
Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022), pages 234 - 249
July 15, 2022 c©2022 Association for Computational Linguistics

Towards an open-domain chatbot for language practice

Gladys Tyen1, Mark Brenchley2, Andrew Caines1, Paula Buttery1

1 ALTA Institute & Computer Laboratory, University of Cambridge, United Kingdom
2 Cambridge University Press & Assessment, University of Cambridge, United Kingdom

{gladys.tyen,andrew.caines,paula.buttery}@cl.cam.ac.uk
mark.brenchley@cambridge.org

Abstract

State-of-the-art chatbots for English are now
able to hold conversations on virtually any topic
(e.g. Adiwardana et al., 2020; Roller et al.,
2021). However, existing dialogue systems in
the language learning domain still use hand-
crafted rules and pattern matching, and are
much more limited in scope. In this paper,
we make an initial foray into adapting open-
domain dialogue generation for second lan-
guage learning. We propose and implement
decoding strategies that can adjust the difficulty
level of the chatbot according to the learner’s
needs, without requiring further training of the
chatbot. These strategies are then evaluated us-
ing judgements from human examiners trained
in language education. Our results show that
re-ranking candidate outputs is a particularly
effective strategy, and performance can be fur-
ther improved by adding sub-token penalties
and filtering.

1 Introduction

Studies in second language acquisition have shown
that interaction is an important aspect of language
learning (e.g. Loewen and Sato, 2018; Plonsky and
Oswald, 2014; Mackey, 2013; Long, 1996). How-
ever, interaction typically involves one-on-one ses-
sions with a teacher, which can be costly or may
simply be unavailable to some learners. In addition,
learners may experience language anxiety during
interaction, which can be detrimental to learning
(Horwitz, 2001).

Artificial dialogue systems provide an alternative
way to learn through interaction. Learners can chat
with the system in their target language at their own
convenience, without needing a teacher.

Existing systems typically rely on handcrafted
rules, and require learners to practise within a spec-
ified context (e.g. shopping at a supermarket) (cf.
Bibauw et al., 2019). They are therefore quite lim-
ited in scope and require much manual work to
anticipate possible responses.

In our work, we leverage existing chatbot tech-
nology that can generate responses in virtually any
topic (Roller et al., 2021). As a first step towards in-
tegrating this technology into language education,
we experiment with ways to adjust the difficulty
of chatbot messages to a specified level (e.g. one
that matches the learner’s proficiency level).

Our contributions are as follows:
1. We propose two types of decoding-based

strategies for adjusting the difficulty of gen-
erated text – vocabulary restriction and re-
ranking – as well as ways to augment them.

2. In total, we implemented 5 differ-
ent variants of these strategies, and
we release the code and demo at
https://github.com/WHGTyen/
ControllableComplexityChatbot/.

3. For our evaluation process, we generated self-
chats from the chatbot and determined their
difficulty level and quality. We release the
annotated data alongside the code and demo.

2 Related work

We provide an overview of four related topics: 1)
dialogue systems; 2) decoding strategies for adding
various desired attributes to text; 3) text simplifica-
tion methods for transforming existing text (instead
of generating text at a specified difficulty level);
and 4) methods for predicting linguistic complex-
ity.

2.1 Dialogue systems

Dialogue systems can be classified into goal-
oriented systems, which are designed for a spe-
cific task, or non-goal-oriented systems, designed
for general “chit-chat” (Chen et al., 2017). In this
paper, we focus on open-domain text systems for
chit-chat, which allow learners to practise chatting
in any topic they choose.

Early open-domain systems relied on pattern
matching and rules (e.g. Weizenbaum, 1966; Car-
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penter), but were somewhat limited in their con-
versational ability. More recent neural dialogue
systems can produce a wider range of responses
using generative models, retrieval-based models,
or some combination of both (e.g. Papangelis et al.,
2021; Adiwardana et al., 2020; Roller et al., 2021).
Generative models produce entirely new sentences
using beam search or similar decoding algorithms,
while retrieval-based models select appropriate re-
sponses from an existing corpus.

Dialogue systems are also present in the Com-
puter Assisted Language Learning (CALL) litera-
ture. Bibauw et al. (2019) present an investigation
of dialogue-based CALL, where, notably, only 22
out of 96 systems allow completely free dialogue.
Of those, most rely on handcrafted rules, and none
make use of neural methods. To our knowledge,
our work is the first attempt to use a neural genera-
tive chatbot for language learning purposes.

2.2 Decoding strategies

Neural models for text generation tasks typically
maximise the likelihood of the generated output
using beam search (e.g. Li et al., 2016; Rush et al.,
2015; Sutskever et al., 2014). However, the most
likely output may not be the most desirable one –
e.g. in this paper, we would like to produce outputs
of a particular difficulty level. One way to achieve
desirable results is to further fine-tune the language
model (e.g. Welleck et al., 2019; Roller et al., 2021),
but this requires having (or being able to easily
generate) data containing such desired traits.

Instead, it is possible to change the decoding
strategy to produce desired outputs without further
training of the language model. For example, to in-
crease semantic and linguistic diversity, researchers
have proposed changing the softmax temperature
(Ackley et al., 1985; Caccia et al., 2020), or to
use Stochastic Beam Search (Kool et al., 2019),
top-k sampling (Fan et al., 2018), Nucleus Sam-
pling (Holtzman et al., 2020), or conditional Pois-
son stochastic beam search (Meister et al., 2021).
Decoding strategies have been also employed to
control other linguistic attributes, such as output
length (Kikuchi et al., 2016), style (Ghazvinine-
jad et al., 2017), repetition, specificity, response-
relatedness and question-asking (See et al., 2019).
To our knowledge, our methods are the first to ad-
just the difficulty level during decoding.

