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Abstract
Knowledge distillation (KD) can be used to reduce model size and training time, without sig-
nificant loss in performance; in some instances, it even leads to performance gains. These
smaller models, also known as student models, are much more efficient in terms of time and
energy costs, and they emit far less CO2. However, the process of distilling knowledge requires
translation of sizeable data sets, and the translation is usually performed using large cumber-
some models, also known as teacher models. The intuition is to produce smaller student models
that can mimic well the large teacher models which are usually good in quality. Nevertheless,
producing translations of sizeable data sets by large-scale teacher models for KD is expensive
in terms of both time and cost, which is a significant concern for translation service providers
(TSPs). On top of that, the use of cumbersome models for translating large-scale data sets can
be the cause of higher carbon footprints. In this work, we tested different variants of a teacher
model in order to produce translations of a large-scale data set, tracked the power consumption
of the graphic processing units (GPUs) used during translation, recorded overall translation
time, estimated translation cost, and measured the accuracy of the student models. The find-
ings of our investigation demonstrate to the translation industry a cost-effective, high-quality
alternative to the standard KD training methods which are highly time-consuming and com-
putationally expensive. More importantly still, we show that our proposed solutions are the
most environmentally friendly training methods to distil knowledge from a teacher to a student
model, while maintaining an insignificant drop in accuracy.

1 Introduction

Deep neural networks (DNNs) underpin state-of-the-art applications of artificial intelligence
in almost all fields, such as image (Voulodimos et al., 2018), speech (Park et al., 2019) and
natural language processing (NLP) (Wolf et al., 2019). However, DNN architectures (LeCun
et al., 2015) are often data-, compute-, space-, power- and energy-hungry, typically requiring
powerful GPUs or large-scale clusters to train and deploy, which has been viewed as a “non-
green” technology (Strubell et al., 2019). Furthermore, often the best-performing models are
ensembles of hundreds or thousands of base-level models, which require large amounts of space
and time for storage and execution (Singh et al., 2016; Wen et al., 2017; Fedus et al., 2021).
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Neural MT (NMT) (Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2014) systems
have greatly improved MT compared to statistical MT (SMT) (Koehn, 2009) systems. These
state-of-the-art NMT systems, however, require much more computing power and data than
SMT systems (Östling and Tiedemann, 2017; Dowling et al., 2020), and if the effects of climate
change are to be controlled they are unsustainable in the long run. These systems are also largely
unsuitable for training engines for low-resource languages and scenarios, where the data simply
does not exist in the amounts required for high quality results to be achieved. To some extent,
model compression, more specifically knowledge distillation techniques, can remedy this.

Knowledge distillation (Buciluǎ et al., 2006) can be used to transfer the knowledge from a
teacher network (a large model) to a student network (a smaller model). This is generally done
by using a smaller, fast model to approximate the function learned by a much larger and slower
model with better performance (Buciluǎ et al., 2006; Hinton et al., 2015).

The methods described by Buciluǎ et al. (2006) and Hinton et al. (2015) can be used for
word-level knowledge distillation, since NMT models make use of multi-class prediction at the
word-level. These models, however, need to predict complete sequences that are dependent on
previous predictions as well.

Kim and Rush (2016) propose sequence-level KD wherein a new training set is gener-
ated by translating a data set with the teacher model using beam search. The newly generated
training set is then used to train a smaller student model. The data sets often contain mil-
lions of sentences and thus translating the training set by a large-scale teacher model for KD
training (Bapna et al., 2022) can be a cumbersome task and computationally expensive pro-
cess. Thus, KD training in MT is responsible for a considerable amount of CO2 emissions.
This is a concerning matter for the environment. Besides, this is also a concern for TSPs who
want to increase their margins in translation productivity by offering translations by smaller
student models to their clients. More specifically, the standard and computationally expensive
KD training process can negatively impact the translation productivity gain in industry.

