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Abstract

We develop a novel unified representation
for the argumentation mining task facilitating
the extracting from text and the labelling of
the non-argumentative units and argumenta-
tion components—premises, claims, and ma-
jor claims—and the argumentative relations—
premise to claim or premise in a support or at-
tack relation, and claim to major-claim in a for
or against relation—in an end-to-end machine
learning pipeline. This tightly integrated repre-
sentation combines the component and relation
identification sub-problems and enables a uni-
tary solution for detecting argumentation struc-
tures. This new representation together with
a new deep learning architecture composed of
a mixed embedding method, a multi-head at-
tention layer, two biLSTM layers, and a final
linear layer obtain state-of-the-art accuracy on
the Persuasive Essays dataset. Also, we have
introduced a decoupled solution to identify the
entities and relations first, and on top of that
a second model is used to detect distance be-
tween the detected related components. An
augmentation of the corpus (paragraph version)
by including copies of major claims has further
increased the performance.

1 Introduction

Arguments are composed of statements, called
claims, that take a position on a controversial sub-
ject and other statements, referred to as premises,
that support or rebut the claims. When argu-
ments are presented in text form, these argument
components are realized as contiguous text spans.
The writing also contains non-argumentative text
spans. The argument and non-argumentative text
spans are collectively referred to as argumenta-
tive discourse units (ADUs). Argumentation min-
ing is usually viewed as the identification of argu-
mentative structures: separating the argumentative
ADUs from the non-argumentative ADUs, classi-
fying the argumentative ADUs as premises and

claims, and finding the relationships among the
argumentative ADUs. Since we are using the Per-
suasive Essay (PE) dataset (Stab and Gurevych,
2017) these subtasks can be made more precise: 1)
segment the argument components from the non-
argumentative text, 2) label each argument compo-
nent as a Major-Claim, Claim, or Premise, 3) de-
termine which premises are in a relationship with
claims or premises using a text distance measure,
and 4) classify the stance of the relations between
argument components.

Since we are using the Persuasive Essay (PE)
dataset (Stab and Gurevych, 2017) we will use the
description of these tasks as given by Eger et al.
(2017): 1) segmenting the ADUs: separate the ar-
gumentative text spans from the non-argumentative
text, 2) labeling each argument component as a
Major-Claim, Claim, or Premise, 3) determining
which premises are in a relationship with claims
or premises and representing this relation as the
text distance (the number of sentences before or
after) between a premise and its related argument
component (in the PE corpus, which major-claim
is related to a claim is not annotated using the text
distance method), and 4) classifying the stance of
the relations between argument components (‘for’
and ‘against’ for the relationship between claims
and major-claims; ‘support’ and ‘attack’ between
premises and claims or other premises).

Previous research has approached the develop-
ment of a computational argumentation mining
method from two distinct viewpoints. Input for the
first approach is plain text and this approach solves
all four of the subtasks mentioned above. Stab and
Gurevych (2017) provide the PE dataset, which we
use in the development of our method. Eger et al.
(2017) produce the state-of-the-art method to which
we compare our new method. Recently, Persing
and Ng (2020), using the PE dataset, have devel-
oped an unsupervised machine learning method
that provides all but the stance information for the
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relations.
The second view of argumentation mining as-

sumes the first subtask has been done (Peld-
szus, 2014; Peldszus and Stede, 2015; Stab and
Gurevych, 2017; Niculae et al., 2017; Potash et al.,
2017; Kuribayashi et al., 2019; Bao et al., 2021).

The method proposed here takes the first ap-
proach, solving all four subtasks. As there are sub-
tasks, previous argumentation mining works have
decoupled various subtasks, solved them separately,
and then combined the solutions. The end-to-end
learning method proposed here differentiates itself
from these previous works by approaching the prob-
lem with a unified representation. Our research
contributions are summarized as follows:

1. Each token in the natural language text is en-
coded as a binary vector that captures all as-
pects of the argumentation mining task: the
ADU type, the position in the argument com-
ponent text span, the stance of the argument
component, and the distance to the related ar-
gument component. The deep learning model
computes a vector for each token which, when
properly interpreted, provides the information
required to assemble the text spans and rela-
tions thereby identifying the argument struc-
ture for the argument mining task. By combin-
ing all aspects of the argumentation mining
task in this representation, a model is learned
that has improved performance.

