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Abstract

Modeling text-based time-series to make pre-
diction about a future event or outcome is an
important task with a wide range of applica-
tions. The standard approach is to train and test
the model using the same input window, but this
approach neglects the data collected in longer
input windows between the prediction time and
the final outcome, which are often available
during training. In this study, we propose to
treat this neglected text as privileged informa-
tion available during training to enhance early
prediction modeling through knowledge distil-
lation, presented as Learning using Privileged
tIme-sEries Text (LuPIET). We evaluate the
method on clinical and social media text, with
four clinical prediction tasks based on clin-
ical notes and two mental health prediction
tasks based on social media posts. Our re-
sults show LuPIET is effective in enhancing
text-based early predictions, though one may
need to consider choosing the appropriate text
representation and windows for privileged text
to achieve optimal performance. Compared
to two other methods using transfer learning
and mixed training, LuPIET offers more sta-
ble improvements over the baseline, standard
training. As far as we are concerned, this is the
first study to examine learning using privileged
information for time-series in the NLP context.

1 Introduction

Time-series forecasting, or early prediction, is
an important machine learning task with a wide
range of applications, such as weather predic-
tion (Krasnopolsky and Fox-Rabinovitz, 2006; Es-
peholt et al., 2022) and stock forecasting (Xu and
Cohen, 2018; Sharma et al., 2017). Predicting fu-
ture events or outcomes would enable timely re-
sponses that can bring significant social and eco-
nomic benefits. Meanwhile, most existing works
on forecasting or early prediction use structured
measurements or features as input (Steyerberg,
2009), and studies to leverage unstructured text
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Figure 1: Different methods to leverage later data from
the time-series to assist early prediction. LuPIET refers
to learning using privileged time-series text in training
via knowledge distillation. Here 1-day is the baseline
prediction window at test time. Models may leverage
data from the prolonged training windows, e.g., 3-day,
to enhance the performance for the shorter test window.

to explore temporal patterns are still scarce (Assale
et al., 2019). Moreover, user-generated, domain-
specific textual data, such as clinical and social me-
dia texts, can be noisy and complex to model (Bald-
win et al., 2013; Huang et al., 2020). This creates
challenges in utilizing text for early prediction.

The standard framework for early prediction
trains and tests machine learning models using the
same input window, depicted in Figure 1a. Though
this is the widely adopted approach, it discards
data that are outside the prediction window but are
collected in practice as part of the training set. Ide-
ally, these data can be utilized to enhance early
prediction, such as learning the future trajectory
of the time-series to assist modeling. Leveraging
data available at training time but not at test time –
referred to as privileged information – for training
has been proposed as Learning using Privileged
Information (LuPI) (Vapnik and Vashist, 2009;
Vapnik and Izmailov, 2015). Recent studies have



shown LuPI can be successfully applied to utilize
time-series privileged information for early predic-
tion (Hayashi et al., 2019; K.A. Karlsson et al.,
2022). However, these experiments focus on struc-
tured features from synthetic data or distributions
under certain assumptions. It remains unknown
whether the approach applies to text-based early
prediction applications, where natural language
presents distinct characteristics and variation.

In this study, we adapt the time-series LuPI
to textual data, presented as Learning using
Privileged tIme-sEries Text (LuPIET). We eval-
uate LuPIET on a range of tasks to evaluate its
efficacy. LuPIET trains a more performant model
using a longer predictive window that includes data
created after the target prediction point as a teacher
model. This is applied to guide the training of the
early model through knowledge distillation. Fig-
ure 1b gives an example where the prediction win-
dow is 1-day, and we aim to guide the training
of the early model with the teacher model trained
from a 3-day window. To compare with LuPIET,
we also apply two other methods, common in other
domains but not well-examined for text-based time-
series, to leverage data collected after the prediction
time but available for training. These are transfer
learning and mixed training, depicted in Figure 1c
and Figure 1d, respectively.

We examine LuPIET using two challenging and
domain-specific datasets containing clinical and
social media text. Specifically, we explore four risk
and diagnosis prediction tasks with clinical text
and two mental health status prediction tasks with
social media. The results show LuPIET can be an
effective and stable approach for improving early
prediction based on textual input.

