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Abstract

Resolving dependencies among dialogue his-
tory is one of the main obstacles in the research
on conversational question answering (CQA).
The conversational question rewrites (QR) task
has been shown to be effective to solve this
problem by reformulating questions in a self-
contained form. However, QR datasets are lim-
ited and existing methods tend to depend on
the assumption of the existence of correspond-
ing QR datasets for every CQA dataset. This
paper proposes a reinforcement learning ap-
proach that integrates QR and CQA tasks with-
out corresponding labeled QR datasets. We
train a QR model based on the reward signal
obtained from the CQA, and the experimen-
tal results show that our approach can bring
improvement over the pipeline approaches.
The code is available at https://github.
com/HLTCHKUST/cqr4cqa.

1 Introduction

Conversational Question Rewrites (QR) systems
paraphrase a question into a self-contained format
using its dialogue history so as to make it easier
to understand by the Conversational Question An-
swering (CQA) system. Prior works (Elgohary
et al., 2019a; Anantha et al., 2021a; Kim et al.,
2021) have shown that explicit guidance of QR
benefits the performance of the CQA models in
multiple questions answering datasets.

However, the existing works on QR in the con-
text of CQA are often ignorant of two critical issues.
Firstly, they are dependent on the assumption that
QR datasets exist on target CQA datasets, although
existing QR datasets only cover a small amount of
CQA. It is also notable that building a novel QR
dataset is expensive. Current works mainly focus
on QuAC (Choi et al., 2018) datasets thanks to QR
datasets constructed from it (Elgohary et al., 2019a;
Anantha et al., 2021a), however, the other popular

⇤ Equal Contribution

CQA datasets such as CoQA (Reddy et al., 2019)
remain less explored. Secondly, although QR task
evaluation is mainly done by automatic metrics that
compute n-gram overlaps with BLEU (Papineni
et al., 2002) or ROUGE (Lin, 2004), and by human
evaluation, there is no correlation guaranteed be-
tween those metrics and the performance in CQA.
In fact, Petrén Bach Hansen and Søgaard (2020)
and Buck et al. (2018) suggest “better” rewrites in
the human eye are not necessarily better for ma-
chines.

To this end, we propose to alleviate the limitation
of the QR system by introducing a reinforcement
learning framework that utilizes QR to overcome
the aforementioned two obstacles. In this frame-
work, a QR model plays the role of “the agent”
which receives rewards from a CQA model which
acts as “the environment.” During training, a QR
model aims to maximize the performance on the
CQA task by generating better rewrites of the ques-
tions. Exploiting the reinforcement learning nature,
we can benefit CQA regardless of the existence of
QR annotation, and we can ensure that QR con-
tributes to the final objective of improving CQA.
Experimental results show that our framework suc-
cessfully improves the CQA performance by 4.1 to
8.6 F1 score on CoQA and 4.7 to 9.2 F1 on QuAC
compared to the pipeline baselines that combine a
QR model and a QA model.

Our contributions in this paper can be summa-
rized three-fold as follow:

• We propose a reinforcement learning frame-
work for CQA which can be applied regard-
less of the existence of corresponding QR
datasets.

• Our experimental results on two popular CQA
datasets show that our approach improves
the performance over the simple combination
baselines of a QA and QR model.
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Figure 1: Overview of our reinforcement learning approach for CQA task that involves a QR model and a QA
model. The current question Qt and its dialogue history are reformulated into a self-contained question Q́t by the
QR model. Then, Q́t and optionally, its dialogue history is passed to the QA model to extract an answer span Ãt

from the provided evidence document. We train the QR model by maximizing the reward signal (F1 score) obtained
by the comparison between the predicted answer span Ãt and the gold span At.

• We provide extensive analysis on suitable set-
tings for our approach, such as training al-
gorithms for the QR model and existing QR
datasets for the QR model initialization.

