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Abstract

In this paper, we investigate the problem of vi-
sion and language navigation. To solve this
problem, grounding the landmarks and spa-
tial relations in the textual instructions into
visual modality is important. We propose a
neural agent named Explicit Object Relation
Alignment Agent (EXOR), to explicitly align
the spatial information in both instruction and
the visual environment, including landmarks
and spatial relationships between the agent and
landmarks. Empirically, our proposed method
surpasses the baseline by a large margin on
the R2R dataset. We provide a comprehensive
analysis to show our model’s spatial reasoning
ability and explainability.

1 Introduction

Vision and Language Navigation (VLN) prob-
lem (Anderson et al., 2018) requires the agent to
carry out a sequence of actions in an indoor photo-
realistic simulated environment in response to cor-
responding natural language instructions. The first
VLN benchmark to appear was Room-to-Room
navigation (R2R) (Anderson et al., 2018) , as
shown in Figure 1, the agent needs to generate
a navigation trajectory in a visual environment ren-
dered from real images following an instruction.

This task is challenging because, apart from un-
derstanding the language and vision modalities, the
agent needs to learn the connection between them
without explicit intermediate supervision.

To address this challenge, several recent work
started to consider the semantic structure from both
language and vision sides. Hong et al. (2020a) train
an implicit entity-relationship graph allowing an
agent to learn the latent concepts and relationships
between different components (scene, object and
direction). They use the object features extracted
from Faster-RCNN (Ren et al., 2015) instead of
only using ResNet visual features which can easily
overfit on the training environment (Hu et al., 2019).

Go to the clock on the wall. Go between the blue 
couch and counter. Go to the table with a plant on it.Instruction

Navigable
Viewpoints

Panoramic
Images

Navigation
Steps

Figure 1: VLN Task Demonstration. The agent gen-
erates a navigation trajectory composed of navigable
viewpoints selected based on the given instruction and
the panoramic images at each step. The red arrow shows
the ground-truth navigable viewpoint.

Although the grounding ability of their agent im-
proves, their experimental results show that the
object features do not help the navigation indepen-
dently unless their relationships to the scene and
direction are modeled. This issue indicates their
loosely modeled latent space and motivates us to
explore the ways the object features can be further
exploited.

The recent research finds that indoor navigation
agents rely on both landmark and direction tokens
in the instruction when taking actions (Zhu et al.,
2021). However, it is difficult to identify which
landmarks the agent should pay attention to at each
navigation step. Previous works (Tan et al., 2019;
Ma et al., 2018; Wang et al., 2019; Zhu et al., 2020)
mainly use the surrounding visual information as a
clue to indicate the landmark tokens that the agent
should focus on. However, the semantics of in-
struction should also play an important role. For
example, with the understanding of the instruction
“go to the table with chair, and then walk towards
the door", the agent needs to give the same atten-
tion to “table” and “chair”, and less attention to
“door” at the first navigation step. In terms of di-
rection tokens, the prior works concentrate most
on the direction tokens related to motions, such
as “turn left”, and ignore the spatial description of
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landmarks, such as “table on the left”. We believe
distinguishing those different direction tokens can
benefit the navigation performance. The last but
not least, modeling the landmarks and their spa-
tial relations can improve the explainability of the
agent’s actions.

In this paper, we propose a neural agent, called
Explicit Object Relation Alignment Agent (EXOR),
to explicitly align the spatial semantics between
linguistic instructions and the visual environment.
Specifically, we first split the long instruction into
spatial configurations (Dan et al., 2020; Zhang
et al., 2021), and then we select the important land-
marks based on such configurations. After that,
in the visual environment, we retrieve the most
relevant objects according to their similarity with
the selected landmarks in the instructions. More-
over, we obtain textual spatial relation encoding
to model the spatial relations between the agent
and landmarks in the textual instructions, and use
visual spatial relation encoding to represent the
relation between agent and the image in the visual
environment. We then establish a mapping between
the two encodings to achieve a better alignment.
Finally, we use the representations of the aligned
objects and spatial relations to enrich the image rep-
resentations. To the best of our knowledge, none of
the previous work modeled the explicit spatial re-
lations considering the agent’s perspective for this
task.

Our contribution is summarized as follows:
1. Our model achieves the explicit alignments

between textual and visual spatial information, and
such alignments guide the agent to pay more atten-
tion to the objects in the visual environment given
landmark mentions in the instructions.