The standard KD training methods use large-scale teacher models. We tested a number
of variants of a teacher model for translating the source sentences of our training data. For
example, we investigated the effects of changing the beam size and using quantisation (Polino
et al., 2018; Prato et al., 2020) while translating the training data. More specifically, we tested
the approaches of both Bogoychev et al. (2020) and Behnke et al. (2021), who focused on
quantisation during inference to reduce the size of their student models and increase the speed
at which these models translate sentences. The quality of translations by a quantised teacher
model would naturally be worse than that of the translations by non-quantized teacher model.
The same is true when one uses a very small batch size (e.g. 1) at decoding. As a result,
the translations by these fast decoders would naturally impact the quality the resultant student
model. In other words, you are likely to obtain a worse student model when you use a quantised
teacher model to distil knowledge. Our investigation focused on examining the magnitude of
quality drop of the student models when using the different variants of the teacher models for
KD, and in return how faster, cheaper and environmental friendly the KD training process would
be.

We considered English-to-German for our investigation, and recorded a number of pa-
rameters (i.e. CO2 emissions, translation time, accuracy) including power consumption of the
GPUs used for translation. We empirically demonstrated that our proposed KD training meth-
ods are computationally less expensive in comparison to the standard KD methods, and more
importantly, they do not deteriorate the accuracy of the student models much. As far as we
are aware, related work on model efficiency and knowledge distillation (Kim and Rush, 2016;
Bhandare et al., 2019; Bogoychev et al., 2020; Prato et al., 2020; Heafield et al., 2021) focus on
performance during inference whereas in this paper we focus on the effects of quantisation for
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KD training, in order to make the process as a whole more efficient rather than just reducing the
size and increasing the speed of the student models.

2 Experimental Setup

In this section we describe the various aspects of our experiments. We first discuss the data and
how it was preprocessed and then move on to describe how our MT systems are trained. Lastly,
we describe how we evaluate the quality of these MT systems.

2.1 Data
We use the Europarl 1 (Koehn, 2005) corpus with parallel sentences in German and English for
the language direction German to English. The corpus is randomly divided into three subsets,
namely the training set, validation set and test set. The training set consists of roughly two
million sentences and the validation and test sets of 3,000 sentences, respectively.

The Moses toolkit (Koehn et al., 2007) was used to tokenize and clean the three datasets
by removing all sentences with a length greater than 100. The toolkit was also used to decase
all sentences before training and after training, we used a pretrained truecaser to recase all
translated sentences. Furthermore, SubwordNMT2 (Sennrich et al., 2016) was used to segment
the sentences in the corpus into subword units. More specifically, the Byte Pair Encoding
(BPE) vocabularies were set to 32k words. Jooste et al. (2022) experimented with limiting
the vocabulary sizes during training and the models with smaller vocabularies (16k and 8k)
trained faster on average, albeit with lower quality in terms of runtime performance. Since
this work aims at investigating how sustainable the KD training process would be, we kept this
hyperparametr constant across our all experiments.

2.2 MT Systems
We use the MarianNMT3 toolkit (Junczys-Dowmunt et al., 2018) and Transformer (Vaswani
et al., 2017) architecture to train the models for our experiments. All models were trained for
a maximum of 20 epochs, since that was the lowest number of epochs needed to finish training
for one of our models. We used NVIDIA RTX 2080ti GPUs to train our models as well as
during decoding when distilling knowledge.

We used the same setup for training as described in the work of Jooste et al. (2022), who
investigated how sustainable today’s neural MT systems are on industrial setups. The student
models and baseline models have an encoder and decoder depth of 3, whereas the teacher mod-
els have an encoder and decoder depth of 6. Other than the difference in encoder and decoder
layers, the training parameters are the same but the student models are trained on the knowledge-
distilled data set instead of the original training set.

Setup Beam Size Mini/Maxi Batch Quantisation
Original 12 10/100 fp32
Beam 1 10/100 fp32

Quantisation 12 10/100 fp16
Combined 1 128/256 fp16

Table 1: Comparison of decoding experiments.

Table 1 shows the various setups we used for decoding. Originally we used a beam size of
12 without quantisation when distilling knowledge. We then investigated the effects of changing

1https://opus.nlpl.eu/Europarl-v3.php
2https://github.com/rsennrich/subword-nmt
3https://github.com/marian-nmt/marian
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the beam size to one and using quantisation to use 16 bit floating point numbers (fp16) rather
than 32 bit floating point numbers (fp32). Since using smaller floating point numbers requires
less memory, we are also able to use a better combination of the mini- and maxi-batch sizes.