2 Related Work

2.1 Conversational Question Answering
Recently, along with the raised popularity of works
on dialogue systems (Madotto et al., 2020b,a; Ishii
et al., 2021; Lin et al., 2021; Xu et al., 2021a; Liu
et al., 2019b) and question answering(Su et al.,
2020, 2019, 2022), conversational question answer-
ing (CQA) has gained more attention. CQA task
aims to assist users for information-seeking pur-
pose. It has been widely studied in the recent
years and many CQA datasets have been made
publicly available, such as CoQA (Reddy et al.,
2019), QuAC (Choi et al., 2018), ShARC(Saeidi
et al., 2018), Doc2Dial (Feng et al., 2020), and
DoQA (Campos et al., 2020). Existing works focus
on improving the model structure (Zhu et al., 2018;
Huang et al., 2018; Yeh and Chen, 2019; Ohsugi
et al., 2019; Zhang et al., 2021; Zhao et al., 2021) to
deal with the dialogue history, leveraging different
training techniques, such as adversarial training (Ju
et al., 2019), or utilizing data augmentation via
multi-task learning (Xu et al., 2021b) to improve
the model performance in an end-to-end fashion.
Unlike the aforementioned works, we propose to
increase performance on CQA tasks by improving
the readability of the questions via reinforcement
learning. It may not align with the question read-

ability for human beings. Furthermore, Our pro-
posed approach does not contradict with the above
methods, but can co-exist with them in the CQA
system instead.

2.2 Question Rewrites

As the key challenge in CQA is to under-
stand a highly-contextualized question, several
QR datasets are proposed to offer a subtask in
CQA which is to paraphrase a question in a self-
contained style (Elgohary et al., 2019a; Petrén
Bach Hansen and Søgaard, 2020; Anantha et al.,
2021a). While many of the existing works put more
effort on generating high-quality rewrites (Lin et al.,
2020; Vakulenko et al., 2021), Kim et al. (2021)
recently introduced a framework to leverage QR to
improve the performance of CQA models by addi-
tional a consistency-based regularization. Their
EXCORD feeds the original questions together
with the rewritten questions, whereas we only use
the rewritten questions. Similar to our work, Buck
et al. (2018) train a question rewriting model in
reinforcement learning framework interacting with
the question answering environment to transform
a given query from a declarative sentence into an
interrogative one. It is noteworthy that QR in CQA
requires more effort than in their setting, since we
seek a QR model to elaborate dialogue history so
as to resolve anaphora or ellipsis in a question to
rewrite, rather than simple grammatical transforma-
tion of the given query.
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2.3 Reinforcement Learning in Natural
Language Generation

One of the most common reasons to adopt rein-
forcement learning (RL) methods in natural lan-
guage generation (NLG) is due to inconsistency
between train/test measurement (Keneshloo et al.,
2019). If we apply deep neural network, we of-
ten train with differentiable loss function such as
token-wise cross-entropy; but in test time, we use
BLEU or ROUGE which we cannot directly use as
a loss function. Motivated as such, RL approaches
have been investigated in various NLG tasks, for
example, in machine translation (Ranzato et al.,
2016; Wu et al., 2016; He et al., 2017; Bahdanau
et al., 2017), abstractive summarization (Ranzato
et al., 2016; Paulus et al., 2018; Böhm et al., 2019),
or dialogue generation (Li et al., 2016). If we train
an NLG model from scratch with reinforcement
learning, however, a model frequently suffers from
too large exploration space (Ranzato et al., 2016).
Thanks to the recent advance in large pretrained
language models, RL approaches are investigated
as an alternative fine-tuning approach which can
reflect human preferences (Ziegler et al., 2019; Sti-
ennon et al., 2020; Jaques et al., 2020) or reduce
non-normative text (Peng et al., 2020). Our work
also utilize large pretrained language models and
use RL approach for fine-tuning.

3 Methodology

In this section, we present our reinforcement
learning framework and the training algorithm.
Firstly, we offer several preliminary definitions
used throughout the paper, and secondly, we de-
scribe the strategy to train the whole framework.

3.1 Preliminary Definition

We denote a CQA dataset as {Dn}N
n=1 and the di-

alogue history at turn t as Dt = {(Qi, Ai)}t
i=1,

where Qt is the question and At is the answer.
Along with the QA pairs, the corresponding ev-
idence document Yt is also given.

