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Abstract
Natural language applied to natural 2D im-
ages describes a fundamentally 3D world.
We present the Voxel-informed Language
Grounder (VLG), a language grounding model
that leverages 3D geometric information in
the form of voxel maps derived from the vi-
sual input using a volumetric reconstruction
model. We show that VLG significantly im-
proves grounding accuracy on SNARE (Thoma-
son et al., 2021), an object reference game task.
At the time of writing, VLG holds the top place
on the SNARE leaderboard,1 achieving SOTA
results with a 2.0% absolute improvement.

1 Introduction

Embodied robotic agents hold great potential for
providing assistive technologies in home environ-
ments (Pineau et al., 2003), and natural language
provides an intuitive interface for users to interact
with such systems (Andreas et al., 2020). For these
systems to be effective, they must be able to re-
liably ground language in perception (Bisk et al.,
2020; Bender and Koller, 2020).

Despite typically being paired with 2D images,
natural language that is grounded in vision de-
scribes a fundamentally 3D world. For example,
consider the grounding task in Figure 1, where the
agent must select a target chair against a distrac-
tor given the description “the swivel chair with 6
wheels.” Although the agent is provided with multi-
ple images revealing all of the wheels on each chair,
it must be able to properly aggregate information
across images to successfully differentiate them,
something that requires reasoning about their 3D
geometry at some level.

In this work, we show how language grounding
performance may be improved by leveraging 3D
prior knowledge. Our model, Voxel-informed Lan-
guage Grounder (VLG), extracts 3D voxel maps us-
ing a pre-trained volumetric reconstruction model,

1https://github.com/snaredataset/snareleaderboard
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Figure 1: Voxel-informed Language Grounder.
Our VLG model leverages explicit 3D information by
inferring volumetric voxel maps from input images,
allowing the agent to reason jointly over the geomet-
ric and visual properties of objects when grounding.

which it fuses with multimodal features from a
large-scale vision and language model in order to
reason jointly over the visual and 3D geometric
properties of objects.

We focus our investigation within the context
of SNARE (Thomason et al., 2021), an object ref-
erence game where an agent must ground natural
language describing common household objects
by their geometric and visual properties, showing
that grounding accuracy significantly improves by
incorporating information from predicted 3D vol-
umes of objects. At the time of writing, VLG
achieves SOTA performance on SNARE, attain-
ing an absolute improvement of 2.0% over the next
closest baseline. Code to replicate our results is
publicly available.2

2 Related Work

Prior work has studied deriving structured represen-
tations from images to scaffold language ground-
ing. However, a majority of systems use represen-
tations such as 2D regions of interest (Anderson
et al., 2018; Wang et al., 2020) or symbolic graph-

2https://github.com/rcorona/voxel_informed_language_
grounding
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based representations (Hudson and Manning, 2019;
Kulkarni et al., 2013), which do not encode 3D
properties of objects.

Most prior work tying language to 3D repre-
sentations has largely focused on generating 3D
structures conditioned on language, rather than us-
ing them as intermediate representations for lan-
guage grounding as we do here. Specifically, prior
work has performed language conditioned gen-
eration at the scene (Chang et al., 2014, 2015a),
pose (Ahuja and Morency, 2019; Lin et al., 2018),
or object (Chen et al., 2018) level. More recently,
a line of work has explored referring expression
grounding in 3D by mapping referring expressions
of objects to 3D bounding boxes localizing them
in point clouds of indoor scenes (Achlioptas et al.,
2020; Chen et al., 2020; Zhao et al., 2021; Roh
et al., 2022). Standard approaches follow a two-
tiered process where an object proposal system will
first provide bounding boxes for candidate objects,
and a scoring module will then compute a compat-
ibility score between each box and the referring
expression in order to ground it. At a more granu-
lar level, Koo et al. (2021) learn alignments from
language to object parts by training agents on a
reference game over point cloud representations of
objects.

In contrast, in this work we focus on augmenting
language grounding over 2D RGB images using
structured 3D representations derived from them.
For the task of visual language navigation, prior
work has shown how a persistent 3D semantic map
may be used as an intermediate representation to
aid in selecting navigational waypoints (Chaplot
et al., 2020; Blukis et al., 2021). The semantic
maps, however, represent entire scenes with indi-
vidual voxels representing object categories, rather
than their geometry. In this work, we show how
a more granular occupancy map representing ob-
jects’ geometry can improve language grounding
performance.