2. We explicitly model the spatial relations be-
tween the agent and landmarks from both instruc-
tion and visual environments, which enhance their
alignments and improve the overall navigation per-
formance.

3. Our method surpasses the baseline perfor-
mance by a large margin. Also, we provide a com-
prehensive analysis to show the spatial reasoning
ability and explainability of our model.

2 Related Work

Vision and Language Navigation The vision-
language navigation problem nowadays has gained
an increasing popularity, and various navigation
datasets and platforms(Savva et al., 2019; Kolve

et al., 2017) are proposed to assist the develop-
ment of this topic in the community, for example,
R2R (Anderson et al., 2018) and Touchdown (Chen
et al., 2019) datasets, which have extended navi-
gation to the photo-realistic simulation environ-
ments. More broadly, there are work also re-
lated to instruction-guided household task bench-
marks such as ALFRED (Shridhar et al., 2020).
RXR (Ku et al., 2020) is a multilingual navigation
dataset with spatial-temporal grounding, CVDN
and HANNA are a dialog-based interactive naviga-
tion dataset (Thomason et al., 2020; Nguyen and
Daumé III, 2019), and REVERI (Qi et al., 2020b)
navigates to localize a remote object.

Accompanied with these benchmark works, nu-
merous deep learning methods (Tan et al., 2019;
Hong et al., 2021, 2020a) have been proposed.
For R2R task, Anderson et al. (2018) propose
a Sequence-to-Sequence baseline model to encode
the instructions and decode the embeddings to the
low-level action sequence with the observed im-
ages. Speaker-Follower agent proposed by Fried
et al. (2018) trains a speaker model to generate the
augmented samples to improve the generalizabil-
ity. They also start modeling a panoramic action
space for navigation, which further promotes fast
iteration of different VLN approaches.

Grounding in VLN It has been observed that the
connection between linguistic instruction and vi-
sual environment can yield a great improvement in
VLN task, hence many research efforts for mod-
eling such visual-linguistic relation have recently
been developed. In general, we categorize these
research works into three directions.

The first main thread (Anderson et al., 2018; Ma
et al., 2018; Tan et al., 2019; Wang et al., 2019; Ma
et al., 2019) tends to adopt attention mechanisms
for establishing language and vision connections
in neural navigation agents. For instance, Ma et al.
(2019) apply a visual-textual co-grounding mod-
ule and a progress monitor to guide the execution
progress. The second branch of prior works (Hu
et al., 2019; Hao et al., 2020; Majumdar et al., 2020;
Hong et al., 2021; Shen et al., 2021) explores the
pre-trained Vision and Language (VL) represen-
tation from the transformer-based models. Hong
et al. (2021) design a recurrent unit on the VL trans-
former models, and fine-tune them on the down
stream VLN task. Notably, the increased model
size and additional training process help improve
navigation performance and surpass the previous
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performance by a large margin.
The third branch works model the semantic struc-

ture, based on both language and vision perspec-
tives, to improve the grounding ability, such as
(Qi et al., 2020a; Zhang et al., 2021; Hong et al.,
2020a,b; Li et al., 2021), and our work also follows
such paradigm. From the language side, Hong
et al. (2020b) segment the long instruction into
sub-instructions and annotate their corresponding
trajectories to supervise the agent to learn the align-
ments. From the image side, instead of using only
the ResNet visual features that easily over-fits on
the training environment, some recent work (Hu
et al., 2019; Qi et al., 2020a; Zhang et al., 2020)
use object representations to improve the general-
izability. Most importantly, one should bridge both
linguistic and visual semantics, and Ent-Rel (Hong
et al., 2020a) obtains the best results in the third
branch of work by building an implicit language-
visual entity relation graph to learn the connections
between the two modalities. Our work serves as a
new method in the third method category. We ex-
plicitly model the alignments between landmarks
and visual objects and model the spatial relations to
improve the spatial reasoning ability of the agent.