2. By constructing a novel dense representation
of the problem we are able to achieve a better
than previous performance using a stacked
embedding model comprising two biLSTM
layers, a multi-head attention layer, 3 linear
layers with ReLU activation and 1 final linear
layer (Unified-AM)1.

3. We introduce a joint model (Decoupled-AM)
approach2. We train both Unified-AM and a
second model composed of a normalization
layer, two biLSTM layers, three linear layers
with Dropout and ReLU activations, and one
final linear layer. While Unified-AM is de-
tecting components and relations, the second
model detects distances between the related

1Unified-AM code is available at https://github.
com/tawsifsazid/Unified-Representation-for-
Argumentation-Mining.

2Decoupled-AM code is also available at https:
//github.com/tawsifsazid/Unified-Representation-
for-Argumentation-Mining.

components using different layer outputs pro-
vided by Unified-AM. In this setting, we have
trained both models together from scratch.

4. Our previous work (Sazid and Mercer, 2022)
only worked with the paragraph version of
the PE dataset. Here we also test our novel
representation and model on the essay version.

5. We develop an augmentation technique (para-
graph version) based on the n-gram tokens
that indicate the starting of the major claim
tokens3. This further improves the results.

With the new formulation of the problem, our orig-
inal Unified-AM and the Decoupled-AM reach
state-of-the-art argument mining performance on
detecting and labelling argument components and
relations for the PE corpus.

2 Related Work

Computational argumentation mining deals with
finding argumentation structures in text. Palau and
Moens (2009) established that argument mining
would need to detect claims and premises and their
relationships. Stab and Gurevych (2014, 2017) pro-
vided the PE dataset, a corpus annotated with a
scheme that includes claims, premises, and also at-
tack or support relations. Stab and Gurevych (2017)
addressed the argumentation problem by training
independent models for each of the subtasks and
then combining them with an Integer Linear Pro-
gramming Model for the end-to-end task. Eger
et al. (2017) achieved state-of-the-art performance
on the PE corpus by addressing the problem as
a sequence tagging problem. They have the best
accuracy of 61.67% by using a modified version
of the LSTM-ER model, introduced by Miwa and
Bansal (2016), which uses a stacked architecture
of Sequence and Tree LSTMs.

Persing and Ng (2016) presented the first find-
ings on end-to-end argument mining in student
essays using a pipeline approach by performing
joint inference using an Integer Linear Program-
ming (ILP) framework. Ferrara et al. (2017) in-
troduced an unsupervised approach, topic model-
ing, to detect claims and premises. Persing and
Ng (2020) have also developed an unsupervised
machine learning method that provides all but the
stance information for the relations.

3The augmented dataset is available at https:
//github.com/tawsifsazid/Unified-Representation-
for-Argumentation-Mining.

https://github.com/tawsifsazid/Unified-Representation-for-Argumentation-Mining
https://github.com/tawsifsazid/Unified-Representation-for-Argumentation-Mining
https://github.com/tawsifsazid/Unified-Representation-for-Argumentation-Mining
https://github.com/tawsifsazid/Unified-Representation-for-Argumentation-Mining
https://github.com/tawsifsazid/Unified-Representation-for-Argumentation-Mining
https://github.com/tawsifsazid/Unified-Representation-for-Argumentation-Mining
https://github.com/tawsifsazid/Unified-Representation-for-Argumentation-Mining
https://github.com/tawsifsazid/Unified-Representation-for-Argumentation-Mining
https://github.com/tawsifsazid/Unified-Representation-for-Argumentation-Mining
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A number of works have investigated approaches
for subtasks 2, 3, and 4. Early work is epitomized
by Peldszus (2014) and Peldszus and Stede (2015)
where they develop a novel methodology for pre-
dicting argument structure by dividing it into differ-
ent sub-tasks (relation, central claim, role, and func-
tion classification). Potash et al. (2017) presented
the first neural network-based approach to argumen-
tation mining, focusing on extracting links between
argument components and classifying types of ar-
gument components as a secondary goal. Niculae
et al. (2017) jointly approach unit type detections
and relation predictions on their new CDCP dataset
and the PE dataset. Kuribayashi et al. (2019) fo-
cuses on Argumentation Structure Parsing (ASP).
Their analysis of other works regarding the span
representation led them to the development of a
simple task-dependent addition for the ASP. Bao
et al. (2021) avoid previous inefficient enumeration
operations for detecting relational attributes. For
that, they introduce a transition-based methodology
that follows an incremental procedure for building
graphs based on argumentation.

