
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Student Research Workshop, pages 402 - 412

May 22-27, 2022 ©2022 Association for Computational Linguistics

On the Locality of Attention in Direct Speech Translation

Belen Alastruey∗, Javier Ferrando∗, Gerard I. Gállego and Marta R. Costa-jussà
TALP Research Center, Universitat Politècnica de Catalunya, Barcelona

{belen.alastruey,javier.ferrando.monsonis
gerard.ion.gallego,marta.ruiz}@upc.edu

Abstract

Transformers have achieved state-of-the-art re-
sults across multiple NLP tasks. However,
the self-attention mechanism complexity scales
quadratically with the sequence length, creating
an obstacle for tasks involving long sequences,
like in the speech domain. In this paper, we dis-
cuss the usefulness of self-attention for Direct
Speech Translation. First, we analyze the layer-
wise token contributions in the self-attention
of the encoder, unveiling local diagonal pat-
terns. To prove that some attention weights are
avoidable, we propose to substitute the stan-
dard self-attention with a local efficient one,
setting the amount of context used based on the
results of the analysis. With this approach, our
model matches the baseline performance, and
improves the efficiency by skipping the compu-
tation of those weights that standard attention
discards.

1 Introduction

Recently, Transformer-based models have gained
popularity and have revolutionized Natural Lan-
guage Processing (NLP) (Vaswani et al., 2017; De-
vlin et al., 2019; Brown et al., 2020). In the speech-
to-text setting, the Transformer works with audio
features like the mel-spectrogram (Dong et al.,
2018; Di Gangi et al., 2019). These features pro-
vide longer input sequences compared to their raw
text counterparts. This can be a problem when
regarding complexity, since the Transformer’s at-
tention matrix computational cost is O(n2), where
n is the sequence length. In speech, a common ap-
proach used to overcome this issue and reduce the
input sequence length is to employ convolutional
layers with stride before the Transformer encoder.
However, even with the addition of convolutional
layers, time and memory complexity is still an is-
sue.

∗ Equal contribution.

Figure 1: Spectrogram and contributions matrix1in
Layer 11, after training for En-De ST. Tokens attend lo-
cally, creating a diagonal pattern. Highlighted is shown
our proposed adaptive local attention window.

An active area of research has investigated ways
to make the Transformer more efficient in tasks in-
volving long documents, that exhibit the same prob-
lem as speech tasks (Tay et al., 2020). These mod-
els explore different techniques on how to avoid
the computation of some attention weights, hence
reducing the complexity of the self-attention layer.
Some of these models, such as the Reformer (Ki-
taev et al., 2020) or the Routing Transformer (Roy
et al., 2021), only compute attention weights on
those queries and keys that are more related accord-
ing to different clustering techniques. The authors
of the Linformer (Wang et al., 2020b) state that
the attention matrix is low-rank, so they project
keys and values to reduce the size of the atten-
tion matrix. The Synthesizer (Tay et al., 2021)
directly avoids computing token-to-token interac-

1The main diagonal, which accounts for 65% of the total
contributions, is hidden for visualization purposes.
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tions by learning synthetic attention weights. The
Longformer (Beltagy et al., 2020) and the Big Bird
(Zaheer et al., 2020) modify the attention matrix
with patterns such as local or random attentions.
In this paper, we focus on local attention by using
a sliding window centered on the diagonal of the
attention matrix.

We build upon recent advances in the explain-
ability of the Transformer to analyze the amount of
context used by self-attention when dealing with
speech features. Recent interpretability works have
moved beyond raw attention weights as a mea-
sure of layer-wise input attributions and have inte-
grated other modules in the self-attention, such as
the norm of the vectors multiplying the attention
weights (Kobayashi et al., 2020), the layer normal-
ization, and the residual connection (Kobayashi
et al., 2021). In the Automatic Speech Recognition
(ASR) domain, the usefulness of the self-attention
has been argued (Zhang et al., 2021; Shim et al.,
2022), showing that its exposure to the full context
might not be necessary, especially in the top layers.
We carry out this analysis for Direct Speech Trans-
lation (ST) systems, which are capable of translat-
ing between languages from speech to text with a
single model. The encoder of these systems needs
to jointly perform acoustic and semantic modeling,
while in ASR the latter is not that relevant (Liu
et al., 2020). To the best of our knowledge, this
is the first work that uses interpretability methods
to understand how the Transformer‘s self-attention
behaves in the Direct ST task.