3 Method

3.1 Problem Description
In our study, the agent is given an instruction with
length l, denoted as w =< w1, w2, · · · , wl >.
At each time step t, the agent observes its
surrounding and receives 360-degree panoramic
views of images, which are denoted as vp =<
vp1 , v

p
2 , · · · , vp36 >.1 In those panoramic views,

there are q candidate navigable viewpoints which
the agent can navigate. We denote the viewpoints
as vc =< vc1, v

c
2, · · · , vcq >. The goal of the task is

to select the next viewpoint among the navigable
viewpoints for generating a trajectory that takes the
agent close to a goal destination. The agent termi-
nates when the current viewpoint is selected, or a
predefined maximum number of navigation steps
have been reached.

3.2 Base Model
We follow the modeling approach of (Tan et al.,
2019) which uses an Long short-term Memory
(LSTM) based sequence-to-sequence architecture.
The encoder is a bidirectional LSTM-RNN with an
embedding layer to obtain language representation,

112 headings and 3 elevations with 30 degree intervals.

denoted as, [s1, s2, · · · , sl] = BiLSTM(F (<
w1, w2, · · · , wl >), where F represents the em-
bedding function. The decoder is also an atten-
tive LSTM-RNN. At each decoding step t of nav-
igation, the agent first attends to the panoramic
image representation fp with the previous hid-
den context feature h̃t−1. The visual representa-
tion of ith panoramic image is denoted as fp

i =
[ResNet(vpi ); di], which is the concatenation of
the ResNet visual features ResNet(vpi ) and the
corresponding 128 dimensional direction encoding
di. The direction encoding for panoramic images
di is the replication of [cosθi, sinθi, cosϕi, sinϕi]
by 32 times, where θi and ϕi are the angles of head-
ing and elevation of ith panoramic image. The
attentive panoramic visual feature f̃p

t is computed
by f̃p

t = SoftAttn(Q = h̃t−1,K = fp
t , V = fp

t ),
and then is used as input to the LSTM of the de-
coder to represent the agent’s current state as,

ht = LSTM([at−1; f̃
p
t ], h̃t−1), (1)

where at−1 is the selected action direction of the
previous navigation step, and h̃t−1 is the hidden
context after considering the grounded objects. The
details will be discussed in the following sections.

3.3 Landmark-object alignment and spatial
relations modeling

The proposed model has been shown in Figure 2,
and we describe its four components as follows.

Spatial Configuration Representation
We split the long instructions into smaller sub-
instructions, called spatial configurations. A spatial
configuration contains fine-grained spatial roles,
such as motion indicator, landmark, spatial indica-
tor, and trajector (Dan et al., 2020). For example,
the instruction "go to the bathroom and stop" can
be split into two spatial configurations, which are
"go to the bathroom" and "stop". In the first config-
uration, "go" is the motion indicator; "bathroom" is
the landmark. In the second configuration, "stop"
is the motion indicator.

We follow Zhang et al. (2021) to split a navi-
gation instruction w into m spatial configurations
based on the verbs or verb phrases. Each spatial
configuration contains the flexible number of to-
kens and a [SEP] token as the last token. For-
mally, we re-organize the contextual embeddings
of tokens into the array of spatial configurations
representation C = [C1, C2 . . . Cm], where m is
the number of configurations. Each configuration
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and stop near the bookshelf.

C1: pass the table with 
chairs on the right; 
C2: stand near the window. chair
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Figure 2: Model Architecture. The model has four sub-modules, (1) Spatial Configuration (2) Select top-k
landmark selection (3) Landmark-Object alignment (4) Landmark-Object Spatial Relation relation alignment. The
text highlighted in green and yellow in (1) shows motion indicators and landmarks, respectively. The red arrow in
(4) is the initial agent heading (i.e. orientation).

is composed of tokens generated by the encoder,
denoted as [s1, s2, · · · sp], where sp is the embed-
ding of [SEP] token that contains the most com-
prehensive contextual information about the pre-
ceding words. This is because LSTM encoder is
used for propagating the information throughout
the sequence. Also, to enrich the spatial config-
uration representations, we consider the spatial
semantic elements. We extract the verbs or verb
phrases as motion indicators, sm, and nouns or
noun phrases as landmarks, sl. Then we apply
soft attention to each configuration representation
with the representations of the [SEP] token sp, the
motion indicator sm, and landmark sl separately.
The enriched spatial configuration is represented
as C̄ =

[
C̄1, C̄2 . . . C̄m

]
. In the base model, we

attend the current hidden context ht of the LSTM
to the spatial configuration features C to form the
weighted spatial configurations output C̃. This pro-
cess is defined as follows,

βt,j = softmax(C̄T
j Wcht), (2)

C̃t =
∑

j

βt,jCj , (3)

where β is the attended configuration weights, j
is the index of spatial configuration and Wc is the
learned weights.