2.3 Text simplification

Text simplification (TS) is the task of transforming
complex text into simpler, more readable text that
conveys the same meaning. Previous approaches
are typically only designed to simplify where pos-
sible (e.g. Nisioi et al., 2017; Zhang and Lapata,
2017). More recently, methods have been pro-
posed for controllable TS, where text can be sim-
plified to a desired level of difficulty, such as Scar-
ton and Specia (2018) and Nishihara et al. (2019),
though both methods require training of a sequence-
to-sequence model from scratch. Maddela et al.
(2021) use a hybrid approach where the degree of
simplification operations can be controlled, though
not explicitly to a specified difficulty level.

Existing TS methods apply transformative op-
erations to an existing piece of text. The main
drawback is that some complex words may be im-
possible to simplify as there is no simpler alter-
native that conveys the same meaning (Shardlow,
2014). Our paper takes a different approach en-
tirely, and instead adjusts difficulty of text when it
is generated.

There is also research on specific operations
within the TS pipeline. In particular, we dis-
cuss complex word identification (CWI) in sub-
section 2.4 below. Other operations such as sen-
tence splitting (Narayan et al., 2017; Aharoni and
Goldberg, 2018) and paraphrase generation (Gupta
et al., 2018; Fu et al., 2019) are also transformative
operations, where the outcome needs to convey the
same meaning as the original input. Our generation
methods do not have the same constraint.

2.4 Linguistic complexity

Lexical complexity Previous work on lexical
complexity typically involves predicting the com-
plexity of words within a context. There have been
multiple shared tasks related to lexical complex-
ity: the 2016 CWI shared task (Paetzold and Spe-
cia, 2016b) to identify complex words; the 2018
CWI shared task (Yimam et al., 2018) also to iden-
tify complex words, and to predict the probabil-
ity that a word is complex; and the 2021 Lexi-
cal Complexity Prediction shared task (Shardlow
et al., 2021) to predict the difficulty level of words,
as determined by Likert-scale annotations. Sub-
missions to the first two shared tasks were mostly
dominated by feature-based approaches (e.g. Good-
ing and Kochmar, 2018; Kajiwara and Komachi,
2018). The 2021 shared task was won by Pan et al.
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(2021) using an ensemble of pre-trained Trans-
formers (Vaswani et al., 2017), but submissions
with feature-based models also ranked highly (Mos-
quera, 2021; Rotaru, 2021).

Readability assessment Beyond the word level,
research on linguistic complexity is typically done
on long-form texts. Traditionally, researchers have
derived formulae such as the Flesch-Kincaid score
(Kincaid et al., 1975) and the Coleman-Liau index
(Coleman and Liau, 1975) to estimate readabil-
ity, but many such formulae do not account for
semantic content or linguistic structure, or are out-
performed by data-driven methods (Si and Callan,
2001). Later machine learning methods for read-
ability assessment may rely on feature extraction
(e.g. Meng et al., 2020; Deutsch et al., 2020; also
see Martinc et al. (2021) for an analysis of different
approaches).

3 Implementation

We propose 5 different decoding strategies to adjust
the chatbot difficulty to one of 6 CEFR levels1.

For our implementations, we used Facebook’s
Blender 2.7B (version 12, generator model) (Roller
et al., 2021) as the basis, though our methods can
be used or adapted to other language models that
use beam search or sampling-based generation.

For comparability, all strategies use top-k sam-
pling3 (Fan et al., 2018) using k = 40 with a beam
size of 20. We did not use the additional safety
mechanisms (as described by Roller et al. (2021))
to ensure fair comparison of results.

Some of our methods use regression, either dur-
ing generation or beforehand. For all regression
tasks described below, we use a continuous scale
from 0 to 5 to denote CEFR values, even though
they are typically differentiated by qualitative prop-
erties (Council of Europe, 2020). This is because:

a) We have limited training data, and a scalar

1Throughout this paper, we draw on the Common Euro-
pean Reference Framework (CEFR) (Council of Europe, 2020)
to denote proficiency levels. An international standard for de-
scribing language ability, the CEFR organises ability into 6
levels, beginning with A1, continuing to A2, B1, B2, C1, and
ending with C2, representing mastery of a second language.

2Version 2 had not been released at the time of our experi-
ments.

3We use top-k sampling here because it was found to be
equivalent to the default settings (in Roller et al., 2021) of
beam size 10, with beam blocking of 3-grams and a minimum
length of 20. Beam search, however, is deterministic, so top-k
sampling allows us to generate multiple self-chats using the
same settings.

value provides more information to a regres-
sion model than a classification label; and

b) Due to the subjectivity of difficulty levels,
there are often situations where examiners re-
fer to values between CEFR levels, such as a
“high B2/low C1”. Using a continuous scale
allows us to represent such in-between values.

3.1 Method 1: Vocabulary restriction with
EVP

As a baseline strategy, we implemented a simple
vocabulary filter based on a list of words manually
labelled by CEFR4. The English Vocabulary Pro-
file5 (EVP) (Capel, 2015) maps 6,750 words and
phrases to one or multiple CEFR levels according
to their particular sense and usage. If the lowest6

CEFR level of a word/phrase is higher than the tar-
get CEFR level, we prevent that word/phrase from
being generated by setting the probability to 078.
For example, the word absolutely is labelled as B1,
C1, or C2 depending on its usage. If the target
CEFR level is B1 or above, the word is allowed
and will retain its original probabilities; if the target
CEFR level is A2 or below, the word will always
have a probability of 0, and can never be generated.