In our proposed framework, a QA model and
a QR model are involved. In CQA tasks, the an-
swers to the questions are composed as pairs of
start indexes and end indexes in the given para-
graphs, where we denote as At = {at

s, at
e}. Let’s

denote a generated rewrite question sequence of Qt

as Q́t = {q́l}L
l=1. The objective of the QR model

is to rewrite the question Qt at turn t into a self-
contained version, based on the current question

Algorithm 1 RL training process of our QR agent
Require: {Dn}: CQA dataset
Require: ⇡✓0 : Pretrained language model

1: Train an environment f� on {Dn}
2: Initialize an agent ⇡✓ with ⇡✓0
3: while not done do
4: Sample an input state from

the CQA dataset Xt ⇠ {Dn}
5: Construct a rewrite sequence Q́t

which maximize ⇡✓(Q́t|Xt)
6: Calculate F1-score r via r(f�(X́t))
7: Update ⇡✓ using an RL algorithm with

state Xt, action Qt, and reward Rt

8: end while

and the dialogue history Dt�1.
As shown in Figure 1, we consider in a reinforce-

ment learning framework. An agent takes an input
state Xt = (Dt�1, Qt) and generates a paraphrase
Q́t. Then, X́t = (Dt�1, Q́t) and an evidence doc-
ument Yt are provided to an environment, namely,
a QA model f�, which extracts an answer span
Ãt = f�(X́t, Yt). We aim the agent, a QR model
⇡✓, to learn to generate a high-quality paraphrase of
given question based on the reward received from
the environment.

The policy, in our case the QR model, assigns
the probability

⇡✓(Q́t|Xt) =

LY

l=1

p(q́l|q́1, . . . , q́l�1, Xt). (1)

Our goal is to maximize the expected reward of the
answer returned under the policy, namely,

Eq́t⇠⇡✓(·|qt)[r(f�(X́t))], (2)

where r is a reward function. We apply the token-
level F1-score between the predicted answer span
Ãt and the gold span At as the reward r. We can
directly optimize the expected reward in Eq. 2 using
reinforcement learning algorithms.

3.2 Training Algorithm

Prior to the training process, the QA model f�
is fine-tuned on {Dn} and the QR model is ini-
tialized with ⇡✓ = ⇡✓0 , where ⇡✓0 is a pretrained
language model. We apply Proximal Policy Op-
timization (PPO) (Schulman et al., 2017; Ziegler
et al., 2019) to train ⇡✓. PPO is a policy gradi-
ent method which alternate between sampling data
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through interaction with the environment and opti-
mizing a surrogate objective function via stochastic
gradient ascent. PPO makes use of learned state-
value function to compute the variance-reduced
advantage-function. The overview of our training
process is shown in Algorithm 1.

Following Ziegler et al. (2019), we penalize the
reward r with a KL-penalty so as to prevent the
policy ⇡✓ from drifting too far away from ⇡✓0 :

Rt = R(X́t) = r(f�(X́t)) � �KL(⇡✓,⇡✓0),

where � represents a weight factor. We perform
reinforce learning on the modified reward of Rt

instead of r.
Inspired by MIXER (Ranzato et al., 2016), we

apply a cross-entropy loss on the first m tokens of
the generated sequence Q́t by using the tokens from
the original question Qt as the label to enhance
training stability in addition to the KL-penalty. We
decrease the number of tokens where we apply the
cross-entropy loss over time steps, allowing the
policy ⇡✓ to explore more. By applying the cross-
entropy constraint, the PPO objective function L(✓)
is modified into:

Ll =

8
>><
>>:
�

|V|X

i=1

qi,l log(q́i,l) (l  m)

LCLIP(q́l) + cLVF(q́l) (l > m)

(3)

L(✓) =
1

m

mX

l=1

Ll +

LX

l=m+1

Ll, (4)

where |V| is the vocabulary size, LCLIP is the
clipped surrogate loss (see Eq. 7 in Schulman et al.
(2017)), c is a value loss coefficient, and LVF is
the value function loss (see Eq. 9 in Schulman et al.
(2017)).