We note from Ahmed et al. (2018) how addi-
tional handcrafted features can boost the accuracy
on certain sequence tagging tasks. Kuribayashi
et al. (2019) and Persing and Ng (Persing and Ng,
2020) also noted the importance of discourse con-
nectives in the argumentation mining task.

3 Research Methodology

Here we present the method that we have developed
to generate the argumentation structure for the PE
data set. First, the data set is described. Then, we
introduce the multi-label representation that allows
us to consider argumentation mining as a single
unified problem. Lastly, instead of presenting the
final model with an ablation study, we present our
method in a bottom-up style, starting with a base
architecture to which we add, providing in Table
2 the performance increase given by that addition
since we want to discuss the motivation for these
additions. We compare the final model’s perfor-
mance with that achieved by Eger et al. (2017).

3.1 Data Set Description

The PE dataset that we are using in this paper was
created by Stab and Gurevych (2017) and was used
in Eger et al. (2017). The essays are written on
controversial topics so that the authors can make
their opinions and take their stances. The corpus

has been tagged with the BIO scheme, the type of
components, stances, and distances from premise
to claim or premise (Eger et al., 2017; Stab and
Gurevych, 2017). There are essay and paragraph
versions of the data set. We have worked with
both versions of the corpus. The data set contains
1,587 paragraphs totaling 105,988 tokens in the
train-set and 449 paragraphs, 29,537 tokens in the
test-set4. The development set has 12,657 tokens
available in 199 paragraphs. In the essay version
of the corpus, there are 285 essays in the train-set.
The development and the test set have 35 and 79
essays, respectively.

The argumentation structure can be viewed as a
forest with each tree rooted by one of the author’s
major claims. The claims are connected to all of
the major claims with either ‘for’ or ‘against’ re-
lations. Premises are related to exactly one claim
or premise. Premises either ‘support’ or ‘attack’
the claims or premises. One important piece of
information is that the argumentation structure is
completely contained in the paragraph except for
some relations from claims to major claims which
are not in the same paragraph. The corpus is imbal-
anced as Eger et al. (2017) have mentioned.

3.2 New Problem Formulation

To integrate all of the sub-problems (argumentative
and non-argumentative unit classification; major-
claim, claim, and premise component classifica-
tion; relation identification, and distance between
2 entities) into a single problem, we construct a
binary vector of size 33 for our target labels (first
described in Sazid and Mercer (2022)). We are
addressing the argumentation mining problem as
a sequence tagging problem and classifying each
word or token as beginning argumentative / contin-
uation argumentative / non-argumentative, premise
/ claim / major-claim, support / attack, for / against,
relative distance between the current component
and the component it relates to. The maximum
and minimum distances from premise to claim sug-
gested in Eger et al. (2017) are +11 and -11, respec-
tively. Thus, we have constructed a dense unified
representation of the argumentation mining prob-
lem. Table 1 provides the novel representation.