As the EVP does not contain proper nouns, we
also added a list of the most common first and
last names (Social Security Administration; United
States Census Bureau), and U.S. state names9. All

4We chose to use a manually curated list to minimise er-
rors, and because such vocabulary lists are often available as
a language learning resource for widely-spoken languages.
Alternatively, it is possible to produce similar word lists either
in an unsupervised or semi-supervised manner (e.g. Jenny
Ortiz-Zambrano, 2020).

5https://www.englishprofile.org/
wordlists/evp

6We ignore the higher CEFR labels and collapse words
with multiple meanings or usages into a single entry, because
it is often impossible to determine the correct meaning during
generation, when the rest of the sentence is missing.

7After modifications, the sum of all “probabilities” would
no longer be 1, though we continue to refer to these as proba-
bilities for the sake of exposition.

8Blender uses Byte-Level BPE tokenisation (Roller et al.,
2021; Sennrich et al., 2016), so a word is not fully formed
until the subsequent sub-token (beginning with a whitespace or
punctuation denoting a word boundary) is chosen. To ensure
that the 0 probabilities are assigned to the correct word, we
also assign them to subsequent sub-tokens that begin with a
word boundary.

9Since Blender is pre-trained on data from Reddit, where
a large part of the user base comes from the U.S., we found
that many of the dialogues contained names of U.S. states. We
also noticed that when vocabulary is restricted and no proper
names are allowed, the generated text sometimes contained
approximations of locations in the U.S., such as “I live in wash
in n” for I live in Washington. For this reason, we decided
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added entries assume a CEFR level of A1, and so
are always allowed regardless of the target CEFR
level.

3.2 Method 2: Vocabulary restriction with
extended EVP

Unfortunately, manually curated word lists typi-
cally have limited coverage. For example, the EVP
only contains 6,750 words and phrases. For our
2nd method, we extended the list by training a re-
gressor to predict the CEFR level of words outside
of the EVP. We opted for a feature-based approach
that is based purely on the surface word form rather
than different word senses (as above), due to the
lack of 1) training data and 2) available context
while decoding10. Adapting the winning system
(Gooding and Kochmar, 2018) of the 2018 CWI
shared task, we selected a subset of features that
are non-context-dependent11. The list of features
used can be found in the appendix.

As in the original paper, we used the Random
Forest implementation from scikit-learn12 , but for
regression instead of binary classification. CEFR
levels in the training data were converted into inte-
gers from 0 to 5 (inclusive), and predicted values
were rounded to the nearest CEFR level.

To evaluate this word complexity prediction
model, we randomly selected one-fifth of the origi-
nal EVP data as the test set, taking care to ensure
that words from the same root cannot be found in
both the training and test set. Results are shown in
Table 1.

After evaluation, the model was re-trained on the
whole dataset, then used to predict the CEFR levels
of an additional 10,000 of the most common13 En-
glish words that are not in the EVP. The prediction
of CEFR levels is done beforehand to minimise
computational costs at runtime.

to include in our vocabulary a list of U.S. states, along with
popular first and last names from the U.S.

10As above, the CEFR level of a word is used to determine
the probability of a sub-token at a given time step during
decoding, where the rest of the sentence is still missing.

11Other features used in the original paper were context-
dependent, and so were unsuitable for our use case.

12https://scikit-learn.org/
13Word frequency is estimated from the Exquisite Corpus,

which combines frequencies from Wikipedia, subtitle
corpora, news corpora, Google Books, and other resources.
https://github.com/LuminosoInsight/
exquisite-corpus

Spearman’s ρ Pearson’s r MAE
0.694 0.712 0.826

Table 1: Spearman’s and Pearson’s correlation and mean
absolute error (MAE) of predicted CEFR levels of words
in the EVP. Both correlation statistics are significant
(p ≤ 0.001). MAE of 1 corresponds to a difference of 1
CEFR level.

3.3 Method 3: Re-ranking

One main drawback of vocabulary restriction is
that text difficulty is not necessarily determined
by vocabulary choice alone. We want to generate
outputs that are of the appropriate difficulty level
in terms of structure, content, as well as choice of
words.

For our 3rd method, we propose a re-ranking
method that considers multiple candidate messages,
before selecting the most appropriate one. As de-
scribed in section 3, our models use beam size = 20,
which generates 20 candidate messages for every
message sent to the user.

We first trained a regressor to predict the CEFR
level of sentences. When the chatbot is in use, the
regressor will predict the CEFR level of all candi-
date messages, allowing us to compute a score that
combines the original ranking and the predicted
CEFR. This score will then be used to re-rank the
candidates, and the top candidate message will be
sent to the user.

For the regressor, we used a RoBERTa model
pre-trained on a dynamic masked language mod-
elling (Liu et al., 2019), which is then distilled
(Sanh et al., 2019), as implemented in Hugging-
face Transformers (Wolf et al., 2020). We fine-
tuned this model to predict text difficulty on the
Cambridge Exams (CE) dataset (Xia et al., 2016),
which contains English texts from Cambridge Ex-
ams aimed at learners of different CEFR levels.
However, instead of training our model on entire
texts, we used spaCy (Montani et al., 2021) to de-
tect sentence boundaries, and trained the model to
predict the CEFR level from individual sentences,
as they are more similar in length to the messages
generated by Blender. Since the prediction of can-
didate messages must occur during live interactive
use, the distilled version of the model was chosen
to minimise computational overhead.