In summary, this work examines the usefulness
of privileged time-series information in the NLP
context to support early prediction. Our main con-
tributions include:

1. Proposing LuPIET to improve time-series
modeling for text-based early prediction.

2. Evaluating the performance of LuPIET on two
domains using clinical and social media cor-
pora, presenting results on six prediction tasks.
We show that when the privileged text is ap-
propriately chosen and represented, LuPIET
can improve over the baseline for early pre-
diction by being more sample efficient.

3. Benchmarking the performances of two other

competitive methods to support early predic-
tion. We find although they can sometimes
outperform LuPIET, they are in certain cases
detrimental to modeling. LuPIET offers more
consistent and stable improvements over the
baseline.

2 Related Work

Early prediction with text Forecasting or early
prediction has been widely studied in various do-
mains and applications. For example, Steyerberg
(2009) demonstrates the different facets and mod-
eling strategies for clinical prediction modeling.
Most initial works in the field focus on structured
measurements as input features, with some at-
tempts to extract and include shallow textual fea-
tures or topics (Suresh et al., 2017; Ghassemi et al.,
2015, 2014). More recent studies aim to put more
stress on text by applying more powerful mod-
els to handle the complexity of language (Matero
and Schwartz, 2020; Seinen et al., 2022). They
have shown promise in modeling various types of
text to support the prediction of mental health is-
sues (Halder et al., 2017), stock market trends (Xu
and Cohen, 2018), and clinical outcomes (Hsu
et al., 2020).

Learning using privileged information LuPI
presents a framework to leverage features only
available at the train time but not at test time (Vap-
nik and Vashist, 2009). It has shown improved
results in a range of applications, including rec-
ommendation (Xu et al., 2020) and image pro-
cessing (Lee et al., 2020). Recently, the approach
has been applied to improve early prediction using
time-series data, which leverages data observed be-
tween the prediction time and the future outcome as
privileged information. Hayashi et al. (2019) exam-
ines this approach on a synthetic dataset and a real-
world dataset on air conditions with eight variables.
K.A. Karlsson et al. (2022) further formalizes the
framework for time-series as Learning using Privi-
leged Time-Series (LuPTS) and proves it is guar-
anteed to result in more efficient learning when
the time-series are drawn from a non-stationary
Gaussian-linear dynamic system. However, none
of the prior works examines text as input.

Knowledge distillation In knowledge distilla-
tion (KD), a more performant teacher model guides
a smaller student model to achieve better results
by matching the distributions of their predictions
or output logits (Hinton et al., 2015). By training



with the teacher output, the student model is pro-
vided with soft targets that contain more nuanced
information about the label distribution compared
to the true, hard labels. KD has been widely used
for model compression (Sanh et al., 2019; Tung
and Mori, 2019; Jiao et al., 2020) and other ma-
chine learning applications (Furlanello et al., 2018;
Clark et al., 2019) to transfer knowledge across
models with different strengths, sizes, or even ar-
chitectures. In contrast, the classic transfer learn-
ing focuses on a single model and transfers knowl-
edge across datasets, often from larger datasets to
smaller ones (Devlin et al., 2019). Early works
have shown the connection between LuPI and KD,
unified them under generalized distillation (Lopez-
Paz et al., 2016). Distillation has become a standard
implementating technique to leverage privileged in-
formation (Hayashi et al., 2019; Xu et al., 2020).

3 Methods

Here we present the problem setting for early pre-
diction and then describe how learning using privi-
leged time-series text (LuPIET) works.

3.1 Problem setting

The goal for early prediction is to learn a mapping
function f(θ) between input Xt,n ∈ Rn×d and
future events or outcomes Y ∈ R, where t =
1 . . . T is a time point of the time-series defined by
the prediction window, and n = 1 . . . N is a textual
note or post available in the window Xt. Since N
can vary across prediction windows, we neglect the
notation of n from now on for simplicity. Note that
[X1, X2, ..., XT ] share the same label Y as they
come from the same sample, where Xt is always a
subset of Xt+1. We assume the baseline prediction
window by setting t = 1, and the baseline model
trained in Figure 1a is obtained as

θbase = argmin
θ∈Θ

H(f(X1), Y ) (1)

where H is the cross entropy loss. We then aim
to improve θbase by leveraging texts created chrono-
logically after X1, namely [X2, X3, ...XT ].