In this work, we use the layer-wise contributions
proposed by Kobayashi et al. (2021) to analyze the
patterns of self-attention in Direct ST in En-De,
En-Es and En-It tasks, unveiling their strong local
nature. Consequently, using self-attention might
not be entirely useful, but it is computationally
costly. To verify this hypothesis, based on our anal-
ysis, we propose a new architecture designed to
maximize the efficiency of the model while mini-
mizing the information loss, and demonstrate no
hinder in the model’s performance in any of the
three directions. We achieve this by substituting
regular self-attention with local attention in those
layers where the contributions are placed around
the diagonal. Finally, we analyze the performance
of the proposed model.

2 Speech-to-text Transformer

Recent works have attempted to adapt the Trans-
former to speech tasks (Di Gangi et al., 2019; Gu-
lati et al., 2020). In the Direct ST domain, a usual
approach is adding two convolutional layers with a
stride of 2 before the Transformer (Wang et al.,
2020a). By doing this, the sequence length is
reduced to a fourth of the initial one. After the
two convolutional layers, the speech-to-text Trans-
former (S2T Transformer) consists of a regular
Transformer model, composed of 12 encoder layers
and 6 decoder layers.

The main component of the Transformer is the
multi-head attention mechanism, in particular, the
self-attention is in charge of mixing contextual
information. Given a sequence of token repre-
sentations {x1, · · · ,xN}, each of the H heads
projects these vectors to queries Qh ∈ RN×dh ,
keys Kh ∈ RN×dh and values Vh ∈ RN×dh , with
head dimension dh = d/H , where d is the model
embedding dimensionality. The self-attention at-
tention (SA) computes:

SA(Qh,Kh,Vh) =
H∑

h

AhVhWh
O + bO (1)

Where Wh
O ∈ Rdh×d and bO ∈ Rd are learnable

parameters, and

Ah = softmax
(
Qh(Kh)T√

dh

)
(2)

Training details. We reproduce the S2T Trans-
former training with FAIRSEQ (Ott et al., 2019;
Wang et al., 2020a). The training procedure con-
sists of two phases. First, we pre-train the model in
the ASR setting (Bérard et al., 2018). Then, we sub-
stitute the decoder with a randomly initialized one,
and both are finally trained in the ST task (see Ap-
pendix C for more details on the hyperparameters).
For the trainings, we use the MUST-C English-
German, English-Spanish and English-Italian sub-
sets (Cattoni et al., 2021).

3 Model Analysis

In this section, we present the analysis of the en-
coder self-attention in the S2T Transformer.

Interpretability method. Kobayashi et al.
(2021) propose an interpretability method that
measures the impact of each layer input, i.e token
representations (xj), to the output of the layer,
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Figure 2: Contribution diagonality D(w, l) after ST
training, for a single En-De example. The greater the
area under the curve (CCD), the higher the diagonality.

considering also the layer normalization and the
residual connection. They provide the formulation
for the attention block of the original Transformer
architecture, which has layer normalization on
top of the self-attention module. In this work,
we give an adaptation to the group of models
that normalize before the multi-head attention
(Pre-LN), such as the S2T Transformer. The
complete chain of computations in the Pre-LN
attention block can be reformulated as a simple
expression of the layer inputs:

x̂i =

N∑

j

H∑

h

Ah
i,jLN(xj)W

h
V W

h
O+bO+xi (3)

We can now express the attention block output as a
sum of transformed input vectors (Fi(xj)):

x̂i =
N∑

j

Fi(xj) + bO (4)

Where Fi(xj) is defined as:

Fi(xj) =

{∑H
h Ah

i,jLN(xj)W
h
V W

h
O if j ̸= i∑H

h Ah
i,jLN(xj)W

h
V W

h
O + xi if j = i

Kobayashi et al. (2021) measure the contribution
Ci,j of each input vector xj to the layer output x̂i

with the Euclidean norm of the transformed vector:

Ci,j = ∥Fi(xj)∥ (5)

Figure 3: Average cumulative contribution diagonality
(CCD) score across layers, over 100 samples. Results
shown for models trained in ASR (dashed line) and ST
(solid line).