Landmark Selection

Landmark phrases in instructions are split into
groups according to the spatial configuration. We
assign the attention weights of each spatial config-
uration to all its included landmarks. The attention
weights of landmarks are the same once they ap-
pear in the same configuration. Then we sort all
weighted landmarks and select the top-k important
ones for the agent to focus on at each navigation
step. Formally, each configuration contains n land-
marks, denoted as L =< L1, L2, · · · , Ln >. The
total number of landmarks is m ∗ n in m spatial
configurations. After sorting all landmarks based
on the spatial configuration weights β, we can ob-
tain top-k selected landmark representations, as
L̃ =< L̃1, L̃2, · · · , L̃k >. We obtain the best result
when k is 3 (see 5.1 for the experiment).

Landmark-Object Alignment

After selecting top-k landmarks, the next step is to
align them with the corresponding objects in the
image. We use Faster-RCNN to detect 36 objects
in each image, and the object representation of
the i-th image is Oi = [oi,1, oi,2, · · · , oi,36]. We
compute the cosine similarity scores between the
j-th landmark in top-k landmarks and all objects in
the i-th image, and select the object with the highest
similarity score as the most relevant object to the j-
th landmark, as Ôi,Lj = max(cos_sim(L̃j , Oi)).
The aligned objects in the i-th image are denoted as
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Ôi = [Ôi,L1 , Ôi,L2 , · · · , Ôi,Lk
]. We get k aligned

objects since we have top-k landmarks. Finally, we
concatenate the aligned object representations with
the candidate image features f c. The ith candidate
image is represented as fp

i = [ResNet(vci ); di].
After aligned with the corresponding objects, its
representation is updated as f̂ c

i = [f c
i ; Ô

c
i ].

Landmark-Object Spatial Relation Alignment
We model both textual spatial relations and visual
spatial relations. On the text side, there are mainly
three different cases of spatial relations described
in the navigation instructions.

• Case 1. Motions verbs, such as “turn left to
the table";

• Case 2. Relative spatial relationships between
agent and landmarks, such as “table on your
left";

• Case 3. Spatial relationships between land-
marks, such as “vase on the table".

This work mainly investigates the spatial relations
from the agent’s perspective, and we only model
the first two cases. We extract "landmark-relation"
pairs for each landmark in the instructions (based
on syntactic rules). For Case 1, we pair the spatial
relation with all landmarks in the configuration.
For example, “turn left to the table with chair",
the extracted pairs are {table-left} and {chair-left}.
For Case 2, we pair the relation with the related
landmark. For example, “go to the sofa on the
right.”, the extracted pair is {sofa-right}.

We encode the spatial relations for the landmarks
in six bits [left, right, front, back, up, down] as
the textual spatial relation encoding. Each bit is
set to 1 for the landmark if its paired relation has
the corresponding relation. On the image side, we
encode the same six spatial relations as the visual
spatial relation encoding. We obtain the spatial
relations of objects in the visual environment based
on the relative angle, the differences between the
agent’s initial direction and the navigable direction.
The spatial relations are the same for all objects if
they are in the same image.

Formally, for the obtained top-k land-
marks, we denote their spatial encoding as
RL̂ = [RL̂

1 , R
L̂
2 , · · · , RL̂

k ]. For the top-k objects
aligned with those landmarks, the spatial rela-
tions in i-th navigable image are represented
as RÔ

i = [RÔ
i,1, R

Ô
i,2, · · · , RÔ

i,k]. We compute

the inner product of the spatial encoding be-
tween top-k landmarks and the top-k aligned
objects to obtain the spatial similarity score
between the instruction and the i-th image, that
is, simR

i = RL̂ · RÔ
i . Then we concatenate

each aligned object spatial encoding with the
corresponding similarity score, denoted as Ôi,R =

[[RÔ
i,1; sim

R
i,1], [R

Ô
i,2; sim

R
i,2], · · · , [RÔ

i,k; sim
R
i,k]].

Finally, we further concatenate Ôi,R with the
candidate image features f̂ c

i which is concatenated
with the aligned object features , and i-th candidate

images features is updated as ˆ̂
f c
i = [f̂ c

i ; Ôi,g]. The
updated image representations are then used to
make action decisions for the agent.