3.2 Learning with privileged time-series text

LuPIET optimizes a knowledge distillation loss that
maps the predictions between the baseline model
and the new model trained with privileged text,
which can be viewed as a teacher model. We train
this teacher model using input from a prolonged

prediction window compared to baseline, namely
Xt where t ≥ 2, to obtain

θt = argmin
θ∈Θ

H(f(Xt), Y ) (2)

Then let pbase(x) and pt(x) be the output log-
its from the base model and teacher model, and
we scale them with a temperature τ before taking
the softmax, as defined in the original setting of
knowledge distillation (Hinton et al., 2015):

pτbase(xi) =
epbase(xi)/τ∑K
j=1 e

pbase(xj)/τ
(3)

pτt (xi) =
ept(xi)/τ∑K
j=1 e

pt(xj)/τ
(4)

where K is the number of labels. We calculate
the distillation loss as the KL-divergence between
the two scaled logit distributions as

LKD = DKL(p
τ
base(x)||pτt (x)) (5)

This distillation loss is then added to the cross en-
tropy loss to train the final model that consumes the
baseline input X1, which is obtained by optimizing
the following training objective:

L = (1− α)H(f(X1), Y ) + αLKD (6)

where α is a hyperparameter and 0 ≤ α ≤ 1.

3.3 Other options to improve early baseline
Besides LuPIET, we also examine two other sim-
ple methods to leverage privileged text to assist
early training — transfer learning and mixed train-
ing. Transfer learning (Zhuang et al., 2021) refers
to further fine-tuning θt using X1 by minimizing
the standard cross entropy loss. In other words,
we initialize the training in Eq 1 using the model
parameters from Eq 2, as shown in Figure 1c.

In the mixed training method, the approach is to
mix Xt with X1 and train the model from scratch.
This can be considered as a data augmentation ap-
proach (Wen et al., 2021) which enriches the train-
ing set and encourages the model to learn from all
variations of the same sample. This is depicted in
Figure 1d.

4 Experiments

We examine LuPIET using datasets from two chal-
lenging textual domains: clinical notes and social



media posts. All datasets contain notes or posts
that are created chronologically, naturally forming
the text-based time series. Here we introduce them
in more detail.

4.1 Clinical datasets and tasks
For clinical text, we use the MIMIC-III
database (Johnson et al., 2016) to construct the
datasets to predict four clinical outcomes and tar-
gets, which are in-hospital mortality, in-ICU mor-
tality, length-of-stay (LOS) over 3 days, and di-
agnostic related groups (DRG). These are popular
tasks in the literature for clinical early prediction
and we follow previous works to define and ex-
tract cohorts for them (Wang et al., 2020; Liu et al.,
2021, 2022a). We note that the early DRG predic-
tion is different from the typical medical coding
performed post-discharge (Dong et al., 2022; Liu
et al., 2022b) as it aims to predict diagnosis and
estimate care costs while patients are still in the
hospital (Gartner et al., 2015; Islam et al., 2021).

For each patient in the cohort, we extract all clin-
ical notes during the hospital course that are created
before the prediction time, sort them chronologi-
cally, and remove empty or duplicated notes. The
prediction window is defined by the number of
days after the patient ICU admission. For exam-
ple, the 3-day window would include all clinical
notes charted by the end of the third day of ICU
admission.

We define the baseline window for the clini-
cal prediction tasks as 1-day, which would allow
timely interventions and resource arrangements to
be made for the hospitalized patients. This is also a
common choice made in the literature (Wang et al.,
2020; Hsu et al., 2020). We then examine two ex-
tended prediction windows to train LuPIET, which
are 3-day and 7-day. Notice there are cases whose
time-series lengths are less than 3-day or 7-day. We
did not distinguish these cases from others in the
data extraction process to ensure we can directly
compare with baseline results. For example, if a
case has a length of 2 days, then the input texts for
this case under 3-day and 7-day are the same. The
numbers of train/validation/test cases are presented
in Table 1. Notice the two mortality predictions
and LOS prediction share the same cohort.