In addition to MIXER, we introduce another
strategy to improve exploration (denoted as EX-
PLORE) that comes along with beam-search de-
coding. The strategy of using beam-search is to
search for top-k sequences with the highest like-
lihood during the generation process and take the
one with the highest likelihood over k sequences.
Our approach is utilizing the top-k0 (1  k0  k)
sequences collected during beam search for PPO
training. With this approach, we can improve the
exploration capability of the QR model without
requiring additional exploration steps.

4 Experiments

4.1 Datasets
We conduct our experiments on two CQA datasets,
CoQA (Reddy et al., 2019) and QuAC (Choi et al.,
2018). Since the test set is not publicly available
for both CoQA and QuAC, we follow the splitting
introduced by (Kim et al., 2021). We leverage the
train/dev/test split provided by Kim et al. (2021)
for the QuAC experiments. We randomly sample
5% of data samples in the training set in units of
dialogues and adopt them as our validation set for
CoQA since there is no public split available.

CoQA CoQA dataset contains 127K questions
with answers in the conversation form (8K conver-
sations in total). The questions are highly contex-
tualized with the dialogues, and the answers are
free-form text with their corresponding evidence
in the passage for reference. In this paper, follow-
ing the settings of the other existing works (Huang
et al., 2018; Yeh and Chen, 2019; Ju et al., 2019),
we still construct the answers as spans extracted
from the passages, where the gold labels used in
training are the snippets with the highest F1 score
compared to the annotated answers.

QuAC QuAC is also a crowd-sourced CQA
dataset that contains 14K information-seeking QA
conversations. In contrast to CoQA, QuAC is de-
signed as a span-extraction dataset with dialogue
acts. Moreover, 20% of the questions in QuAC are
unanswerable questions, whereas those in CoQA
take up ⇠1.3%.

We initialize the QR model with a pre-trained
language model that is fine-tuned on QR datasets.
We apply two QR datasets, i.e., QReCC and CA-
NARD, for the fine-tuning to obtain more insights
on the influence of the QR model initialization with
different data sources.

CANARD CANARD dataset (Elgohary et al.,
2019b) is a question-rewriting (QR) dataset which
aims at conducting question-in-context rewriting
to convert the questions with long conversation
histories into short and self-contained questions.
The questions are generated by rewriting a subset
of the original questions in QuAC dataset. The
dataset is split in to training, development, and test
sets in size of 31K, 3.4K, and 5.6K.

QReCC QReCC dataset (Anantha et al., 2021b)
is another QR dataset. In contrast to CANARD,
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Models
CoQA QuAC

Overall F1 Child. Liter. M&H News Wiki. F1 HEQ-Q HEQ-D

end-to-end 84.5 84.4 82.4 82.9 86.0 86.9 67.8 63.5 7.9

QReCC
pipeline-eval 80.6 80.8 78.6 78.3 81.7 83.7 62.9 58.5 5.2
pipeline-train 82.9 82.9 80.9 81.5 84.4 84.8 66.3 62.0 6.6

ours 84.7 84.3 83.1 82.7 86.3 86.8 67.6 63.2 7.8

CANARD

pipeline-eval 75.9 75.5 74.8 73.1 76.3 79.8 58.2 54.5 5.2
pipeline-train 82.8 83.4 80.1 80.8 84.4 85.6 66.5 62.5 7.4
EXCORD† 83.4 84.4 81.2 79.8 84.6 87.0 67.7 64.0 9.3

ours 84.4 84.1 82.7 82.6 86.0 86.7 67.4 62.7 8.1

Table 1: Evaluation results of our approach and baselines on the test set. EXCORD† follows the results reported
in Kim et al. (2021). Bold are the best results amongst all. Underlined represents the best score on each combination
of the CQA and QR datasets.

QReCC dataset is built upon three publicly avail-
able datasets: QuAC, TREC Conversational Assis-
tant Track (CAsT) (Dalton et al., 2020) and Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),
where QreCC contains 14K dialogues with 80K
questions in total, and 9.3K dialogues are from
QuAC. The sampled data are further extended to
the open-domain CQA setting. It also supports the
passage retrieval and reading comprehension tasks.
The dataset is split into training, development, and
test sets. However, in the released version, the
training and development set are merged. In the
experiments, we directly train the model with the
merged training set and use the test set for evalua-
tion.