As with the previous word complexity prediction
model, we randomly selected one-fifth of the CE
sentences as a test set for the sentence complexity
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prediction model, taking care to ensure that sen-
tences from the same text cannot be found in both
the training set and the test set. After evaluation,
we re-trained the model using all available data, to
be used to generate text. Initial evaluation results
from the test set are shown in Table 2.

Spearman’s ρ Pearson’s r MAE
0.701 0.734 0.634

Table 2: Spearman’s and Pearson’s correlation and mean
absolute error (MAE) of predicted CEFR levels of sen-
tences from the Cambridge Exams dataset. Both corre-
lation statistics are significant (p ≤ 0.001). MAE of 1
corresponds to a difference of 1 CEFR level.

Our proposed re-ranking procedure accounts for:
(1) P (Ci) the original probability of each

Candidate Ci according to the chatbot lan-
guage model

(2) LCi the difficulty Level of each Candidate
(3) Lt the target difficulty Level

We compute the new rank R of each candidate
Ci by taking the average of its original rank (based
on P (Ci)) and its difficulty rank (based on distance
away from the target difficulty level).

R =
r(P (Ci)) + w · r(|Lt − LCi |)

2
(1)

r denotes a function that returns the rank of the can-
didate out of all candidates. That is: r(P (Ci)) is
the ranking of probabilities from the model (where
higher probability = higher rank), and r(|Lt−LCi |)
is the ranking of distance to target difficulty (where
smaller distance = higher rank). r essentially nor-
malises the probability values and difficulty lev-
els before the final rank is computed. w is an
adjustable weight that controls the importance of
distance to the target difficulty.

To select a value for w, we manually annotated
ideal rankings for 10 sets of 20 candidate outputs,
and found that the original rank and the difficulty
rank contribute equally to the final rankings. There-
fore, for methods 3, 4 and 5, we use w = 1.

3.4 Method 4: Re-ranking with sub-token
penalties

With method 3, we sometimes found that all 20
generated candidates would be of a similar diffi-
culty level, which may be some distance away form
the learner’s CEFR level. For example, we might
have 20 candidate responses at C1 level, while the
learner is a B1 speaker.

In order to increase the probability that a can-
didate message is at the target CEFR level, we
implemented an additional penalty system, which
penalises sub-tokens that are too difficult. Sub-
tokens that are too easy are not penalised, as many
are words serving grammatical functions or com-
mon words, which are also frequently used in diffi-
cult texts. Note that, as with vocabulary restriction,
penalties must be assigned to sub-tokens rather
than words, because words are not fully formed
until a following sub-token with a word boundary
is chosen.

The penalty for a given sub-token varies depend-
ing on how difficult it is. To determine the CEFR
level of a sub-token, we tokenised the texts in the
CE dataset to identify which sub-tokens appeared
at which CEFR level. The lowest CEFR level is
then chosen for each sub-token. For example, a
sub-token that appears in a B1 exam but not in A1
or A2 exams will be classified as a B1 sub-token.

The penalty values scale according to the dif-
ference between the target CEFR level and sub-
token’s CEFR level. For example, an A2 chatbot
will assign a smaller penalty (or a larger weight)
to a B1 sub-token (e.g. _absolutely, _opportun,
initely) than a B2 sub-token (e.g. _humanity, _adop,
iable)14. The penalty values are taken from a Gaus-
sian distribution, where µ is a CEFR level differ-
ence of 0, and σ is 2 CEFR levels15.

The new probability of a given sub-token is there-
fore calculated as follows:

p′ =

{
p · φ(Ls − Lt) if Ls > Lt

p otherwise
(2)

where p and p′ denote the original and new prob-
ability respectively, Ls is the CEFR level of the
sub-token, and Lt is the target CEFR level. φ rep-
resents the Gaussian distribution described above.

14where _ represents a whitespace character.
15We settled on this value for σ for relatively lenient penal-

ties, because:
a) The Cambridge Exams dataset only contains 331 texts

(averaging at 531 words each), so a low frequency token
of e.g. B1 level may only appear at B2 level or above.
Having more lenient penalties can account for such
potential discrepancies.

b) If the resulting candidate is too difficult, it is likely to
be filtered out in the re-ranking process.

However, this value can be adjusted based on the language
model or applicational needs.
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3.5 Method 5: Re-ranking with sub-token
penalties and filtering

With method 4, we noticed that occasional non-
sense words are generated. This was typically due
to how penalties are assigned to sub-tokens rather
than words: for example, on one occasion, back-
packing was generated as backpicking.

To combat this, we added a vocabulary filter16 to
look for words that are out-of-vocabulary, ignoring
capitalised words and punctuation. If a candidate
message contains such a word, it is removed from
the pool of candidates.

4 Evaluation

For each of our 5 methods, we generated 300 self-
chat dialogues using Blender, where the chatbot
talks to itself (Li et al., 2016). Each self-chat was
generated using the settings for a specific CEFR
level: for example, method 1 at B1 level would only
generate vocabulary at B1 level or below; method
3 at C1 level would re-rank outputs based on how
close it is to C1 difficulty.