4.2 Social media datasets and tasks
For social media texts, we focus on the eRisk 2018
datasets (Losada and Crestani, 2016; Losada et al.,
2018) to use Reddit posts to predict potential men-

# train # validation # test # labels
Mortality & LOS 26729 3407 3392 2
DRG 16296 972 1866 570
eRisk Depression 656 82 82 2
eRisk Anorexia 376 47 48 2

Table 1: Number of cases for the train, validation, and
test sets of the examined prediction tasks.

tal health issues, which are depression and anorexia.
Predicting mental health status using social media
data is an important yet challenging task (Gun-
tuku et al., 2017) that draws much attention in re-
cent years from the NLP community (Benton et al.,
2017; Cohan et al., 2018). To parse the datasets,
we use both the title and the content as input text
for the post. The datasets present the posts in ten
chunks, which are evenly split by time and sorted
in the chronological order. We follow this format
to define the prediction window by the number of
chunks used as input, e.g., a 3-chunk window in-
cludes all posts in the first three chunks.

Since social media text could present noisier tem-
poral patterns, we examine two baseline windows
for the prediction tasks, which are 3-chunk and 7-
chunk, and only use the full 10-chunk as prolonged
prediction window. We make this choice also be-
cause the eRisk datasets are relatively small and
the performance can be unstable. We use all sam-
ples from the datasets for each task and split them
in a 0.8/0.1/0.1 ratio, and the numbers are again
presented in Table 1.

4.3 Text representation and modeling

We examine two text representations for the text-
based time-series modeling. The first one is to
model all input text as a single text string by con-
catenating all notes or posts together. This allows
us to model the input as a sequence of words, which
considers the word-level details. This is a stan-
dard practice in NLP. The other representation is
to encode all notes or posts into document embed-
dings and model them at the document level. This
method, on the other hand, may lose details dur-
ing the document encoding process, but it helps to
maintain the temporal patterns of the texts.

For word-level representation, we use domain-
specific pretrained word embeddings for the two
datasets. Specifically, we use BioWordVec (Zhang
et al., 2019) for clinical text and GloVe-840B (Pen-
nington et al., 2014) for social media. Since the
concatenated text string is rather long, we adapt
MultiResCNN (Li and Yu, 2020) for modeling,



which is a CNN-based model that has shown strong
results in long-document classification. The model
enhances the vanilla text-CNN model by adding
more filters with residual connections. Given space
restrictions here, we do not introduce the architec-
ture in detail and refer readers to the original paper
for more information.

For document-level modeling, we first encode
notes or posts using BERT (Devlin et al., 2019) by
extracting the [CLS] token as the final represen-
tation. We again try to align BERT with the do-
mains of the text by using ClinicalBERT (Alsentzer
et al., 2019) for clinical notes and RoBERTa (Liu
et al., 2019) for Reddit posts. We then apply
LSTM (Hochreiter and Schmidhuber, 1997) to
model the sequence of notes and use the last hidden
state for final prediction. We use LSTM due to its
power to extract and model temporal patterns.

4.4 Training and evaluation

We tune the hyperparameters for all examined
methods based on the validation set and then re-
train the model with the best configuration with
multiple random seeds. Specifically, we tune the
filter number and sizes for the CNN model, hid-
den size for the LSTM model, and the number of
layer, dropout, learning rate, weight decay for both
models. Adam (Kingma and Ba, 2014) is used as
the optimizer throughout the experiments. After
obtaining the best architectural configuration for
the baseline model, we fix the setup and tune τ
and α for LuPIET. We adopt random search for
the clinical datasets and grid search for social me-
dia datasets given the former takes much longer
to run. We facilitate the hyperparameter search-
ing with asynchronous successive halving algo-
rithm (Li et al., 2020), based on the implementation
from Ray Tune (Liaw et al., 2018). We perform all
our experiments using pytorch (Paszke et al., 2019)
and pytorch-lightning1 on V100 GPUs.