Closest to our work is that of Prabhudesai et al.
(2020), which presents a method for mapping
language to 3D features within scenes from the
CLEVR (Johnson et al., 2017) dataset. Their sys-
tem generates 3D feature maps inferred from im-
ages and then grounds language directly to 3D
bounding boxes or coordinates. Their method as-
sumes, however, that dependency parse trees are
provided for the natural language inputs, and it is
trained with supervised alignments between noun

phrases and the 3D representations, which VLG
does not require.

3 Voxel-informed Language Grounder

We consider a task where an agent must cor-
rectly predict a target object vt against a dis-
tractor vc given a natural language description
wt = {w1, ..., wm} of the target. For each ob-
ject, the agent is provided with n 2D views v =
{x1, ..., xn}, xi ∈ R3×W×H .

An agent for this task is represented by a scor-
ing function s(v, w) ∈ [0, 1], computing the com-
patibility between the target description and the
2D views of each object, and is used to select the
maximally scoring candidate. We first use uni-
modal encoders to encode the language description
into ew = h(w) and the object view images into
a single aggregate visual embedding ev = g(v)
before fusing them with a visiolinguistic module
evw = fvw ([ev; ew]). Prior approaches to this
problem (Thomason et al., 2021) directly input this
fused representation to a scoring module to pro-
duce a score s(evw). They do not explicitly reason
about the 3D properties of the observed objects,
requiring the models to learn them implicitly.

In contrast, our Voxel-informed Language
Grounder augments the scoring function s with
explicit 3D volumetric information eo = o(v) ex-
tracted from a pre-trained multiview reconstruc-
tion model. The volumetric information (in the
form of a factorization of a voxel occupancy map
in RW×H×D) is first fused into a joint representa-
tion with the language using a multimodal voxel-
language module eow = fow([eo; ew]). The scor-
ing function then produces a score based on all
three modalities s([evw; eow]).

3.1 Model Architecture

VLG (Figure 2) consists of two branches: a
visiolinguistic module for fusing language and
2D RGB features, and a voxel-language module
for fusing language with 3D volumetric features.
A scoring function is then used to reason jointly
over the output of the two branches, producing a
compatibility score.

Visiolinguistic Module. The architecture of
our visiolinguistic module fvw (left panel, Figure
2) largely mirrors the architecture of MATCH
from Thomason et al. (2021). A pre-trained
CLIP-ViT (Radford et al., 2021) model is used to
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Figure 2: VLG Architecture. (Left) Our VLG model consists of a visiolinguistic module which produces a
joint embedding for text and images using CLIP (Radford et al., 2021) and a voxel-language module for jointly
embedding language and volumetric maps. (Right) The voxel-language module uses a cross modal transformer to
fuse word embeddings from CLIP with voxel map factors extracted from LegoFormer (Yagubbayli et al., 2021).
During training, gradients only flow through solid lines.

encode the language description and view images
into vectors in R512. The image embeddings are
max-pooled and concatenated to the description
embedding before being passed into an MLP
which generates a fused representation.

Voxel-Language Module. We use represen-
tations extracted from a ShapeNet (Chang
et al., 2015b; Wu et al., 2015) pre-trained Lego-
FormerM (Yagubbayli et al., 2021), a multi-view
3D volumetric reconstruction model, as input to
our voxel-language module fow. LegoFormer
is a transformer (Vaswani et al., 2017) based
model whose decoder generates volumetric maps
factorized into 12 parts. Each object factor is
represented by a set of three vectors x, y, z ∈ R32,
which we concatenate to use as input tokens for
our voxel-language module. A triple cross-product
over x, y, z may be used to recover a 3D volume
V ∈ R32×32×32 for each factor. The full volume
for the object is generated by aggregating the
factor volumes through a sum operation. For more
details on LegoFormer, we refer the reader to
Yagubbayli et al. (2021). We use a cross-modal
transformer (Vaswani et al., 2017) encoder to
fuse the language and object factors (Figure 2,
right). The cross-modal transformer takes as
input language tokens, in the form of CLIP word
embeddings, and the 12 object factors output
by the LegoFormer decoder, which contain the
inferred geometric occupancy information of
the object. We use a CLS token as an aggregate

representation of the language and object factors.