In Jooste et al. (2022), they showed that the student models outperform the teacher models
when training them on the original training set combined with the knowledge distilled training
set (KD-set). In this work, however, we will only focus on the effects when using only the
KD-set for training student models.

2.3 Evaluation
The accuracy of all our models was measured with three automatic evaluation metrics, namely
BLEU (Papineni et al., 2002), TER (Snover et al., 2006) and chrF4 (Popović, 2015), using the
MultEval toolkit5 (Clark et al., 2011). We decided to use three metrics instead of one to better
represent the accuracy of the models.

In order to gain more insight into the efficiency of distilling knowledge from our teacher
models, we tracked the power usage during inference. The NVIDIA System Management In-
terface (nvidia-smi) was used to report the power draw of the GPUs being used, which was then
used to approximate the CO2 emitted during inference.

CO2 can be computed using the Power Usage Effectiveness (PUE) of the data centre,
kilowatt per hour (kWh) and the CO2 intensity (ICO2 ) as in equation (1) (Strubell et al., 2019;
Henderson et al., 2020):

CO2Emissions =
PUE ∗ kWh ∗ ICO2

1000
(1)

Sherionov and Vanmassenhove (2022) pointed out that the values of PUE and ICO2

are dependent on various factors and also constantly changing. In this paper we will use
the same values as reported by Sherionov and Vanmassenhove (2022) (PUE = 1.59 and
ICO2 = 229.8718 ± 77.4026). The kWh is calculated by dividing the total kW measured
per second by 360 in order to get the kW per hour rather than seconds.

The translation time was also tracked in order to estimate the cost of using the various
decoding methods. To estimate the cost we used the AWS Pricing Calculator6 for EC2 instances,
on demand and located in Ireland. The cost of an instance varies on the number of GPUs needed
and is then multiplied by the number of hours it is used for. For each scenario the cost of adding
30 GiB of memory is a flat of of 3.30 US Dollars (USD) per month and since it is constant, it
was left out of our estimated cost calculations.

3 Results and Discussion

Table 2 compares different setups that we described in Section 2.2 in terms of the translation
time, power draw, approximate CO2 emissions and estimated cost in US Dollars (USD). As can
be seen from the table, the combined methods (‘Combined’ in Table 2) are the most efficient
way of distilling knowledge. We illustrate the performance of the student models that corre-
spond to the KD training setups of Table 2 in Table 3. We can clearly see from both tables that
the difference in translation time has been improved by 7 hours on average, while the quality
of the student models drops by less than 1 BLEU point. The same trends are observed with the
other MT evaluation metrics too. Such a small drop in quality is unlikely to be spotted by a
human, even an expert translator.

4https://github.com/m-popovic/chrF
5https://github.com/jhclark/multeval
6https://calculator.aws/#/createCalculator/EC2
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Figure 1: BLEU score of student models compared to the corresponding power draw of the
distillation methods mentioned when using 1 GPU

In Figure 1 we show the BLEU scores of the student models and the power draw (required
to create the training sets) of the various distillation methods proposed. In the figure we only
show the distillation method when using 1 GPU since that is the most power-efficient option in
most cases. When taking the power draw, and especially the CO2 missions shown in Table 2,
into account, the loss in BLEU score is very insignificant if we assume that all our AI models
need to become much more sustainable.

Setup # of GPUs Time Power (kW) CO2 (kg) Cost in (USD)
1 13:35:28 9,705.34 9.85± 3.32 8.21

Original 2 10:34:02 11,531.92 11.71± 3.94 20.46
4 11:21:34 10,467.93 10.63± 3.58 31.90
1 11:07:05 4,685.21 4.76± 1.60 6.72

Beam 2 07:26:50 4,337.43 4.40± 1.48 14.42
4 08:31:21 5,893.63 5.98± 2.01 23.93
1 11:10:30 6,146.91 6.24± 2.10 6.75

Quantisation 2 06:59:42 8,207.46 8.33± 2.80 13.54
4 10:31:47 8,779.62 8.91± 3.00 29.57
1 00:47:36 560.59 0.57± 0.19 0.48

Combined 2 00:30:26 618.17 0.63± 0.21 0.98
4 00:42:58 646.55 0.66± 0.22 2.01

Table 2: Comparison of the translation time, power draw and approximate CO2 emissions of
various decoding setups.