For evaluation, we use area under the re-
ceiver operating characteristics curve (AUROC)
and precision-recall curve (AUPR) for the binary
classification tasks, and accuracy and macro F1 for
multiclass classification. We run the final, tuned
model for each task with five random seeds for the
clinical datasets and average the results, and run
with ten seeds for the social media datasets given
the small data size.

1https://www.pytorchlightning.ai/

5 Results

5.1 Comparing LuPIET with baseline
We present our main results with the word-level
modeling for clinical prediction tasks in Table 2.
We observe LuPIET using the extended 3-day and
7-day windows improves over the standard base-
line window on 1-day for in-hospital mortality, in-
ICU mortality, and DRG predictions. Meanwhile,
LuPIET does not provide much benefit for predict-
ing LOS>3days. We believe this is related to the
nature of the task as the extended windows are al-
ready longer than the target in consideration, so the
teacher models can take advantage of this shortcut
to make accurate and confident predictions that are
close to the true labels and can no longer serve as
soft targets (Hinton et al., 2015; Cho and Hariharan,
2019).

The results for social media datasets are pre-
sented in Table 3. Here we examine 3-chunk and
7-chunk as the baseline windows and apply LuPIET
trained using full length, i.e., 10-chunk. We again
observe the benefit of LuPIET over the baseline
results, especially under AUROC. However, we
note that due to the much smaller dataset size, the
variances in the results can be large. In a couple
of cases, LuPIET achieves slightly lower AUPR
scores than the baseline, but the results are still
comparable given the variance.

5.2 Comparing LuPIET with other methods
We focus on the clinical datasets to compare
LuPIET with transfer learning and mixed train-
ing approaches given they have relatively sufficient
data to observe their behavior. In Table 2, we find
LuPIET still performs strongly when compared to
these two approaches, but other methods may out-
perform LuPIET, such as mixed training on DRG
prediction. In this particular case, we believe this
is caused by the DRG dataset being a multiclas-
sification task with 570 labels, thus not having
enough samples for training. By mixing differ-
ent windows of the same sample together serves as
a data augmentation strategy, which alleviates the
low-resource situation for DRG to achieve better
results. Similarly, when modeling at the note level
(Table 4), transfer learning may be able to better
transfer the temporal relations across windows thus
achieving slightly better results.

However, we observe that transfer learning and
mixed training do not always improve over the
baseline, which is further shown when we examine



In-hospital Mortality In-ICU Mortality LOS>3days DRG
AUROC AUPR AUROC AUPR AUROC AUPR Acc MacroF1

Baseline

1-day
0.867

(0.0032)
0.474

(0.0151)
0.862

(0.0110)
0.373

(0.0252)
0.690

(0.0034)
0.625

(0.0047)
0.282

(0.0058)
0.105

(0.0106)
LuPIET

3-day → 1-day
0.876

(0.0027)
0.491

(0.0039)
0.880

(0.0020)
0.429

(0.0092)
0.693

(0.0042)
0.626

(0.0058)
0.287

(0.0068)
0.116

(0.0067)

7-day → 1-day
0.879

(0.0029)
0.501

(0.0093)
0.880

(0.0024)
0.413

(0.0076)
0.692

(0.0035)
0.627

(0.0041)
0.290

(0.0097)
0.115

(0.0130)
Transfer

3-day → 1-day
0.863

(0.0026)
0.466

(0.0063)
0.866

(0.0060)
0.381

(0.0231)
0.695

(0.0036)
0.612

(0.0049)
0.293

(0.0033)
0.134

(0.0059)

7-day → 1-day
0.865

(0.0040)
0.482

(0.0073)
0.860

(0.0051)
0.379

(0.0089)
0.691

(0.0046)
0.616

(0.0068)
0.284

(0.0027)
0.113

(0.0072)

7-day → 3-day → 1-day
0.864

(0.0040)
0.482

(0.0110)
0.855

(0.0073)
0.374

(0.0098)
0.683

(0.0031)
0.606

(0.0054)
0.285

(0.0093)
0.112

(0.0081)
Mix-train

1-day + 3-day + 7-day
0.866

(0.0031)
0.490

(0.0031)
0.860

(0.0079)
0.398

(0.0077)
0.642

(0.0037)
0.561

(0.0057)
0.298

(0.0025)
0.140

(0.0081)

Table 2: Results of word-level modeling for the four clinical prediction tasks.