4.2 Evaluation Metrics

To automatically evaluate the performance of the
QA models, following Reddy (2020), we leverage
the unigram F1 score. In CoQA evaluation, the
models are also evaluated per domain on all six
domains as listed in the official validation set (our
test set instead), i.e., Children Stories (Child.), Lit-
erature (Liter.), Mid-High School (M&H), News,
and Wikipedia (Wiki.). Following the leaderboard,
for the QuAC dataset, we incorporate the human
equivalence score HEQ-Q and HEQ-D for QuAC
evaluation. HEQ-Q indicates the percentage of
questions on which the model outperforms human
beings and HEQ-D represents the percentage of
dialogues on which the model outperforms human
beings for every question in the dialogue.

4.3 Models

QA model In all the experiments, we leverage
pre-trained RoBERTa (Liu et al., 2019a) model
as the initial model and adapt it to different CQA
tasks (see Table A1 in Appendix for more details).
The RoBERTa model is the leading pre-trained
model according to different leaderboards and it
has shown its effectiveness on QA tasks (Ju et al.,
2019; Zhao et al., 2021; Yasunaga et al., 2021; Zhu
et al., 2021). The model is trained to predict the
start positions and the end positions of the given
contexts with respect to the questions. Since our
proposed method is model-agnostic, the QA com-
ponent in the framework can be replaced with any
existing QA models.

QR model We use GPT-2 (Radford et al., 2019)
as the base model to train the QR models (see Ta-
ble A2 in Appendix for more details). In the QR
training process, we provide the dialogue history
and the current question as the inputs and train
the model to rewrite the current question into a
self-contained version that is able to be answered
without considering the dialogue history.

Model selection and initialization in RL Before
applying our methods, the QA and QR models
are initialized with the best QA and QR baseline
models. For both QA models that are trained on
CoQA and QuAC datasets, the models with the
highest F1 score on the validation set are selected.
We use different metrics for the QR model selection
on two datasets, following the original metrics that
are used for model evaluation. We select the best
QR model checkpoint on the CANARD dataset and
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...
Far on in the hot days of June the Excommunication,
for some weeks arrived from Rome, was solemnly
published in the Duomo. Romola went to witness
the scene, that the resistance it inspired might
invigorate that sympathy with Savonarola ...

...
Jenny loves singing. But her baby
sister is crying so loud that Jenny
can’t hear herself, so she was angry!
Her Mom said she could try to play
with her sister, but that only made ...

Utterance F1 Score Utterance F1 Score

Qt�1 Where was the Excommunication published? Qt�1 How is she feeling?
At�1 in the Duomo At�1 Angry.
Qt When? 0.61 Qt Why? 0.82
Q́t When was the Excommunication published? 1.0 Q́t Why is she feeling? 0.98

Table 2: Examples of rewritten questions by the trained QR model initialized with QReCC. We can see that the
model learns how to recover the abbreviated contents from the dialogue history to get a better score on CoQA.

QReCC dataset based on the BLEU 1 score and the
unigram recall (ROUGE-1 R) score respectively.

4.4 Baselines

We compare our proposed approach with three dif-
ferent settings: (i) directly finetuning the QA model
on the CQA tasks without the QR model (end-to-
end), (ii) inferencing the QA model with questions
rewritten by the QR model (pipeline-eval), and (iii)
finetuning the QA model with questions rewritten
by the QR model (pipeline-train).

4.5 Experimental Setup

Our implementation is based on Wolf et al. (2020).
We conduct all of the experiments with GeForce
RTX 2080 Ti. To obtain the models for initializa-
tion, GPT-2 is trained on QReCC and CANARD
dataset as the QR model, and RoBERTa is trained
on CoQA and QuAC datasets as the QA model
with Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 3e � 5. We report other hyper-
parameters used in the model initialization in Ta-
ble A1 and Table A2 in Appendix.