Then, to determine whether these methods are
truly able to generate messages at the intended
level, we recruited English language examiners to
judge the true difficulty level of each self-chat.

We chose self-chats rather than human-model
chats (i.e. chats between a human and the language
model) for three reasons: firstly, because we did not
want the examiner’s judgement of the chatbot out-
put to be biased by the proficiency level of the user;
secondly, because it is cheaper and less time con-
suming to generate self-chats; and finally, because
second language users may struggle to communi-
cate with the chatbot. Additionally, previous work
comparing self-chats to human-model chats found
that they produced similar results (Li et al., 2019).

Each self-chat consists of 18 messages, all
prompted by an initial message, “Hello!”. An ex-
ample of a generated self-chat can be found in the
appendix. The 300 dialogues for each method are
split evenly into 6 sets of 50, each set targeting
a different CEFR level. An additional 100 dia-
logues were generated without any modifications
for comparison, resulting in an overall total of 1600
dialogues (see Table 3).

We recruited 10 English language examiners
from Cambridge University Press & Assessment.

16We use a list of words (containing only letters) from
https://github.com/dwyl/english-words.

1 2 3 4 5 B
A1 50 50 50 50 50 0
A2 50 50 50 50 50 0
B1 50 50 50 50 50 0
B2 50 50 50 50 50 0
C1 50 50 50 50 50 0
C2 50 50 50 50 50 0

N/A 0 0 0 0 0 100
Total 300 300 300 300 300 100

Table 3: Number of self-chats generated for each
method / CEFR combination. B refers to self-chats gen-
erated using the original Blender configurations with
no modifications, which cannot be targeted at a given
CEFR level.

All 10 examiners were provided with a set of genre-
specific descriptors adapted from the CEFR17. In
addition, to assess the general quality of the pro-
duced text, each message in the dialogue was la-
belled according to whether it was sensible and
whether it was specific (following Adiwardana
et al., 2020), as well as whether it was grammatical.
Examiners were given additional guidance on edge
cases to support their application of these labels.

Each dialogue was annotated by at least 3 dif-
ferent examiners. For the final results, disagree-
ments between examiners are resolved by taking
the average of all annotations. The inter-annotator
agreement for our CEFR annotations is 0.79, mea-
sured with weighted Fleiss’ κ (Fleiss, 1971), and
assuming equal distance between CEFR levels. For
the grammatical, sensible, and specific labels, we
used Gwet’s AC1 (Gwet, 2014)18. The agreement
scores are 0.62 for grammaticality labels, 0.23 for
sensibleness labels, and 0.67 for specific labels.

Agreement in sensibleness is noticeably lower
than the others: feedback from annotators sug-
gested that sensibleness of a particular message
is often unclear when the previous context already
contained messages that were not sensible. Ex-
perimental results from Adiwardana et al. (2020)
suggest that agreement scores may be higher if an-
notators are only asked to label single responses
within a pre-written, sensible context. However,
they also note that “final results are always aggre-
gated labels”, so the overall proportion of sensible

17Descriptors were adapted from 3 CEFR scales: Overall
Reading Comprehension, Overall Oral Interaction, and Con-
versation. The descriptors we used in our experiments can be
found in the appendix.

18rather than Krippendorff’s α, because our data is very
skewed (containing 87.0% grammatical, 75.7% sensible, and
91.6% specific responses), and AC1 accounts for marginal
probabilities.
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Method Spearman’s ρ Pearson’s r MAE %gramm. %sensible %specific
Original N/A N/A N/A 90.2% 81.9% 94.1%

Method 1 0.229 0.243 1.410 89.0% 76.5% 91.4%
Method 2 0.196 0.194 1.461 89.5% 77.3% 91.7%
Method 3 0.719† 0.707† 1.120 87.4% 77.0% 93.0%
Method 4 0.680† 0.681† 1.174 87.2% 76.1% 91.9%
Method 5 0.755† 0.731† 1.090 87.3% 76.4% 92.1%

Table 4: Table showing, for each method: Spearman’s and Pearson’s correlation between target CEFR and true
CEFR; mean absolute error (MAE) of target CEFR compared to true CEFR, where MAE of 1 corresponds to a
difference of 1 CEFR level; and percentage of grammatical, sensible, and specific responses. † indicates a significant
correlation (p ≤ 0.001). For all 5 methods, proportions of grammatical, sensible, and specific messages are found
to be statistically equivalent (Wellek, 2010) to the original (ϵ = 0.001, p ≤ 0.001).

labels is still indicative of chatbot quality, despite
relatively low agreement scores.

5 Results and discussion

Our results are in Table 4. To our knowledge, this
is the first attempt at adjusting text difficulty during
open-ended text generation – therefore, we were
unable to find comparable results to be included
here. Where possible, we include results for the
original (unmodified) generation method, which
cannot be targeted at any specific CEFR level.

For each of the methods, we compared the tar-
get CEFR to the CEFR determined by examiners
– henceforth referred to as the true CEFR. Spear-
man’s ρ and Pearson’s r show the correlation be-
tween the two, and MAE is the mean absolute error,
where an MAE of 1 refers to the difference of 1
CEFR level. %gramm., %sensible, and %specific
refers to the percentage of grammatical, sensible,
and specific responses out of all responses (exclud-
ing the original “Hello!” prompt).