By formulating the argumentation mining task as
a multi-label problem, we have enabled the options
to solve the argumentation problem in a unified or
in a decoupled way. We have tried both strategies

4Differs slightly from that reported in Eger et al. (2017).
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Token O B I MC C P Sup For At Ag
Distance

Value
-11

...
Distance

Value
3

...
Distance

Value
+11

For 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
instance 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
children 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0

immigrated 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0
to 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0
a 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0

new 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0
country 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0

Table 1: Example of the Novel Compact Representation of the Argumentation Problem. O: Non-Argumentative
Token, B: Beginning of Argument Component, I: Continuation of Argument Component, MC: Major Claim
Component, Cl: Claim Component, P: Premise Component, Sup: Support Relation Identifier, For: For Relation
Identifier, At: Attack Relation Identifier, Ag: Against Relation Identifier, Distance Values: -11 to +11. The sentence
being encoded “For instance, children immigrated to a new country . . . ” has three introductory non-argumentative
tokens, the premise starting with “children” supports an argument component three sentences later in the paragraph.

and compare our results related to the experiments.

3.3 Interpretation Function for the
Multi-label Outputs of the Model

We have formulated the argumentation problem
in a unified way. As a result, it has become a
multi-class, multi-label problem. As it becomes a
multi-label problem when we create a unified repre-
sentation, we just want to choose the index for each
of the categories that has the highest logit value in
that specific category (components, stances, and
distance). For this, we have created an interpreta-
tion function.

For each token, this function first decides
whether the token is to be considered non-
argumentative or part of an argument component.
If it is to be considered argumentative, the begin-
ning and continuation designations are determined.
Then, depending on the argument component type,
the stance is determined, and if it is a premise, the
distance is as well.

3.4 Description of the Deep Learning Model
and the Hyper-Parameters

Figure 1 represents our final argumentation model
architecture (Unified-AM) which we have created
for detecting argumentation structures and solve all
the subtasks jointly.

We have also developed a decoupled model
(Decoupled-AM) (research contribution 3) where
we first predict the components and relations. Then
we detect the distance between the predicted com-
ponents based on it. For this methodology, we

have used two models. The first model is identi-
cal to the Unified-AM and we introduce a second
model which predicts the distances. In this par-
ticular experiment, we have trained both models
from scratch. In this experiment, Unified-AM is
used to predict the first 10 labels and the loss is
calculated for those 10 labels only. The second
model predicts the last 23 labels (distances) and
the loss is calculated for only these last 23 labels.
After that, the two loss values are summed and
then this summed loss value is used to calculate
the gradients to initialize the back propagation for
both models simultaneously. The components and
stances (first 10 labels) predicted by Unified-AM
and the distances (last 23 labels) predicted by the
second model are concatenated to finally produce
the 33-labelled output.

Our deep learning model architecture includes:
stacked embedding, axial positional embedding, a
multi-head attention layer, a 2-layered biLSTM, 3
linear layers with dropouts and ReLU activations
and the final linear layer. The output of the model
is optimized with BCEWithLogitsLoss.

For its capability of retaining long-distance infor-
mation from sequential texts, we use biLSTM for
the paragraph level for the argumentation mining
task. Before adding the axial positional embed-
ding and the multi-head attention layer, our prelim-
inary experimentation determined the number of
biLSTM layers by using a trial and error methodol-
ogy, i.e., we have tried two layers of biLSTM with
one linear layer, one biLSTM layer with one lin-
ear layer, and so on. We have found two biLSTM
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Figure 1: The Final Argumentation Mining Model Architecture with Decoupled Distance Prediction

layers, 3 linear layers with non-linear activation
functions, and one final linear layer achieve the
best accuracy.

Figure 1 includes a mixed embedding but in the
model design we first experimented with a plain
embedding layer instead. Lample et al. (2016),
have shown that a combination of different embed-
dings may work better than using only one embed-
ding class. For the pre-trained mixed embedding,
we use the memory-efficient stacked embedding
class that Akbik et al. (2019) introduced in their
Flair framework for combining the FastText and
Byte-pair embeddings. As our corpus contains un-
known words in the test set and the whole corpus
contains many suffix and prefix dependent words,
we used these two types of embedding together.

The final design decision was to include the
multi-head attention (Vaswani et al., 2017) and the
axial positional embedding for the positional infor-
mation (Ho et al., 2019; Kitaev et al., 2020). For
our 400-dimension embedding class we use four
heads for the multi-head attention layer for both of
the experiments. This completes the description of
the architecture.