Layer-wise analysis. We analyze the contribu-
tion scores obtained with Eq. 5 from the encoder
layers in both ASR (pre-training) and ST tasks.
From the results shown in Figure 4 (see also Ap-
pendix E) we observe that most layers’ contribu-
tions are dense around the diagonal. To measure the
degree of diagonality in the contribution matrices
at each layer l, we build upon the attention diago-
nality proposed by Shim et al. (2022), originally
defined with attention weights and proportions of
the sequence length. We reformulate it with the
obtained contributions, and token ranges w (see
Appendix A for more details on the differences):

D(w, l) =
1

N

∑

i

∑

j

C l
i,j (6)

where j ∈ [max(1, i − ⌊12w⌋),min(N, i + ⌊12w⌋],
i ∈ [1, N ]. D(w, l) computes the average of the
contributions restricted by the diagonal window
range w. In order to measure how fast the contri-
bution density increases over the window length,
we calculate the cumulative contribution diagonal-
ity (CCD), that corresponds to the area under the
curve of the accumulated D(w, l) within the range2

w ∈ [1, 2N ]. That is, we approximate the integral
of D(l, d) along the distance d, but for the discrete
variable w (Figure 2).

In Figure 3 we show the CCD results for ASR
and ST across layers, where we can observe a
strong diagonal pattern. We can see that, surpris-
ingly, CCD is very similar in both tasks. This con-
tradicts the belief that, because of the need for
deeper semantic processing when translating, ST

2Note that a window of size w contains ⌊ 1
2
w⌋ tokens on

each side of the main diagonal, so w = 1 represents the main
diagonal and w = 2N every possible diagonal.
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Figure 4: Contribution matrices3of encoder layers on a sample after training for En-De ST. Windows used in the
efficient architecture highlighted.

needs more context than ASR. Furthermore, we see
different behaviors along the encoder, and a trend
towards uniformly distributed contributions in the
first layers.

Moreover, in Figure 4, we can see differences
between those layers that show local patterns. Lay-
ers 4, 5 and 6 attend to close context. Instead,
those layers at the end of the encoder, as 11 or 12,
need larger context, and we can see how the con-
tributions create patterns corresponding to words
in the spectrogram, enabling us to see interactions
between them (Figure 1). Additionally, we see that
contribution matrices reveal silences in the speech
sequence. However, we believe that further re-
search is needed to fully understand the meaning
of these patterns.

4 Efficient Speech-to-text Transformer

From the previous analysis, we hypothesize that
suitable local attention patterns may potentially
avoid the computation of unused attention scores.
Note that if a token does not contribute to the output
of a layer, its attention score can be canceled. Our
objective is to maximize the efficiency of the model
while minimizing the performance drop.

Window size selection. CCD could serve as a
starting point to obtain optimal window lengths.
However, it requires predefining the amount of to-
tal contribution required inside the window, which
makes it fragile to properly detect local patterns.
On one hand, it can be too sensitive to a strong
main diagonal. On the other, it may overestimate
random distant contributions. We propose an al-

3The main diagonal, which accounts for around 65% of
the total contributions in each layer, is hidden for visualization
purposes.

Algorithm 1: Window size selection

Input:
Cl: contribution matrix, N : number of tokens,
t: min diagonal contribution threshold
Output:
wl: optimal window size

counter ← 0

wl ← 0
while counter < (N/10) do

for i← 0, N do
if mean(Cl

diag[i]) > t or mean(Cl
diag[−i]) > t

then
wl ← 2i+ 1
counter ← 0

else
counter ← counter + 1

ternative based on the average contribution of ev-
ery sub/superdiagonal (Alg. 1). Starting from the
main diagonal Cdiag[0], it keeps adding tokens to
the window length until it finds N · 10% consec-
utive sub/superdiagonals below the t threshold4.
We repeat this procedure with a random set of 400
sentences, and we compute each layer’s window
length mean (µl) and standard deviation (σl). To
ensure that most significant contributions are con-
sidered, we define as the optimal window size (wl)
the result of the operation5 wl = ⌈µl + σl⌉. The
results obtained are similar in every language pair
(Table 1 and Appendix D). In Figure 4, we can see
how w contains most of the relevant contributions
for En-De ST (see more examples in Appendix E).

4Hyperparameter that defines the minimum average value
of the sub/superdiagonals to be considered. We choose 0.01
after empirical study.

5If wl is even, we set wl = wl + 1 so that it is odd and
hence the window can be centered around the diagonal.
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Layer µ± σ w CL

1 * 3.41± 13.15 17 0.35 ± 0.07
2 * 1.18± 3.45 5 0.32 ± 0.04
3 * 0.51± 1.56 3 0.30 ± 0.04
4 2.25± 1.30 5 0.23± 0.04
5 4.03± 0.28 5 0.17± 0.03
6 7.03± 1.03 9 0.23± 0.04
7 11.37± 1.13 13 0.18± 0.04
8 7.94± 1.16 11 0.18± 0.04
9 12.56± 1.85 15 0.19± 0.05
10 16.47± 2.40 19 0.13± 0.05
11 13.28± 1.90 17 0.13± 0.04
12 16.28± 3.86 21 0.16± 0.05

Table 1: Optimal window size study in En-De ST. (*)
For the first three layers, we use standard self-attention.