Scoring Function. The scoring function is
represented by an MLP which takes as input the
concatenation of the visiolinguistic module output
and the cross-modal transformer’s CLS token.

4 Language Grounding Evaluation

Evaluation. We test our method on the SNARE
benchmark (Thomason et al., 2021). SNARE
is a language grounding dataset which augments
ACRONYM (Eppner et al., 2021), a grasping
dataset built off of ShapeNetSem (Savva et al.,
2015; Chang et al., 2015a), with natural language
annotations of objects.

SNARE presents an object reference game where
an agent must correctly guess a target object against
a distractor. In each instance of the game, the agent
is provided with a language description of the tar-
get as well as multiple 2D views of each object.
SNARE differentiates between visual and blind-
folded object descriptions. Visual descriptions pri-
marily include attributes such as name, shape, and
color (e.g. “classic armchair with white seat”). In
contrast, blindfolded descriptions include attributes
such as shape and parts (e.g. “oval back and verti-
cal legs”). The train/validation/test sets were gener-
ated by splitting over (207 / 7 / 48) ShapeNetSem
object categories, respectively containing (6,153 /
371 / 1,357) unique object instances and (39,104
/ 2,304 / 8,751) object pairings with referring ex-
pressions. Renderings are provided for each object
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VALIDATION TEST
Model Visual Blind All Visual Blind All
ViLBERT 89.5 76.6 83.1 80.2 73.0 76.6
MATCH 89.2 (0.9) 75.2 (0.7) 82.2 (0.4) 83.9 (0.5) 68.7 (0.9) 76.5 (0.5)
MATCH∗ 90.6 (0.4) 75.7 (1.2) 83.2 (0.8) - - -
LAGOR 89.8 (0.4) 75.3 (0.7) 82.6 (0.4) 84.3 (0.4) 69.4 (0.5) 77.0 (0.5)
LAGOR∗ 89.8 (0.5) 75.0 (0.4) 82.5 (0.1) - - -
VLG (Ours) 91.2 (0.4) 78.4†(0.7) 84.9†(0.3) 86.0 71.7 79.0

Table 1: SNARE Benchmark Performance. Object reference game accuracy on the SNARE task across validation
and test sets. Performance on models with an asterisk are our replications of the baselines in Thomason et al. (2021).
Standard deviations over 3 seeds are shown in parentheses. MATCH corresponds to the max-pool variant from
Thomason et al. (2021) since no test set results are provided for the mean-pool variant. Our VLG model achieves
the best overall performance. Due to leaderboard submission restrictions, we were not able to get test set results for
the MATCH∗ and LAGOR∗ replications. † denotes statistical significance with p < 0.1.

instance over 8 canonical viewing angles.
Because ShapeNet and ShapeNetSem represent

different splits of the broader ShapeNet database,
we pre-train the LegoFormerM model on a modi-
fied dataset to avoid dataset leakage. Specifically,
any objects which appear in both datasets are re-
assigned within the pre-training dataset used to
train LegoFormerM to match its split assignment
from SNARE.

ShapeNetSem images are resized to 224× 224
when inputting them to LegoFormerM in order to
match its ShapeNet pre-training conditions.

Baselines. We compare VLG against the
set of models provided with SNARE.3 All
SNARE baselines except ViLBERT use a CLIP
ViT-B/32 (Radford et al., 2021) backbone for
encoding both images and language descriptions:

MATCH first uses CLIP-ViT to embed the
language description as well as each of the 8
view images. Next, the view embeddings are
mean-pooled and concatenated to the descrip-
tion embedding. Finally, a learned MLP is
used over the concatenated feature vector in
order to produce a final compatibility score.

ViLBERT fine-tunes a 12-in-1 (Lu et al.,
2020) pre-trained ViLBERT(Lu et al., 2019)
as the backbone for MATCH instead of using
CLIP-ViT. Each object is presented to ViL-
BERT in the form of a single tiled image con-
taining all 14 views from ShapeNetSem, in-
stead of just the canonical 8 presented in the
standard task. ViLBERT tokenizes images by

3https://github.com/snaredataset/snare

extracting features from image regions, with
the ground truth bounding boxes for each re-
gion (i.e. view) being provided. Because this
baseline is not open-source, we report the orig-
inal numbers from Thomason et al. (2021).