To show the effects of each of these design
decisions, we compare the number of wrong-
predictions between our non-pre-trained embed-

ding model, the pre-trained stacked embedding
model, both without multi-head attention, and the
final Unified-AM model. Table 2 shows the er-
ror analysis of these three stages of architecture
design for the non-argumentative units, argumen-
tative components, and relations. For each of the
mentioned argumentative units we present the total
number of errors (false negatives + false positives).
For relations (support, attack, for, and against), we
have combined the errors from each class and re-
port this combined value. There are somewhat
fewer wrong predictions when the stacked em-
bedding is incorporated into the model. Without
stacked embedding, the total number of wrong pre-
dictions for all of the classes on the paragraph level
is 23,363. With the addition of stacked embedding
the total number of wrong predictions becomes
17,286. After using this pre-trained embedding, the
error rate is reduced by 26.01%. The total number
of errors for the Unified-AM model is 16,649. This
model further reduces the error rate by 3.69%.

After trying several hyperparameter values for
each of the different components we have chosen
the final values. We use dropout values of 0.5 for
the linear layers, and 0.65 for the biLSTM layer of
our architecture. We use the default dropout value
(0.0) for the multi-head attention layer. We use
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Table 2: Error Analysis and Comparison of the Three Models (False Positives + False Negatives)

Number of Wrong Predictions
Major Claim Claim Premise Relations Non Argumentative

Trained Embedding 1306 4011 4787 10004 3255
Stacked Embedding 1176 3215 3122 7653 2120

Unified-AM 1111 3082 2953 7301 2202

the ReLU activation function in-between the linear
layers. A learning rate of 0.001 has been used in all
of the experimental design stages. The Adam opti-
mizer is used throughout. During training, we have
used random shuffling for all of the final experi-
ments. We have trained our model around 1000-
1100 epochs for all of the experiments except the
data augmentation experiment (see Tables 4, 6).
For determining the default training epochs (1000-
1100) we have closely observed the development
set accuracy value after every 5 epochs. If after
some epochs the development set accuracy stops
increasing or starts fluctuating somewhat between
a small range of accuracy values, we have stopped
the training procedure. We also observe the train-
ing loss and find that when it reaches around 0.0005
loss value, the model has the highest development
set accuracy. If we further train and decrease the
loss value, it does not help to improve the accuracy
value of the development set. As we have also in-
creased the original PE corpus (paragraph version)
by augmenting the data in our augmentation ex-
periments (see Section 4.2), we also increase the
training epochs to reach around the 0.0005 training
loss which has given us improvements regarding
the C-F1, R-F1 and F1 scores.

4 Experiments and Results

4.1 Experiments on the original version of the
PE corpus

We have experimented with the new unified-
representation of all of the sub-tasks of argumen-
tation mining and trained our final model architec-
tures. In one of our experiments, we have only
trained the original Unified-AM (Sazid and Mercer,
2022) to jointly solve all of the sub-tasks (all 33
labels) of argumentation mining. In Table 3, we
present individual precision, recall and F1 score
for the four ADUs and the four relations that are
available in the PE corpus (both paragraph and es-
say versions) for the original Unified-AM model.
We observe low precision and recall scores for the
claim tokens even though the class is not the least

frequent one in the PE corpus. This is similar to the
observed low agreement score among the human
annotators for the claim tokens (Stab and Gurevych,
2017). Unified-AM also finds it difficult to predict
the claim tokens in the corpus.

And in the other experimental setup, we have
used a second model to detect the distance values
(the last 23 labels) separately by using information
about the components and relations (the first 10
labels) from the Unified-AM.

With the original Unified-AM, we achieve a to-
ken level accuracy of 66.79% in our argumentation
mining task. On the other hand, the Decoupled-
AM achieves the highest token level accuracy of
67.50%. Also, we have improved C-F1, R-F1
scores regarding the task with Decoupled-AM.