3.4 Action Prediction
After modeling alignment between landmark to-
kens in the instruction and visual objects, the
panoramic image feature is enriched with the
aligned visual objects, and candidate image feature
is enriched with both visual objects and their spatial
relations. Then based on the backbone sequence
to sequence agent, the probability of moving to
the k-th navigable viewpoint pt(at,k) is calculated
as softmax of the alignment between the naviga-
ble viewpoint features and a context-aware hidden
output h̃t, which can be calculate as

h̃t = tanh(Wc̃h[C̃;ht]) (4)

pt(at,k) = softmax(
ˆ̂
f c
i Wĉh̃t) (5)

where Wc̃h and Wĉ are learnt weights.

3.5 Training and Inference
We follow the work of (Tan et al., 2019) for train-
ing the model with a mixture of Imitation Learn-
ing (IL) and Reinforcement Learning (RL). Imi-
tation Learning minimizes the cross-entropy loss
of the prediction and always samples the ground-
truth navigable viewpoint at each time step, and
Reinforcement Learning samples an action from
the action probability pt and learns from the re-
wards. During inference, we use a greedy search
with the highest probability of the next viewpoints
to generate the trajectory.

4 Experimental Setups

Dataset
We use Room-Room(R2R) dataset (Anderson et al.,
2018) that is built upon the Matterport3D dataset.

326



Val Seen Val Unseen Test(Unseen)
Method SR ↑ SPL ↑ SDTW ↑ SR ↑ SPL↑ SDTW↑ SR ↑ SPL ↑

1 Speaker-Follower (Fried et al., 2018) 0.54 - - 0.27 - - - -
2 Env-Drop (Tan et al., 2019) 0.55 0.53 - 0.47 0.43 - - -
3 Env-Drop* (Tan et al., 2019) 0.63 0.60 0.53 0.50 0.48 0.37 0.50 0.47
4 SpC-NAV* (Zhang et al., 2021) 0.65 0.61 - 0.45 0.42 - 0.46 0.44
5 OAAM* (Qi et al., 2020a) 0.65 0.62 0.53 0.54 0.50 0.39 0.53 0.50
6 Entity-Relation (Hong et al., 2020a) 0.62 0.60 0.54 0.52 0.50 0.46 0.51 0.48
7 EXOR (ours) 0.60 0.58 0.53 0.52 0.49 0.46 0.49 0.46

Table 1: Experimental Results Comparing with Baseline Models (* means data augmentation).

Ent-Rel EXOR(ours)
SR↑ SPL↑ SR↑ SPL↑

1 Mask Scene 0.47 0.44 0.48 0.46
2 No Mask 0.52 0.50 0.50 0.48

Table 2: Results on Scene & Object Alignment.

Val Seen Val Unseen
Method SR↑ SPL↑ SDTW↑ SR↑ SPL↑ SDTW↑

1 Baseline 0.55 0.53 0.49 0.47 0.43 0.37
2 Lan-Obj 0.59 0.55 0.52 0.50 0.48 0.43
3 Lan-Obj+Rel 0.60 0.58 0.53 0.52 0.49 0.46
4 Lan-Obj+Rel_v 0.59 0.56 0.52 0.52 0.47 0.44

Table 3: Ablation Study.

R2R dataset contains 7198 paths and 21567 in-
structions with an average length of 29 words. The
whole dataset is partitioned into training, seen vali-
dation, unseen validation, and unseen test set. The
seen set shares the same visual environments with
the training set, while unseen sets contain different
environments.

Evaluation Metrics
We mainly report three evaluation metrics. (1) Suc-
cess Rate (SR): the percentage of the cases where
the predicted final position lays within 3 meters
from the goal location. (2) Success rate weighted
by normalized inverse Path Length (SPL) (Ander-
son et al., 2018): normalizes Success Rate by tra-
jectory length. It considers both the effectiveness
and efficiency of navigation performance. (3) the
Success weighted by normalized Dynamic Time
Warping (SDTW) (Ilharco et al., 2019): penalizes
deviations from the referenced path and also con-
siders the success rate.