Depression Anorexia
AUROC AUPR AUROC AUPR

Baseline - 3-chunk 0.819
(0.0636)

0.458
(0.1606)

0.796
(0.0742)

0.334
(0.1071)

+ LuPIET 0.868
(0.0203)

0.431
(0.1150)

0.830
(0.0742)

0.339
(0.0963)

Baseline - 7-chunk 0.836
(0.0303)

0.470
(0.1374)

0.798
(0.0401)

0.429
(0.1217)

+ LuPIET 0.869
(0.0332)

0.495
(0.0792)

0.807
(0.0239)

0.423
(0.0705)

Table 3: Results for the two mental health prediction
tasks using social media posts.

the note-level modeling results in Table 4. For
example, though it could bring benefits to tasks
like DRG, mixed training is rather detrimental to
the LOS>3days prediction. On the other hand,
LuPIET either improves over the baseline or at
least maintains the performance under both text
representation and modeling strategies.

We also see LOS>3days task does not benefit
much from transfer learning and mixed training ei-
ther, similar to the results with LuPIET. This shows
when adopting these methods to improve the time-
series modeling, it can be important to consider the
nature of the task and to choose proper windows
accordingly.

5.3 Comparing text representations

The results presented in Table 2 and Table 4 for
word- and note-level modeling are comparable for
all the four tasks. Overall, we see modeling at

word level performs much better than at note level,
demonstrating the need to attend to the fine-grained
textual details for these tasks. The LOS>3days is
again an exception where the two sets of results are
similar, showing the task can be inherently more
difficult. Furthermore, modeling at word level
tends to benefit more from LuPIET. For example,
we see much better mortality prediction scores with
LuPIET in Table 2. This indicates that the proper
training of LuPIET exploits the nuances in the data
and it would benefit more when modeling at a finer
granularity.

We do not present the results with document
embeddings for the social media tasks as their AU-
ROC results are sub-optimal and barely over 0.5.
We suspect this is because the Reddit posts are
much noisier and the model needs to sift away
much unrelated information, so encoding all posts
into embeddings is unhelpful.

6 Discussion

6.1 Sampling efficiency
K.A. Karlsson et al. (2022) shows under certain
conditions, such as when the time-series is from
linear dynamical systems with Gaussian noise and
is in Markov structure, privileged information is
guaranteed to improve the learning efficiency of
time-series models. Given these conditions do not
necessarily hold for the natural language that has
distinctive data distribution, here we empirically ex-



In-hospital Mortality In-ICU Mortality LOS>3days DRG
AUROC AUPR AUROC AUPR AUROC AUPR Acc MacroF1

Baseline

1-day 0.844
(0.0058)

0.417
(0.0122)

0.860
(0.0049)

0.369
(0.0172)

0.695
(0.0059)

0.629
(0.0061)

0.228
(0.0057)

0.056
(0.0043)

LuPIET

3-day → 1-day 0.850
(0.0040)

0.428
(0.0108)

0.861
(0.0060)

0.362
(0.0178)

0.696
(0.0034)

0.631
(0.0054)

0.238
(0.0063)

0.056
(0.0055)

7-day → 1-day 0.851
(0.0033)

0.430
(0.0125)

0.860
(0.0046)

0.370
(0.0168)

0.698
(0.0027)

0.635
(0.0039)

0.237
(0.0042)

0.057
(0.0029)

Transfer

3-day → 1-day 0.853
(0.0038)

0.439
(0.0080)

0.862
(0.0069)

0.384
(0.0093)

0.688
(0.0022)

0.615
(0.0044)

0.232
(0.0067)

0.059
(0.0043)

7-day → 1-day 0.833
(0.0037)

0.415
(0.0086)

0.861
(0.0065)

0.371
(0.0123)

0.686
(0.0056)

0.623
(0.0057)

0.230
(0.0070)

0.064
(0.0039)

7-day → 3-day → 1-day 0.829
(0.0073)

0.405
(0.0108)

0.861
(0.0080)

0.362
(0.0147)

0.688
(0.0029)

0.621
(0.0022)

0.232
(0.0052)

0.066
(0.0049)

Mix-train

1-day + 3-day + 7-day 0.838
(0.0019)

0.416
(0.0113)

0.866
(0.0055)

0.382
(0.0125)

0.671
(0.0035)

0.605
(0.0066)

0.236
(0.0073)

0.061
(0.0043)

Table 4: Results of document-level modeling for the four clinical prediction tasks.