Table 4 summarizes the result for these experi-
ments, including the F1 measure for the component
and relation tasks, and a global F1 score. The re-
sults from Eger et al. (2017) have been included
for comparison. Now, compared to the Eger et al.
(2017) decoupled method for computing the rela-
tion identification, this task in our original Unified-
AM and Decoupled-AM is coupled with the com-
ponent identification task due to the unified rep-
resentation of the problem, which has led to the
better performance. We have used the distance val-
ues from -11 to +11 that were observed by Eger
et al. (2017) in the PE data set.

We have also experimented on the essay-level of
the argumentation corpus and our original Unified-
AM model has achieved the highest token level
accuracy, C-F1, and R-F1 scores. The experiments
on the essay version of the corpus show the robust-
ness of the unified representation of all the subtasks
with our model. When we experiment on the es-
say version of the corpus, our scores and results
have not decreased like the LSTM-ER model and
its decoupled solution. Our Decoupled-AM has not
performed well on the essay version of the corpus
compared to the original Unified-AM. Table 5 sum-
marizes the results for the experiments related to
the essay version of the argumentation corpus.
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Table 3: Precision, Recall and F1-score for the Argumentation Mining Classes for Unified-AM

Class Paragraph Level Essay Level Token
Precision Recall F1 Score Precision Recall F1 Score Percentage

Non-Argumentative 88.38 88.27 88.33 89.26 91.27 90.25 32.20
Major-Claim 73.87 74.18 74.02 70.34 72.05 71.19 7.41

Claim 65.37 58.05 61.48 56.11 49.34 52.51 15.41
Premise 88.01 90.87 89.42 87.18 88.32 87.74 44.99
Support 86.79 89.69 88.22 85.09 88.35 86.69 42.61

For 60.96 57.05 58.94 56.41 50.76 53.43 12.77
Attack 32.52 26.77 29.37 27.08 7.10 11.25 2.38
Against 60.81 29.97 40.15 21.01 10.23 13.76 2.64

Table 4: Comparison of LSTM-ER (Eger et al., 2017), Unified-AM, and Decoupled-AM on the Paragraph Level

Model Corpus
Token

Accuracy
C-F1

(100%)
C-F1
(50%)

R-F1
(100%)

R-F1
(50%)

F1
(100%)

F1
(50%)

LSTM-ER Original 61.67% 70.83 77.19 45.52 50.05 55.42 60.72
Unified-AM Original 66.79% 68.88 78.22 51.14 56.41 60.00 67.32

Decoupled-AM Original 67.50% 71.24 79.98 52.71 57.92 61.97 68.95
Unified-AM Augmented 68.03% 71.35 80.21 54.27 59.46 62.81 69.83

Decoupled-AM Augmented 65.53% 68.59 77.94 50.22 56.24 59.41 67.10

4.2 Data Augmentation Experiment on the
Paragraph Version of the PE Corpus

We now turn to the final argumentation model per-
formance improvement. Adding linguistic informa-
tion to a model has been successful for low level
NLP tasks (Ahmed et al., 2018). We have observed
(as did Kuribayashi et al. (2019), and Persing and
Ng (2020)) that many major claims are prefaced by
a reasonably small set of n-grams. An n-gram is a
continuous sequence of n words. Some examples
of the n-grams that are found in the PE corpus are:
‘I firmly believe that’, ‘In conclusion ,’, ‘Hence ,’,
and ‘Firstly ,’. We consider augmenting the para-
graph version of the corpus by using these n-grams
to increase the frequency of the Major Claim com-
ponent type which is the least frequent component
available in the PE corpus.

In this experimental setup, we have augmented
the paragraph level PE dataset. Below, we describe
the augmentation technique that we have used to
augment the PE corpus. We also compare the per-
formance between Unified-AM, Decoupled-AM
on both the augmented and original corpora.