From the correlation and MAE scores, we can
see that the re-ranking methods work best, with
method 5 – reranking with sub-token penalties and
filtering – achieving the strongest correlation and
lowest MAE between the target and true CEFR.
Both vocabulary-based methods performed poorly,
achieving almost no correlation and high MAE
scores. This is somewhat surprising, as one might
expect vocabulary to be a key factor in determining
text difficulty. We suspect that this is because many
of the easier words in the EVP also have more dif-
ficult word senses, but our method only considered
the lowest CEFR level. Additionally, we looked at a
set of 10 randomly sampled dialogues and counted
66 multi-word expressions (MWEs) in total, aver-
aging at 0.36 MWEs per message. MWEs might
often be more difficult than their constituent words

individually: for example, the idiom a cut above the
rest consists of words that are individually simple,
but the phrase itself is relatively complex. Unfortu-
nately, our vocabulary restriction methods are not
able to account for this.

5.1 CEFR distribution

Figure 1: The first 6 violin plots shows distribution of
CEFR levels for each method, along with the original
version, all scaled for comparison. The last violin plot
shows the target distribution for our 5 methods. It is
spread evenly across all CEFR levels, as we had gener-
ated the same number of self-chats for each level (see
Table 3).

Figure 1 contains violin plots showing the distri-
bution of CEFR level for each method, including
the original version with no modifications. The last
violin plot is the ideal distribution for our 5 vari-
ants, which is evenly spread throughout all 6 levels.
Out of the 5 variants, the 3 re-ranking variants have
the most even distribution.

One surprising finding from this study is that
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the CEFR level of dialogues that were generated
without modifications to difficulty were mostly in
the B1 to B2 range, rather than C1 and C2, which
would be closer to a “native-like” difficulty, i.e. in-
tended for users of native proficiency. Since the
restriction-based methods served to reduce the dif-
ficulty level rather than increase it, the result is that
none of the generated dialogues were labelled as C1
or C2, so the CEFR distribution clustered around
the B1 level. On the other hand, the reranking
based methods performed better because, when the
target CEFR is C1 or C2, the reranking procedure
would select texts that are more difficult than the
most likely output. However, we suspect that the
imbalance of CEFR levels in dialogues generated
by the original model affects all 5 variants, and may
adversely affect the MAE scores.

Another observation from our data is that none
of our dialogues were labelled as A1, which is the
lowest CEFR level. We suspect that this is because
dialogic communication is inherently difficult for
beginners, and there are simply too few topics and
words that are suitable for all A1 learners. For
example, the CEFR scale for written interaction
simply states that A1 learners “can ask for or pass
on personal details” (Council of Europe, 2020).
However, we leave it to future work to explore
other ways of generating dialogue data at A1 level.

5.2 Message quality

While our grammaticality, sensibleness, and speci-
ficity scores were found to be statistically equiv-
alent (ϵ = 0.001, p ≤ 0.001), it may not be sur-
prising to see a slight degradation of quality in
Blender’s messages when using our decoding meth-
ods. Our methods are designed to reject the most
likely output if its difficulty level is not appropriate,
and to select the next best output that falls within
our constraints.

The focus of this paper is on the decoding meth-
ods rather than the original language model, which
may be improved on or replaced by a different gen-
erative model. However, we acknowledge that the
quality of messages may detract from the learning
experience, particularly ones that are not grammat-
ical or not sensible.

According to the inter-annotator agreement
scores in section 4, there was relatively little agree-
ment on what was considered sensible. In future
work, it would be important to refine the criteria
to better evaluate the quality of messages. Addi-

tionally, it may be possible to implement style clas-
sifiers or contradiction detection tools to mitigate
this issue.

Sampling 100 messages from ones which were
considered ungrammatical by at least one examiner,
we identified three types of ‘ungrammaticality’:

• Around half (51) involved colloquialisms (e.g.
“LOL”, comma splicing, and other capitalisa-
tion or punctuation errors) that are ungram-
matical in written English, but are more ac-
cepted in online messaging.

• More than a quarter (29) contained awkward
phrasing depending on the context and/or was
marked as not sensible. This becomes a grey
area where it is difficult to determine whether
the intended meaning was not sensible, or if
the surface linguistic form was incorrect.

• Only a fifth (20) were clearly ungrammati-
cal (e.g. “on your free time”) or involved a
spelling mistake (e.g. “clausterphobia”).

Since Blender was pre-trained on large amounts
of data from Reddit (Roller et al., 2021), it is unsur-
prising to see internet colloquialisms in the gen-
erated messages. While this may not be desir-
able for formal written work, learners are likely
to come across similar forms of language in online
or computer-mediated interaction. Alternatively, it
may be possible to use grammatical error detection
tools or style classifiers to filter out these messages.
We leave to future work to investigate ways of fil-
tering undesirable messages.

6 Conclusion and future work

This paper presents an initial foray into using open-
domain chatbots for language practice. We propose
and compare 5 variants of decoding strategies to
adjust the difficulty level of generated text. We
then evaluate these methods on dialogue genera-
tion, and find that our re-ranking strategies signifi-
cantly outperform vocabulary-based methods. Our
best variant achieved a Spearman’s ρ of 0.755 and
Pearson’s r of 0.731.

Our current work only looks at self-chat diffi-
culty from a teacher/examiner’s perspective, which
may not transfer well to interactive difficulty. It
is also important to ensure that language learners
would benefit from this endeavour. For our fu-
ture work, we will directly engage with learners
to investigate the utility and impact of chatbots on
language learning.