En-De En-Es En-It

Baseline 22.53± 0.15 27.49± 0.22 22.98± 0.15
Ours 22.49± 0.11 27.46± 0.12 22.97± 0.27

Table 2: BLEU obtained on the Speech Translation task
(mean ± std after training with 5 different seeds).

Contribution loss. We can now calculate the
percentage of the total contributions that are left
outside the window. This allows us to discover
the amount of contribution that is lost because
of the use of local attention. To do so, we em-
ploy Eq. 6, but since we are interested in the
contributions outside each window wl, we define
CL(l, wl) = 1−D(l, wl).

Proposed architecture. From the previous re-
sults, we see that the first three layers are the ones
with the weakest local pattern (See Figure 4). In
these layers, CL(l, wl) is large, and CCD (Figure
2) shows smaller areas. For these reasons, we be-
lieve that using the entire self-attention in the first
three layers is necessary. In the following layers,
we use local attention with window size wl. Our
proposed architecture is an efficient adaptation of
the S2T Transformer, and therefore it is exactly
equal with exception of the self-attention layers
(detailed architectures in Section 2 and Appendix
B).

Experiments. Finally, we train our model under
the same specifications and dataset as the baseline
(see Section 2 for details on the dataset, and Ap-
pendix C for the training hyperparameters).

As we see in Table 2, our model matches the per-
formance of the S2T Transformer in every analyzed
language pair. However, we achieve it while reduc-
ing the complexity in most layers from O(n2) to
O(n ·wl). This difference can be highly significant,

considering the usual length of speech sequences
and the size of the windows used. In particular,
wl goes from 5 to 25 tokens between the differ-
ent languages. However, the average length of an
input sequence in studied splits of the MUST-C
dataset after the two convolutional layers used in
the S2T Transformer, is 166 tokens, even reaching
a maximum of 1052.

5 Conclusions

Transformer-based models are the current state-
of-the-art in many different fields. However, the
quadratic complexity of the self-attention mod-
ule usually hinders the usefulness of the model in
real-life applications. This problem worsens when
working with long sequences, as is the case with
speech. In this paper, we have questioned the need
of computing all attention weights in ST. We have
analyzed the contribution matrices, and we have
seen that, in many layers, the relevant scores are
placed in a diagonal pattern. Therefore, we have hy-
pothesized that these weights do not need to be cal-
culated. To verify our hypothesis, we have trained
a model that substitutes regular self-attention with
local attention, with a suitable window size for
each layer. We have seen that as we expected, the
results are almost equal to the ones obtained with
the baseline model, but the complexity has been
lowered significantly.

Regarding interpretability, we have found how
the Transformer establishes connections between
words in speech sequences. Furthermore, we have
seen that, in contrast to what was expected, diago-
nality scores are similar in both ST and ASR tasks,
meaning that they use the same amount of context.
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7 Ethical Considerations

This work analyzes the inner workings of a par-
ticular architecture in Direct Speech Translation.
Based on the analysis, we propose a more efficient
model, that maintains the baseline performance.
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Our proposed solution can help reduce the ecologi-
cal footprint of Speech Translation systems based
on the Transformer architecture. We believe this
work has no direct negative social influences. How-
ever, we should underline that the dataset used in
this paper consists of high-resource languages such
as English, German, Spanish, and Italian. Although
the interpretability method does not depend on spe-
cific languages, there may be differences in the
degree of efficiency that can be achieved when ex-
perimenting with other languages.
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A Cumulative Attention Diagonality
(CAD)

Shim et al. (2022) propose the cumulative atten-
tion diagonality (CAD) as the integral of the atten-
tion diagonality D(r, l) along the variable r, which
defines the window length as a proportion of the
sequence length:

CADl =

∫ r=1

r=0
D(r, l) dr

where D(r, l) is defined over the attention weight
matrix Al:

D(r, l) =
1

N

N∑
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Al
i,j

To approximate the result of the integral, Shim
et al. (2022) use the Trapezoidal Rule with the
discretized variable r̂ ≈ r.