For PPO training, we train the QR model with
Adam optimizer with a learning rate of 1e � 7.
Further, we use beam search with beam size of
5, preventing generation repetition (Keskar et al.,
2019) with using repetition penalty of 1.1, and set
the maximum input sequence length to 512. On the
MIXER settings, we initialize cross entropy length
as 3 and limits its minimum to 1. We then run the
PPO with value function coefficient of 1.0, while
ensuring the sequence length of question rewriting
model input to be 150 tokens maximum and the

1https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu-detok.perl

generations length to be 50 tokens at maximum.
To ensure that the learned policy does not deviate
too much, we apply an additional reward signal,
adaptive KL factor � according to the magnitude
of the KL-penalty with a KL-coefficient K� = 0.1.
Other hyperparameters are listed in Table A3 in
Appendix.

4.6 Results
We report our experimental results in Table 1. Our
approach achieves 84.7 and 67.6 F1 scores on the
CoQA and QuAC datasets, respectively, and con-
stantly outperforms the pipeline baselines. As
shown in the examples listed in Table 2, our ap-
proach successfully teaches the QR model to refer
to the dialogue history and recover the abbreviated
contents if necessary. Comparing to the pipeline-
eval, our approach scores at least 4.1 F1 score bet-
ter, which indicates that our reinforcement learning
approach successfully trains the QR model to para-
phrase the questions into more preferred format of
the QA model from the QR model initialization.
Our approach performs better at least by 1.0 over-
all F1 score than EXCORD (Kim et al., 2021) on
CoQA, and comparably on QuAC. However, our
approach could not contribute to the considerable
improvement over the end-to-end baseline, which
poses the need for further investigation.

5 Discussion

In this section, we provide our findings regarding
the most suitable settings of our approach, includ-
ing the comparison of the QR datasets for initial-
ization, the QR model architectures, the training
algorithms, and the effect of the decoding strategy.
For automatic evaluation, we report Exact Match
(EM) in addition to the unigram F1 score. EM in-
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Models # Params
Evaluation

F1 EM

GPT-2 243M 84.7 76.6
BART-base 210M 83.6 75.7

Table 3: Comparison of the QR model architectures
initialized with QReCC and further trained on CQA.
GPT-2 achieves a higher F1 score and EM than BART-
base. Note that we have twice as many parameters
as GPT-2 and 1.5 times as BART-base since we copy
the decoders and train them for estimating the value
function.

dicates that the percentage of the predictions is the
same as the gold answers, while the F1 score eval-
uates the performance with uni-gram overlapping.

5.1 Comparison of QR datasets for
Initialization

We compare the effect of QR dataset initialization,
i.e., QReCC and CANARD, to the evaluation per-
formance of the CQA task. As shown in Table 1,
QR models trained with QReCC dataset almost al-
ways performs better than the ones trained with CA-
NARD dataset, with one exception on the pipeline-
train approach on the QuAC dataset. We assume
this is because QReCC gives more generalization
ability to the QR models since QReCC is composed
of several QA datasets, whereas CANARD is more
devoted to QuAC as it is a subset of QuAC.

5.2 Comparison of QR Model Architectures

In the search for suitable architecture, we com-
pare the architectures of the QR models in the RL
training both using GPT-2 and BART-base (Lewis
et al., 2020). First, we train BART with QReCC in
the same way as GPT-2 and then fine-tune it with
CoQA using our reinforcement learning approach.
It is noteworthy that utilizing the BART-base serves
the system worse fits compared with using GPT-2
as reported in Table 3. However, this performance
gap could be due to our implementation. For BART,
we only copy the decoder to estimate the value func-
tion, resulting in 70M parameters for estimating
the value function, but GPT-2 uses all 117M pa-
rameters for it. In future, we plan to attempt to use
the whole parameters of BART for estimating the
value function.

Algorithm
CoQA QuAC

F1 EM F1 EM

PPO 84.7 76.6 67.6 51.3
REINFORCE 84.2 76.1 64.8 49.3

Table 4: Comparison between training algorithms of
the QR model. PPO scores constantly better than the
REINFORCE algorithm.

5.3 Comparison of RL algorithms

In addition to the PPO approach, we explore the
REINFORCE algorithm (Williams, 1992) to train
⇡✓. We use self-critical sequence training (Rennie
et al., 2017) instead of MIXER in REINFORCE
experiments. In self-critical sequence training, we
normalize the reward r derived from the sampled
rewrites X́t with the reward derived from another
rewrite which is generated by greedy decoding. We
use Adam optimizer with a learning rate of 1e � 7
and keep the other hyperparameters the same as the
PPO training.