We have augmented the paragraph-level corpus
with new paragraphs. These new paragraphs are
copies of those paragraphs that contain one of the
108 n-gram tokens that occur immediately before
the major claim tokens but have had the n-gram

randomly swapped with a same size n-gram token.
This augmentation increases the number of major
claim tokens in the whole corpus but with different
introductory n-grams. We have hypothesized that if
we increase the root element, i.e., the major claim
components of the corpus, by swapping frequently
occurring n-gram tokens that appear immediately
before the component, it would help the model
to accurately detect this type of component and
differentiate between the three types of components
that are available in the PE corpus. We have shown
below an example of the original paragraph and the
augmented paragraph after applying the described
augmentation method:

Original Paragraph: “It is always said that
competition can effectively promote the develop-
ment of economy . In order to survive in the compe-
tition , companies continue to improve their prod-
ucts and service , and as a result , the whole society
prospers . However , when we discuss the issue of
competition or cooperation , what we are concerned
about is not the whole society , but the development
of an individual’s whole life . I firmly believe that
we should attach more importance to cooperation
during primary education.”

Augmented Paragraph: “It is always said that
competition can effectively promote the develop-
ment of economy . In order to survive in the compe-
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Table 5: Comparison of LSTM-ER (Eger et al., 2017), Unified-AM, and Decoupled-AM on the Essay Level

Model Corpus
Token C-F1 C-F1 R-F1 R-F1 F1 F1

Accuracy (100%) (50%) (100%) (50%) (100%) (50%)
LSTM-ER Original 54.17% 66.21 73.02 29.56 32.72 40.87 45.19

Unified-AM Original 62.88% 67.78 76.20 48.24 52.49 58.01 64.35
Decoupled-AM Original 57.89% 64.67 75.51 40.01 46.10 52.34 60.75

Table 6: Token level Comparison between the Original and the Augmented Datasets

Model
Corpus

(Paragraph
Version)

Correct
Major-Claim

Tokens

Correct
Claim
Tokens

(with Stance)

Correct
Premise
Tokens

(with Stance)

Correct Non-
Argumentative

Tokens

Unified-AM Original 1542 2057 7329 8217
Unified-AM Augmented 1597 2344 7956 8196

Decoupled-AM Original 1595 2397 7720 8226
Decoupled-AM Augmented 1594 2355 7334 8074

tition , companies continue to improve their prod-
ucts and service , and as a result , the whole society
prospers . However , when we discuss the issue of
competition or cooperation , what we are concerned
about is not the whole society , but the development
of an individual’s whole life . I truly believe that
we should attach more importance to cooperation
during primary education.”

Description of the Augmentation Process: In
this particular example we have substituted the 4-
gram “I firmly believe that” with an equal size ran-
domly chosen 4-gram “I truly believe that” from
our collected n-gram list. The words following in
that particular sentence are major claim tokens.

By using data augmentation, we have increased
the number of Major Claim tokens by approxi-
mately 4000. Also, because claims, premises, and
non-argumentative components occur in these para-
graphs, the number of Claim, Premise, and Non-
argumentative tokens have increased by around
2000, 1000, and 8000, respectively.

After creating the augmented corpus, we have
trained our Unified-AM model first (see Figure 1)
on the corpus. We have achieved the highest token
level accuracy on the paragraph-level argumenta-
tion corpus. Previously, without augmentation, we
have achieved 67.50% token level accuracy on the
PE dataset (see Table 4) and after applying the
augmentation methodology we have achieved the
highest token level accuracy of 68.02%. Also, all
other performance measures have been improved.
Table 4 shows the results related to the augmented

datasets. Comparing Unified-AM’s performance
between the augmented corpus and the original cor-
pus (see Table 4), the model has much higher token
level accuracy, C-F1, R-F1, and F1 scores when
we apply augmentation techniques on the training
corpus. We have reached the highest component
C-F1(100%) score of 71.35% where Eger et al.
(2017) has obtained 70.83%. After training Unified-
AM, we move on to the next experimental setup
and train our Decoupled-AM on the augmented cor-
pus. Decoupled-AM has not performed well on the
augmented corpus compared to Unified-AM. The
reason is: Decoupled-AM needs more training time
compared to the Unified-AM when we are experi-
menting for the augmented corpus. Training both
the models together from scratch on a larger corpus
needs sufficient amount of time and resources.

