause, laughter, or if
the word itself was laughed for the current word
and previous two words.

5.4 Disfluency Tags
Following Hough and Schlangen (2015), disflu-
encies are labelled at repair onset as rpS-n as
illustrated below, where n denotes the distance to
the reparandum start from the repair start.

I’d like a [coffee {uh} tea] please
f f f f e rpS-2 f

This approach allows for both incrementality and
the labelling of nested disfluencies. Edit terms are
combined with interregna and labelled as e and
‘fluent’ words are labelled as f. The maximum
length of a disfluency is cut off at rpS-8 which
results in a total tag set size of ten.

6 Results

Table 2 reports the F-score results of the baseline
model compared to the models with additional non-

Error Pos. Model PrpS RrpS FrpS

rpS
baseline 0.730 0.757 0.744

+ S&L 0.749 0.759 0.754

rpS-1
baseline 0.398 0.713 0.511

+ S&L 0.432 0.726 0.541

rpS, rpS-1
baseline 0.481 0.768 0.592

+ S&L 0.518 0.773 0.621

Table 3: Precision, recall and F-score results for repair
start detection of disfluency phrases with co-occurring
learner errors.

Model Inc.? Corpus Frm

+ S&L ✓ NICT-JLE 0.732
Moore et al. (2015) ✓ BULATS 0.478

Lu et al. (2019) - NICT-JLE 0.798

Table 4: Reparandum phrase F-score results of the final
model compared to existing approaches with varying
corpora and incrementality.

lexical features. F-scores are reported for repair
start as well as reparandum phrase (commonly used
to measure non-incremental performance) and edit
term detection. Despite individually having lit-
tle impact on baseline performance, when com-
bined, the features of silence and laughter lead to an
improvement in both repair start and reparandum
phrase detection. Edit term detection performance
remains high across all model variations.

Table 3 reports the precision, recall and F-score
results for repair start detection of disfluencies that
co-occur with learner errors. Reflecting the three
scenarios described in Section 3, disfluencies that
co-occur with an error at repair onset (rpS), an error
immediately preceding the repair phrase start (rpS-
1) and errors occurring both immediately before
and at repair onset (rpS-1 and rpS) are reported.
Firstly, comparing the baseline performance of all
three scenarios with the overall baseline perfor-
mance reported in Table 2 reveals the extent to
which learner errors impact model performance —
this is especially true for disfluency instances that
are preceded by a learner error. In turn, it is these
instances that show the most improvement in per-
formance when silence and laughter features are
included, with precision being particularly boosted.

Table 4 compares the performance of the adapted
model with two existing approaches to disfluency
detection in learner speech: an incremental model
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tested on the BULATS Corpus2 (Moore et al., 2015)
and a non-incremental model tested on the NICT-
JLE Corpus (Lu et al., 2019). Neither approach
reports repair start detection so only reparandum
phrase detection is compared here. Although not di-
rectly comparable due to the mismatches in corpora
and incrementality, the results from this paper sig-
nificantly outperform Moore et al. (2015), setting a
new benchmark for incremental disfluency detec-
tion for learner speech. As expected, performance
does not reach the level of current state-of-the-art
non-incremental approaches.

7 Discussion

The results from this experimentation give support
to the integration of paralinguistic features for in-
cremental disfluency detection in learner speech.
The impact of silence and laughter on the detec-
tion precision of disfluencies that co-occur with
learner errors highlights the value of such fea-
tures in settings where lexical data is ‘non-typical’.
This is of particular importance in incremental ap-
proaches where detection occurs at repair onset,
with a reduced reliance on the syntactic parallelism
between reparandum phrase and repair phrase often
exploited by non-incremental systems.

Despite the improvements described above, over-
all performance gains are small and remain lower
than non-incremental approaches. However, there
are further approaches to model improvement
worth exploring. Firstly, following the recent work
of Rohanian and Hough (2021), it would be of
interest to test the impact of an incrementalised
BERT-based detector on learner speech. Secondly,
using a POS-tagger specifically for learner speech
such as that developed by Nagata et al. (2018) may
help boost performance. It would also be beneficial
to investigate the impact of these adaptations on
other aspects of learner speech that inform disflu-
ency behaviour, including learners’ first language,
task type and proficiency level.

Another limitation of the study is that the NICT-
JLE Corpus is a transcription-only dataset with
limited features. Without audio files available, in-
stances of silence and laughter are derived directly
from transcripts. In the same way that ASR out-
put deteriorates disfluency detection performance
compared to transcribed data (Lu et al., 2019), it
is likely that automatic laughter and silence de-

2This corpus was provided to the researchers by Cam-
bridge Assessment English and is not publicly available.

tection derived from audio would have a similar
effect and may not be as impactful for model im-
provement. In addition, it would be interesting to
investigate the relationship between learner errors
and disfluencies by modelling these features jointly.
However, in the NICT-JLE Corpus, learner error
tags are only available for the test set and so cannot
be used as features in training. Furthermore, the
performance boost shown when combining laugh-
ter together with silence provides the motivation to
explore additional paralinguistic features in com-
bination, such as gestures and gaze, both of which
have been shown to be used in conversation to sig-
nal disfluency (Chen et al., 2002; Radford, 2009).
Finally, as the NICT-JLE Corpus is a collection
of assessor-learner conversations, it is not clear if
learners would still enact the same strategies of
laughter to indicate disfluencies when practising
with a dialogue-based CALL system.

8 Future Work

To the best of our knowledge, there is currently
no publicly available resource that addresses the
limitations of the NICT-JLE Corpus outlined above.
With this in mind, there is a strong case to be made
for the development of a multimodal corpus for use
in dialogue-based CALL applications, collected by
means of a ‘Wizard of Oz’ experiment with lan-
guage learners and human language tutors. Audio,
video and transcript files annotated with disfluen-
cies, edit terms, learner errors as well as paralin-
guistic information would provide ample opportu-
nity for research into both incremental disfluency
detection and also other dialogue processing tasks.

9 Conclusion

In conclusion, this work tested the impact of laugh-
ter and silence as features for incremental disflu-
ency detection of learner speech. When combined,
these features show an overall improvement in
model performance, increasing precision for disflu-
encies that co-occur with learner errors. To date,
this is the first work to use laughter as a feature for
disfluency detection in a language learning setting,
with the resulting model significantly outperform-
ing previous incremental approaches for learner
speech. These findings act as a starting point for
the further integration of paralinguistic features for
incremental disfluency detection and help make the
case for the development of a multimodal corpora
for dialogue-based CALL applications.
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