However, there are also areas where the chatbot
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needs to be significantly improved upon. For exam-
ple, to cater for A1 learners, we need to be able to
generate messages at A1 difficulty. This paper only
looked at text complexity in terms of vocabulary,
but it may also be possible to adjust the complexity
by paraphrasing or altering the sentence structure.

We also need to ensure that generated messages
are grammatical, sensible, specific, and appropriate.
There is ongoing research on grammatical error
detection (cf. Wang et al., 2021), toxic language
detection (e.g. Dinan et al., 2019), and improving
dialogue consistency (e.g. Li et al., 2020), which
can be used to improve the chatbot.

Additionally, a language learning chatbot can
be further augmented with other technologies to
enhance the user experience, such as grammatical
error correction tools, dictionary lookup, or person-
alisation mechanisms. However, it is not always
clear what tools or mechanisms would best facil-
itate language learning: for example, immediate
grammar correction could distract and cause com-
munication breakdown (Lyster et al., 2013). We
leave this investigation to future research.

7 Ethical concerns

By building a chatbot for language learning, we
hope to make interactive, open-domain language
practice more accessible to all learners. However,
there are ethical risks that must be considered be-
fore providing learners with such a tool. In particu-
lar, we highlight three areas in which open-domain
chatbots may have harmful effects, especially for
younger learners.

1. Toxic language
Open-domain chatbots are typically based on
pre-trained large language models. These
models, especially ones trained on internet
data, are known to produce outputs that are
toxic (e.g. Gehman et al., 2020) or that con-
tain harmful biases (e.g. Nadeem et al., 2021;
Sheng et al., 2019). There is existing and on-
going research on ways to mitigate these out-
puts (e.g. Xu et al., 2020; Dinan et al., 2019;
Faal et al., 2022; Dinan et al., 2020), though
Gonen and Goldberg (2019) argue that de-
biasing methods are insufficient and do not
remove bias entirely. It remains an impor-
tant ethical concern, especially for younger
learners. For our experiments, we only recruit
adult participants, who are warned about such
messages beforehand.

2. Inaccurate information
Large language models are also known to
hallucinate knowledge during text generation
(Roller et al., 2021; Maynez et al., 2020).
While there is ongoing work to reduce this
(Zhao et al., 2020; Komeili et al., 2020, e.g.),
users should also be made aware that the in-
formation generated by a chatbot may not be
accurate.

3. Human likeness
Users should know that they are interacting
with a machine rather than a human. Weizen-
baum (1966) remarks, “In human conversa-
tion a speaker will make certain (perhaps gen-
erous) assumptions about his conversational
partner.” This is also known as the ELIZA ef-
fect (Hofstadter, 1995), which affects a user’s
perception of and emotional response to a
chatbot.

In our experiments, evaluation was done through
self-chats, and annotators did not interact with the
chatbot directly. All annotators involved are adults
and were asked to identify nonsensical or inaccu-
rate statements (sensibility), and to flag any inap-
propriate language. In total, 6 of the 1600 (0.4%)
self-chat dialogues we generated contained inap-
propriate language, or touched on inappropriate
topics. We will make use of these in future work to
address inappropriate chatbot turns.
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A Implementational details

A.1 Blender settings

We used the Blender 2.7B generative model
released through ParlAI19 (model file:
zoo:blender/blender_3B/model) as
the basis for our chatbot models. Table 5 lists the
hyperparameters used for all chatbot models in our
experiment.

During this project, we noticed that the generated
dialogues sometimes contained sequences such as
“+/u/dogetipbot”, since Blender was pre-trained on
large amounts of Reddit data (Roller et al., 2021).
As this is beyond the scope of our project, and to
prevent this from affecting our results, we decided
to filter out sequences containing “u/” and “r/” for
all dialogues, so that results are still comparable.
This filtering step occurs just before a message is
selected from the pool of candidates: if a candidate
contains either “u/” or “r/”, it is removed from the
pool, and the next best candidate is selected and
sent to the user.

19https://parl.ai/

Hyperparameter Value
Beam size 20

Top-k 40
Temperature 1.0
Beam delay 30

Beam length penalty 0.65
Beam block n-gram 3

Beam context block n-gram 3
Number of encoder layers 2
Number of decoder layers 2

Embedding size 2560
Number of attention heads 32

Hidden layer dropout 0.1
Attention dropout 0.1

Activation function GELU

Table 5: Hyperparameters and corresponding values
used for our chatbot models.

A.2 Word difficulty prediction model

For our word difficulty prediction model used for
method 2 (restriction with extended EVP), we used
the RandomForestRegressor from the scikit-
learn library20. We used the following features:

• Word length
• Number of syllables
• Number of WordNet synsets (Princeton Uni-

versity, 2010)
• Number of WordNet hypernyms
• Number of WordNet hyponyms
• Word frequency in subtitles from Movies and

Series for Children in the SubIMBD corpus
(Paetzold and Specia, 2016a)

• Word frequency in the SimpleWiki21 (Coster
and Kauchak, 2011)

• Word presence in Ogden’s Basic English list
(Ogden, 1930)

• Word frequency according to syntactic-
ngrams compiled by Goldberg and Orwant
(2013)

• Number of phonemes (from the MRC Psy-
cholinguistic Database, Wilson, 1988)

• Kucera-Francis frequency norms (MRC)
• Thorndike-Lorge frequency (MRC)
• Familiarity (MRC)
• Concreteness (MRC)
• Imageability (MRC)
• Age of acquisition (MRC)

20https://scikit-learn.org/
21https://simple.wikipedia.org/
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Hyperparameter Value
Number of estimators 5000

Splitting criterion MSE
Min. number of samples for splitting 2
Min. number of samples at leaf node 1

Min. impurity decrease None
Sample weighting None

Table 6: Hyperparameters and corresponding values
used for our word difficulty prediction model.