Baseline Models
Env_Drop (Tan et al., 2019) proposes a neural
agent trained with the method of the mixture of
Imitation Learning and Reinforcement Learning.
Our model is built based on Env_Drop.
SpC-NAV (Zhang et al., 2021) models instructions
using spatial configurations and designs a state at-

tention to guarantee the sequential execution. Be-
sides, it uses a similarity score between landmarks
in the instruction and objects in the image to con-
trol this attention.
OAAM (Qi et al., 2020a) proposes an object-and-
action aware model to learn the object and action at-
tention separately, and also learns the object-vision
and action-orientation matching.
Ent-Rel (Hong et al., 2020a) proposes a language
and visual entity relation graph to exploit the con-
nection among the scene, objects, and direction
clues during navigation.

Implementation Details

We use PyTorch to implement our model2. We use
768 dimensional BERT-base (Devlin et al., 2018)
(frozen) as the embedding of the raw instruction,
and get its 512 dimensional contextual embedding
by LSTM. We encode the representations of the
motion indicator and the landmark in each config-
uration with 300 dimensional GloVe embedding
respectively, and concatenate them with the 512
dimensional configuration representation to obtain
the enriched configuration representation (1112 di-
mensional). We use 300 dimensional GloVe (Pen-
nington et al., 2014) embedding to represent mo-
tion indicator, landmark, and object label. The
optimizer is ADAM, and the learning rate is 1e− 4
with a batch size of 32.

5 Results and Analysis

Table 1 shows the performance of our model com-
pared with baselines and the competitive models of
the third branch of work as aforementioned in the
related work (section 2) on unseen validation and
test set. Our result is better than the baseline (Env-
Drop) even with their augmented data (Tan et al.,
2019) (Row#1 and Row#2), showing our improved
generalizability. We obtain significantly improved

2Our code is available at https://github.com/
HLR/Object-Grounding-for-VLN

327

https://github.com/HLR/Object-Grounding-for-VLN
https://github.com/HLR/Object-Grounding-for-VLN


results compared to SpC-NAV which models the
semantic structure in language and image modal-
ities. Compared with OAAM, which learns the
object-vision matching with the augmented data,
we get better SDTW, indicating that our agent can
genuinely follow the instruction to the destination.
However, Ent-Rel achieves better results that ours,
for which we provide further analysis in the next
section.

5.1 The Number of Selected Landmarks

We experimentally validated the best number of im-
portant landmarks the agent should select. Figure 3
shows the SPL results with different k values on
validation seen and unseen dataset. We find that the
best result is obtained when k is 3. It also shows
that letting the agent focus on only one landmark
or all landmarks in the instruction will hinder their
navigation performance. Table4 shows the statis-
tics of the extracted spatial configurations in train
and validation seen/unseen dataset. On average,
each instruction can be split into about four spatial
configurations, and about 76% of spatial configu-
rations contain landmarks. In fact, selecting top 3
landmarks means that the agent mainly focuses on
the landmark-object alignment in 3 spatial configu-
rations at most at each navigation step.

Figure 3: SPL Results with Different K Values.

5.2 Scene & Object Alignment

Ent-Rel(Hong et al., 2020a) distinguishes the land-
marks which are scenes from objects. Scene to-
kens describe the location at a coarse level, such as
“bathroom", while object tokens describe the exact
landmarks, such as “table". To evaluate the agent’s
performance given the instructions with only object
tokens, we mask all scene tokens in the instructions
and evaluate on Ent-Rel and our model. Table 2
shows the experimental results in the unseen val-
idation set. Compared with Ent-Rel, our model
performs slightly better given the instruction with

only object tokens but worse with scene and object
tokens. One of the reasons for such a phenomenon
is that Faster-RCNN often fails to detect the scenes
correctly. For example, the aligned object labels in
the image for the landmark "bedroom" are “floor",
“roof", “wall", which are parts of the bedroom. The
explicitly modeling makes our model more sensi-
tive to the wrong alignments, which further impacts
the navigation performance.

5.3 Ablation Study
Table 3 shows the ablation study results. Row#1
is the baseline model. Row#2 (Lan-Obj) shows
that explicitly modeling important landmarks and
aligned objects improves the performance com-
pared to the baseline. Rel (row#3) is the result af-
ter modeling the spatial relation tokens describing
the relative relation between agent and landmark.
Rel_v (row#4) is the result after modeling the spa-
tial relations in motions. The improved SDTW
shows the modeling of spatial relations can help
the agent to follow the instructions. However, the
spatial terms directly describing the landmark are
more helpful than the spatial terms in motions.