Figure 2: Learning curves for the four clinical prediction tasks under two evaluation metrics. The blue curves depict
the results of standard training and the red curves depict those of LuPIET.

amine if privileged text can still benefit NLP mod-
eling efficiency without making other assumptions.
Figure 2 shows the learning curves for the four
clinical prediction tasks, with x-axis is the ratio of
the full dataset used to train the model. We find
LuPIET can lead to more sample efficient learning
in multiple tasks. For example, when training with
only 10% of the whole dataset, privileged learning
achieves significant improvements over the base-
line on in-hospital mortality, LOS, and DRG. When
the model is fed with more samples, we see the dif-
ference between LuPIET and the baseline gradually
converge. This also happens to the much smaller
social media datasets, where we see the larger ex-
tent of improvements with LuPIET under AUROC
in Table 3. Furthermore, LuPIET could reduce the
modeling variance compared to baseline, consistent
with findings on structured time-series (K.A. Karls-
son et al., 2022).

Meanwhile, in certain scenarios, such as for the

in-ICU mortality prediction and for the LOS pre-
diction with sufficient data, we find the benefits of
LuPIET are much weaker. This may reflect our ob-
servations on LOS in Sec 5.1, where the choice of
input windows can be important. Extending input
windows in certain scenarios may not necessarily
include more data. For instance, in the ICU admis-
sions stays are much shorter compared to hospital
stays. This may explain why little benefit is ob-
served for in-ICU mortality prediction.

6.2 Limitations

There are a few limitations with our study. Firstly,
we find it is important to apply LuPIET to ap-
propriate task settings but we did not formalize
the definition of appropriateness, though we of-
fer some possible intuitions (e.g., on the case of
LOS in Sec 5.1). Domain knowledge about the
nature of the task may be needed to realize op-
timal results with LuPIET, which could in some



ways correspond to the assumptions about data
distribution made for successful LuPI in previous
works (Lopez-Paz et al., 2016; K.A. Karlsson et al.,
2022). Future works are needed to provide the the-
oretical explanation for the empirical results and to
guide more effective application of LuPIET.

Secondly, we find sometimes the teacher models
do not benefit from extending the input window
and consuming more time-series data, for example,
the shorter 3-chunk can outperform 7-chunk for
anorexia prediction (Table 3). We did not further
investigate this phenomenon and leave it to future
work to explore the potential causes. We also fo-
cused on the specific time steps for baseline and ex-
tended input windows and did not evaluate in more
time steps, but in the future we would like to con-
sider various time steps in the time-series for both
training and evaluation. Similar evaluation setup
has been examined in prior work (Harutyunyan
et al., 2019), such as framing patient deterioration
assessment as hourly patient mortality predictions.
We regard this setup a promising extension of our
current experiments to examine LuPIET. Lastly, we
do not explore how factors in successful KD ap-
plications (Gou et al., 2021), such as creating con-
sistent teacher models (Beyer et al., 2022), affect
LuPIET, which we consider as a future direction to
better utilize privileged information and to enhance
LuPI in general.

7 Conclusion

In this study, we present LuPIET, a framework to
incorporate longer-range time-series data available
during training to improve text-based early predic-
tions. Though similar ideas have been examined
recently for structured time-series (Hayashi et al.,
2019; K.A. Karlsson et al., 2022), we are not aware
of any previous studies on the use of this privileged
information in the context of text-based time-series.
We find LuPIET is an effective strategy for enhanc-
ing early prediction and for efficient time-series
modeling when applied to appropriate task settings.

LuPIET is implemented by simply optimizing
a distillation loss. Therefore, future works may
extend LuPIET by training with more advanced
distillation techniques, e.g., matching hidden state
instead of logits (Zhang et al., 2018), or combining
with other inputs, e.g., using multi-modal privi-
leged information.
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