Hyperparameter Value
Learning rate 9.737×10−6

Batch size 32
Number of epochs 3

Random seed 18
Number of encoder layers 6

Embedding size 768
Number of attention heads 12

Hidden layer dropout 0.1
Attention dropout 0.1

Activation function GELU

Table 7: Hyperparameters and corresponding values
used for our sentence difficulty prediction model.

CEFR levels in the training data were converted
into integers from 0 to 5 (inclusive), and predicted
values were rounded to the nearest CEFR level
accordingly. Hyperparameters for this model are
listed in Table 6.

A.3 Sentence difficulty prediction model
For the sentence difficulty prediction model
in our reranking-based methods, we used the
distilroberta-base implementation from
Huggingface Transformers (Wolf et al., 2020), and
added a regression head to output a value repre-
senting difficulty. We tuned the learning rate, batch
size, number of epochs, and random seed for this
model using Optuna22. The final hyperparameters
for this model are listed in Table 7.

The training data is taken from the Cambridge
Exams dataset (Xia et al., 2016), where the text
is split up into sentences using SpaCy’s (Mon-
tani et al., 2021) en_core_web_sm model. As
above, CEFR levels in the training data were con-
verted into integers from 0 to 5 (inclusive), and
predicted values were rounded to the nearest CEFR
level accordingly.

22https://optuna.org/
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C2 Appropriate for a reader who can understand and interpret critically virtually all messages and dialogues
including abstract, structurally complex, or highly colloquial text. Appropriate for a reader who can
appreciate subtle distinctions of style and implicit as well as explicit meaning, including idiomatic
expressions and colloquialisms.

C1 Appropriate for a reader who can understand in detail complex dialogues, whether or not they relate to
their own area of speciality, provided he/she can reread difficult messages. Appropriate for a reader
who can understand a wide range of demanding messages, and recognise implicit meaning, including
emotional, allusive, and joking usage of language.

B2 Appropriate for a reader who can understand the main ideas of complex dialogues across a range of
concrete and abstract topics, and has a broad active reading vocabulary, but may experience some
difficulty with low-frequency idioms.

B1 Appropriate for a reader who can understand straightforward factual messages on subjects related to
his/her field and interest with a satisfactory level of comprehension. Appropriate for a reader who can
understand the main points of clear messages on familiar matters regularly encountered in work, school,
leisure, etc.

A2 Appropriate for a reader who can understand short, simple messages on familiar matters of a concrete
type which consist of high frequency everyday or job-related language (including simple everyday
polite forms of greetings and farewells; introductions; invitations and apologies; giving thanks), or
shared international vocabulary items. Appropriate for a reader who can understand sentences and
frequently used expressions related to areas of most immediate relevance (e.g. very basic personal and
family information, shopping, local geography, employment).

A1 Appropriate for a reader who can understand very short, simple messages a single phrase at a time,
picking up familiar names, words and basic phrases and rereading as required. Appropriate for a reader
who can understand familiar everyday expressions and very basic phrases aimed at the satisfaction of
simple needs of a concrete type.

Table 8: CEFR descriptors provided to examiners to annotate difficulty levels.

Speaker 1: Hello!
Speaker 2: Hello there. Do you listen to music? I’m all about rock. Songs that have a melody are my favorite.
Speaker 1: Yes, I love the melodies in rock music. I think that is the foundation of all music after all.
Speaker 2: I agree. Music can have many meanings and have spiritual and religious elements too. How about you?
Speaker 1: Yes, music can have a strong emotional impact too. It can enhance an experience or provoke a response.
Speaker 2: Definitely! Music also can be interpreted through different cultural lenses as well. Have you ever thought

about that?
Speaker 1: Yes, that is true, since music can come in a wide variety of genres and structures.
Speaker 2: Absolutely! Since it is so dynamic and changes from time to time, it has a tendency to change and evolve

with the culture as well!
Speaker 1: Yes, I think it is a good thing that music is dynamic though. Cultures have a way of shaping and defining

what music is.
Speaker 2: You’re absolutely right! Humans have been using music for communication and for artistic inspiration for

much of history so I wouldn’t want it any other way!
Speaker 1: Music can also influence the way we view our relationships, our ideas, and even our language as well.
Speaker 2: Yes exactly! Music, art, language, entertainment, and science all play major roles in human society!
Speaker 1: Sometimes I wonder if there is such thing as the soul, because it seems to come to people through their

interpretation of music.
Speaker 2: Yes there definitely is! The soul is definitely subjective and a big part of the human psyche so it makes sense

that people interpret music in different ways!
Speaker 1: I think we see it in art all the time. Artists often are influenced by their influences, such as their relationships.
Speaker 2: In the past, many considered the relationship between the musician and audience to be one of the most

important aspects of the medium!
Speaker 1: Yes! I agree with that, as artists are affected by their art in a very personal way.
Speaker 2: Yes and for a lot of artists the subject matter can be important to the storytelling and emotions of their music

as well.
Speaker 1: Indeed. And they often do not even realize how impactful their work is until after the fact.

Table 9: A cherry-picked example of a C1 self-chat dialogue generated using method 5 (reranking with sub-token
penalties and filtering).
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