∫ r=1

r=0
D(r, l) dr ≈

r̂=1∑

r̂=0

D(r̂, l) +D(r̂ + 1, l)

2

For each step in the summation, the window range
around the diagonal increases 2r(N − 1), which
may lead to different increments based on the sen-
tence length. For instance, for a sentence with
N = 11, in a 0.1 increase of r̂, the window size
range increases by 2. However, with N = 101
we get an increment of 20. For this reason, we
redefine the diagonality measures with token-wise
increments.

B Architecture Details

Both our efficient model and the S2T Transformer
(Wang et al., 2020a) share the same architecture,
with the exception of the self-attention modules.
The models consist 12 encoder layers and 6 decoder
layers with sinusoidal positional encodings. In the
encoder and decoder we use 4 attention heads, an
embedding dimension of 256, and of 2048 in the
FFN layers. We use a dropout probability of 0.1
in both the attention weights and FFN activations.
We use ReLU as the activation function.

Regarding the convolutional layer applied to re-
duce sequence length, it consists of a 1D convolu-
tional layer, with a kernel of size 5, a stride of 2,
and with the same number of output channels than
input channels.
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C Training Hyperparameters

To ensure a reliable comparison, we performed all
ASR and ST experiments under the same condi-
tions and hyperparameters. In ASR training we
fixed a maximum of 40000 tokens per batch. We
used Adam optimizer and a learning rate of 1 ·10−3

with an inverse square root scheduler. We applied
a warm-up for the first 10000 updates. We clipped
the gradient to 10 to avoid exploding gradients. We
used label smoothed cross-entropy as a loss func-
tion, with a smoothing factor of 0.1. We used an
update frequency of 8 on a single GPU. We set a
maximum of 50000 updates for every training. In
ST training, we use the same hyperparameters as
for ASR, but we use a learning rate of 2 · 10−3. We
conducted the training of all our experiments using
NVIDIA GeForce RTX 2080 Ti GPU.

D Optimal window analysis in En-Es and
En-It ST

Layer µ± σ w CL

1 * 4.68± 14.77 21 0.39 ± 0.08
2 * 3.21± 6.17 11 0.29 ± 0.04
3 * 0.99± 3.6 5 0.28 ± 0.04
4 2.58± 1.96 5 0.2± 0.02
5 4.52± 2.38 7 0.24± 0.04
6 15.88± 2.92 19 0.21± 0.06
7 11.32± 1.91 15 0.16± 0.03
8 9.52± 2.5 13 0.22± 0.05
9 14.96± 1.78 17 0.07± 0.05
10 15.94± 3.0 19 0.19± 0.05
11 13.83± 3.66 19 0.21± 0.05
12 20.38± 3.42 25 0.1± 0.05

Table 3: Optimal window size study in En-Es ST. (*)
For the first three layers, we use standard self-attention.

Layer µ± σ w CL

1 * 6.16± 17.57 25 0.34 ± 0.09
2 * 2.56± 7.47 11 0.29 ± 0.05
3 * 2.44± 2.84 7 0.27 ± 0.05
4 4.08± 0.65 5 0.19± 0.03
5 14.05± 2.08 17 0.15± 0.03
6 10.82± 1.31 13 0.18± 0.04
7 7.37± 4.54 13 0.23± 0.05
8 8.62± 2.18 11 0.22± 0.04
9 12.49± 1.65 15 0.09± 0.03
10 16.06± 3.80 21 0.17± 0.04
11 18.15± 3.20 23 0.11± 0.05
12 17.34± 4.83 23 0.15± 0.05

Table 4: Optimal window size study in En-It ST. (*) For
the first three layers, we use standard self-attention.

E Contribution Matrices

Below, we show more examples of contribution
matrices for the different languages that have been
studied. Note that, although in some cases a di-
agonal a pattern appears in the first three layers,
the diagonality score is still low. Local diagonal
patterns are not strictly related to high diagonality,
since contributions outside the pattern might be uni-
formly distributed, and thus difficult to observe in
the heatmap. For this reason, contribution matrices
can be misleading, and we focus on the use of CL
scores to determine which layers should use full
attention.
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Figure 5: Contribution matrices for a sample after En-De ST training.

Figure 6: Contribution matrices for a sample after En-De ST training.
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Figure 7: Contribution matrices for a sample after En-It ST training.

Figure 8: Contribution matrices for a sample after En-It ST training.
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Figure 9: Contribution matrices for a sample after En-Es ST training.

Figure 10: Contribution matrices for a sample after En-Es ST training.
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