When using only a smaller beam size or quantisation, respectively, the translation times
are only marginally improved, i.e. two or three hours compared to six when using the combined
method. Interestingly, quantisation alone leads to a minimal speedup, and it is experimenting
with mini- and maxi-batch size that has the most significant impact. When trying to use the same
batch sizes without quantisation however, the GPUs would run out of memory after translating
only a few sentences. We therefore draw attention to utilising the GPU specifications when
considering mini- and maxi-batch size when using quantisation for speeding up the distillation
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Setup # of GPUs Training time BLEU TER chrF
1 07:17:39 26.66 49.5 59.37

Original 2 04:22:14 26.49 49.3 59.51
4 04:05:28 26.22 50.1 59.11
1 06:42:33 26.25 48.6 60.51

Beam 2 04:23:33 26.38 48.5 60.52
4 04:38:00 26.49 50.3 59.44
1 06:18:08 26.21 48.7 60.32

Combined 2 04:25:53 26.53 48.7 60.49
4 04:38:00 26.21 49.5 60.02

Table 3: Comparison of the performance of the student models using the various decoding
setups.

Figure 2: The CO2 emissions and cost in USD of translation when using 1,2 or 4 GPUs during
the distillation process.

process.
Taking the power draw and CO2 emissions into account, Table 2 shows that using a beam

size of 1 decreases the power draw by almost half and in turn the carbon emissions, even though
the translation time is only marginally shorter. When using quantisation without optimal batch
sizes however, the power draw is more than that of the beam setup while the translation time
remains similar. Quantisation is therefore only an optimisation method for inference when the
correct batch sizes are taking into account, depending on the GPU specifications.

The effects that these methods of speeding up decoding have on the accuracy of the student
models are shown in Table 3. When taking the carbon emissions, decoding time and accuracy
into account, it is clear that using the combined method is the most efficient setup to use when
distilling knowledge from a teacher to a student model, since the accuracy decreased by less
than 1 BLEU point while translation time decreased by 10 or more hours.

When considering the cost for TSPs, as seen in Table 2, using only 1 GPU is the most
cost-effective for all methods of decoding. Interestingly, while using 2 GPUs speeds up the
translation time for all methods, the estimated cost is double that of using only 1 GPU.
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Figure 2 provides a summary of the most notable results in Table 2. It is clear that as the
number of GPUs in the translation process increases, the CO2 emissions go up in most cases
and the cost of using an AWS EC2 instance rises in all scenarios. The increase in CO2 emissions
and cost is not linear as the number of GPUs is increased, nor is the translation time shown in
Table 3 due to the performance overheads of using multiple GPUs (Xu et al., 2021).

4 Conclusions and Future Work

We described various methods in which the distillation of knowledge can be made more effi-
cient and in turn more sustainable. Most significantly, the impact of batch sizes when using
quantisation and a smaller beam size result in a less than 1 BLEU point drop in accuracy, while
at the same time reducing decoding time hby at least 10 hours compared to the original method.

In terms of efficiency, the combined setup is found to be the best method for distilling
knowledge from the teacher to student models. The CO2 emissions of our combined setup
is on average 10kg less than the original setup while accuracy decreases only slightly. The
environmental impact of distilling knowledge from a teacher model to a student model are
encouraging, and we contend that more importance should be given to this issue since inefficient
methods emit on average 10 times more CO2 than optimised methods, yet the cost in accuracy
of the student models is minimal. Taking only the end result (student model) into account is not
sustainable and more consideration needs to be put into the whole process.

We have shown that during the process of distilling knowledge from a teacher model to
a student model, using just 2 GPUs can result in the fastest translation time while using 1
GPU is the most cost-effective and in most cases the most environmentally friendly as well.
Interestingly, from our results it is clear that when taking CO2 emissions and cost into account,
using 4 GPUs is much less efficient compared to using only 1 GPU.

In future we will investigate the efficiency of using CPUs during the distillation process
as well as during inference when the student models are deployed. We also aim to develop a
composite metric that takes carbon emissions, accuracy and access to resources into account
in order to rate the performance of MT Systems. Furthermore, we aim to investigate to what
extent these decoding methods work on different language pairs, especially their effect on low-
resource languages where access to data is considerably more problematic.
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