We report the evaluation results of CoQA and
QuAC with the initialization of QReCC in Table 4.
REINFORCE could not outperform PPO, although
bringing some improvement over the majority of
the pipeline baselines. This observation that PPO
is better than the REINFORCE supports the ex-
perimental results reported in Andrychowicz et al.
(2021).

5.4 Ablation Study

We examine the effects of different exploration
strategies, namely, EXPLORE and MIXER, on
our approach and report it in Table 5. The QR
models in the experiments are initialized with
QReCC. Both EXPLORE and MIXER improve
performance, although the combination does not
outperform MIXER-only settings. We assume this
is because the benefit of MIXER offsets the contri-
bution of EXPLORE.

EXPLORE helps to explore more by sampling
multiple candidates of question rewrites, and im-
proves F1 scores by 2.5 for CoQA and 1.2 for
QuAC. On the other hand, MIXER teaches the
QR model to copy the first m tokens from the orig-
inal question to limit the exploration space and
stabilize the training process, resulting in a 3.6
F1 score gain in CoQA and 2.9 F1 score gain in
QuAC. Combined, MIXER and EXPLORE offset
the benefits of each other. To further improve the
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Algorithm
CoQA QuAC

F1 EM F1 EM

PPO 81.1 73.3 64.7 49.4
+ EXPLORE 83.8 75.9 65.9 50.3
+ MIXER 84.7 76.6 67.6 51.3
+ MIXER + EXPLORE 84.2 76.2 67.5 51.2

Table 5: Effects of EXPLORE and MIXER in our
framework. Both EXPLORE and MIXER benefit per-
formance, while the combination does not outperform
MIXER-only.

performance, we plan to seek an adequate balance
of exploration and exploitation since we believe
more exploration can boost the performance but
stabilizing the training is challenging according to
our observation.

5.5 Effects of Decoding Strategies

We explore the effect of decoding strategies for
generating question rewrites for inference. We find
the greedy search significantly worsens the perfor-
mance by around 3 to 6 F1 score loss. While the
performance steadily improves along with the in-
crease of the beam size, we can not see non-trivial
improvement when the beam size is equal or larger
than three. We also examine the different sets of
hyperparameters, for example, repetition penalty,
sampling (combination of temperature, top-k, and
top-p) approaches. As reported in Table 6, using
smaller or no repetition penalty yields better results.
We observe that sampling methods only alter the
results marginally. We assume that beam search
works satisfactorily because the optimal rewritten
questions are more or less predictable similar to
machine translation (Yang et al., 2018; Murray and
Chiang, 2018).

6 Conclusion and Future Work

In this paper, we propose a reinforcement learning
framework for CQA that a QR model that acts as an
agent and a QA model as an environment. Our ex-
periments show that the QR model learned to para-
phrase questions into a more suitable format for
the QA model by reward signal obtained from the
CQA performance. Since our exploration is con-
ducted with limited combinations of QA/QR model
structures and datasets, we plan to explore the other
combinations to justify our approach. Moreover, it
would be beneficial to train the QR model without
the dialogue history to enforce the QR model and

Repetition penalty Evaluation

F1 EM

1.0 67.37 51.46
1.1 67.47 51.40
1.3 67.12 51.12

Table 6: Using smaller or no repetition penalty tends to
yield better results.

make the question more self-contained. If we can
minimize the contribution of the dialogue history
in CQA, we can treat the CQA task as a single-
turn QA task, and it enormously expands possible
solutions for the CQA.

Ethical Considerations

This work is not related to any specific real-world
application. All the datasets used in our experi-
ments are collected by crowdsourcing (Anantha
et al., 2021a), especially through Amazon Mechan-
ical Turk (Reddy et al., 2019; Choi et al., 2018;
Elgohary et al., 2019a), and they are publicly avail-
able. As the nature of the task, the data collection
of CQA and QR is done anonymously and does
not involve any privacy or intellectual property con-
cern.
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