5.4 Qualitative Analysis
Figure 4 shows qualitative analysis examples. The
selected k-important landmarks are “door”, “table”,
“painting” in Figure 4a. The agent makes a correct
decision by selecting the viewpoint that contains
the objects aligned with all three landmarks. Fig-
ure 4b shows an example after modeling spatial re-
lations. Although three navigable viewpoints have
the object "door", the agent selects the aligned ob-
ject with the “left” direction. Also, in Figure 5,
we provide an example to visualize the navigation
process using the selected landmark based on the
spatial configurations.

However, we find that relation alignments will
be helpful when the object alignments are done cor-
rectly. Figure 4c shows another example of land-
mark and object alignments. It contains two spatial
configurations: “walk past the kitchen towards the
dining room” and “stop before you reach the ta-
ble”. In the first configuration, the landmarks are
“kitchen’ and “dining room”; in the second config-
uration, the landmark is “table”. By merely using
the visual environment as a clue for viewpoint se-
lection, the agent will select the second navigable
viewpoint because of its detected “kitchen” view.

Nevertheless, based on the instruction semantics,
the “kitchen” is an object the agent passes by, and

328



(a) Enter the “door” to the small “table” with a “painting” above.
v1: [door-door; table-table; painting-wall]
v2: [door-door; table-wall; painting-wall]
v3: [door-door; table-table; painting-picture]

(b) Head towards the “doors” on the left towards “kitchen”.
v1:left; v2:right; v3:right

(c) Walk past the “kitchen” towards the “dining room”. Stop before you reach the
“table”.
v1: [kitchen-room; dining room-room; table-table]
v2: [kitchen-kitchen; dining room-room; table-kitchen]

(d) Turn right toward “bathroom”. Stop at the top of the steps.
v1:left; v2:right;

Figure 4: Qualitative Examples. Blue bounding boxes
are the aligned objects. Green arrow is the selected
correct viewpoint. v is the viewpoint, the alignment
between landmarks and objects is [landmark-object].

the "table" is the final goal. In some cases, our
method can handle such situations by using the
selected landmarks. In this example, the model
allows the agent to focus on the aligned object
such as “table”, which appear later in the spatial
configuration. It increases the probability of select-
ing the first viewpoint. Also, we find that relation
alignments modeling will be helpful only when the
object alignments are done correctly. If the object
alignments fail, for example, when the agent makes
mistakes during navigation or the aligned objects
can not be detected, modeling relations can worsen
the situation. For instance, in Figure 4d, for both
navigable viewpoints, the object “bathroom” can
not be detected, and in this case, further modeling
relations leads to making wrong decisions.

Train Val Seen Val Unseen
1 Instructions 14025 1021 2349
2 Configs 58277 4301 9625

3 Configs with
Landmark 44053 3225 7303

4 Configs with
Relation 13543 1142 2566

Table 4: Statistics of Spatial Configuration

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

step1
Viewpoints:

Instructions:

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

step3

Viewpoints:

Instructions:

step4
Viewpoints:

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.Instructions:

step5
Viewpoints:

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.Instructions:

step2

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.
Instructions:

Viewpoints:

Figure 5: The green boxes are spatial configurations;
darker green means higher weights; yellow boxes are
the selected landmarks; the orange arrows are the path.

6 Conclusion

In this work, we propose a neural architecture to
solve the vision and language navigation problem.
Our method achieves the alignments between tex-
tual landmarks and visual objects. In particular, we
first select important landmarks based on spatial
configurations, and then encourage the agent to
concentrate on the relevant objects in the visual en-
vironment given the selected landmarks. Besides,
We are the first to explicitly model the spatial rela-
tions between the agent and the landmarks from the
agent’s perspective on both instruction and image
sides. Our experiments show that explicit object-
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landmark alignments and the perspective informa-
tion are important factors and lead to competitive
results compared with strong baselines. We have
conducted comprehensive analysis to support our
conclusion that explicitly modeling the objects and
spatial relation alignments improving the spatial
reasoning ability, generalizability and explainabil-
ity of the model. Though we do not achieve the
SOTA compared to transformer-based models that
rely on pre-training, we plan to apply the same
ideas on top of such recent models in the future.
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