We present in Table 6, the token level improve-
ments and compare them with the original PE cor-
pus results. In the test set, we have 2,134 major
claim tokens, 4,238 claim tokens, 13,728 premise
tokens, and 9,437 non-argumentative tokens. Our
goal is to increase the major claim tokens which
can be considered as the root of the argumentation
structure. The results provided in Table 6 show the
overall token level improvements that we get com-
pared to the original paragraph version of the PE
corpus for both Unified-AM and Decoupled-AM.

5 Error Analysis

We have done some error analysis and comparison
between various neural architectures to see how dif-
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Table 7: F1 scores on the BIO labeling task

STag_BLCC LSTM-ER ILP HUB Unified
AM

Unified-AM
Augmented
Paragraph

Decoupled-AM
Decoupled-AM

Augmented
Paragraph

Essay 90.04 90.57 - - 90.52 - 89.99 -
Paragraph 88.32 90.84 86.67 88.60 89.69 89.88 90.30 89.11

ferently all of the models perform on the argumen-
tation task. Also, we have measured the distance
prediction accuracy of the Unified-AM model and
compare it with that of Eger et al. (2017).

We observe a higher accuracy of predicting
longer distance in the paragraphs. One of the key
strategies that we have followed for all of these ex-
perimental setups: We ensure the models share all
of their learned parameters while solving any par-
ticular subtask (component detection and labelling,
relation classification, or accurate distance predic-
tion) of the main Argumentation Mining problem.
This denser representation of the whole argumenta-
tion task enables our neural models to share all of
the parameters while making predictions for each
of the subtasks which has led to a high performance.
Eger et al. (2017) showed that LSTM-ER model’s
probability of correctness given true distance is
below 40% and it becomes below 20% when the
distances are larger than 3. But in our case, our
analysis shows above 50% accuracy for distances
1, 2, and 3 (for Unified-AM). Our final model (see
Figure 1) has higher accuracy regarding smaller
distances but its prediction accuracy declines as we
observe larger distance values in the PE corpus.

For major-claim, premise, and claim, there are
two different tags in the PE corpus, B: Beginning of
a component and I: Continuation of a component.
Non-Argumentative tokens are tagged as ‘O’ in the
BIO scheme. We compare the component segmen-
tation task (subtask 1) results with other works that
have been mentioned in Eger et al. (2017). Table
7 shows the results for the models. We see that
LSTM-ER has the highest macro-F1 score when
we consider only the BIO labeling task.

6 Conclusions and Future Work

In this work, we show that rather than using a com-
plex stacked architecture for a problem which has
different subtasks (where all the subtasks are re-
lated to each other), we can have a compact and
unified representation of all the sub-problems and
can tackle it as a single problem with less compli-
cated architectures. We obtain an improved perfor-

mance over Eger et al. (2017) in recognizing the
argument components and relations. We further
improve this result by introducing the Flair stacked
embedding (Akbik et al., 2019) to represent the text
input. We introduce a multi-head attention layer
to the neural architecture which leads us to the
highest accuracy on the PE corpus. Observing that
the imbalanced corpus may be creating problems
for this model to learn certain underrepresented
features of the corpus, we have used the standard
technique of data augmentation to achieve further
gains in performance. We have created one aug-
mented version of the PE training corpus by using
different combinations of the n-grams that occur
immediately before approximately two-thirds of
the major claim components (see Section 4.2) in
the paragraph version of the corpus. By using the
augmentation methodology, we further improve the
Unified-AM model’s performance on the test set.
We have obtained the highest token level accuracy,
C-F1, R-F1, and the global F1 score (which is the
combination of both C-F1 and R-F1 scores) on the
paragraph version of the PE corpus by applying the
augmentation technique. We have obtained better
results on the original essay version of the corpus.
Shared parameter values across different subtasks
enhanced the accuracy score and also the model’s
capability for accurate detection of components,
relations and distance. Our work has shown a ro-
bust method which jointly solves the component
and relation identification tasks on the essay and
paragraph levels of the Persuasive Essays corpus.

Future work includes a modified, yet unified, rep-
resentation for other corpora and using contextual
embeddings to enhance the representations of the
argumentative texts.
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