LAGOR (Language Grounding through
Object Rotation) fine-tunes a pre-trained
MATCH module and is additionally regular-
ized through the auxiliary task of predicting
the canonical viewing angle of individual view
images, which it predicts using an added out-
put MLP head. Following Thomason et al.
(2021), the LAGOR baseline is only provided
with 2 random views of each object both dur-
ing training and inference.

For more details on the baseline models, we
refer the reader to Thomason et al. (2021).

Training Details. Apart from the dataset
split re-assignments mentioned in Section 4, we
use the code4 and hyperparameters presented
by Yagubbayli et al. (2021) to train LegoFormerM.

For training on SNARE, we follow Thomason
et al. (2021) and train all models with a smoothed
binary cross-entropy loss (Achlioptas et al., 2019).

We train each model for 75 epochs, reporting per-
formance of the best performing checkpoint on the
validation set. For our replication of the SNARE
MATCH and LAGOR baselines, we use the code
and hyperparameters provided by Thomason et al.
(2021). For all variants of our VLG model we
use the AdamW (Loshchilov and Hutter, 2017) op-
timizer with a learning rate of 1e-3 and a linear
learning rate warmup of 10K steps.

4https://github.com/faridyagubbayli/LegoFormer
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Model Visual Blind All
VGG16 91.4 (0.5) 76.5 (0.9) 84.0 (0.2)

MLP 91.1 (0.8) 77.9 (0.9) 84.6 (0.1)
no-CLIP 71.0 (0.6) 65.8 (0.7) 68.4 (0.1)

VLG 91.2 (0.4) 78.4 (0.7) 84.9 (0.3)

Table 2: Ablation Study. SNARE reference game accu-
racy across ablations of our model on the validation set.
We show performance when replacing LegoformerM
object factors with VGG16 features, replacing the cross-
modal transformer with an MLP, and when foregoing
the use of CLIP features (no-CLIP).

5 Results

We present test set performance for VLG and the
SNARE baselines reported by Thomason et al.
(2021). We also present average performance for
trained models over 3 seeds with standard devia-
tions on the validation set.

5.1 Comparison to SOTA
In Table 1 we can observe reference game perfor-
mance for all models. VLG achieves SOTA perfor-
mance with an absolute improvement on the test
set of 2.0% over LAGOR, the next best leaderboard
model. Although there is a general improvement
of 1.7% in visual reference grounding, there is an
improvement of 2.3% in blindfolded (denoted as
Blind in tables to conserve space) reference ground-
ing. This suggests that the injected 3D information
provides a greater boost for disambiguating be-
tween examples referring to geometric properties
of target objects. VLG generally improves over all
baselines and conditions for blindfolded examples,
with the exception of ViLBERT, which may be due
to the additional information ViLBERT receives
in the form of 14 viewing angles of each object
instead of 8.

Improvements on the Blind and All conditions
of the validation set are statistically significant with
p < 0.1 under a Welch’s two-tailed t-test.

5.2 Ablation Study
We present a variety of ablations on the validation
set to investigate the contributions of each piece of
our model. All results can be observed in Table 2.

VGG16 Embeddings. LegoFormer uses an
ImageNet (Deng et al., 2009) pre-trained
VGG16 (Simonyan and Zisserman, 2014) as a
backbone for extracting visual representations,
which is a different dataset and pre-training task

than what the CLIP-ViT image encoder is trained
on. This presents a confounding factor which
we ablate by performing an experiment feeding
our model’s scoring function VGG16 features
directly instead of LegoFormer object factors
(VGG16 in Table 2). Despite getting comparable
results to VGG16 on visual reference grounding,
VLG provides a clear improvement in blindfolded
(and therefore overall) reference performance,
suggesting that the extracted 3D information is
useful for grounding more geometrically based
language descriptions, with the VGG16 features
being largely redundant in terms of visual signal.

Architecture. We ablate the contribution of
our cross-modal transformer branch by comparing
it against an MLP mirroring the structure of the
SNARE MATCH baseline. This model (MLP in
Table 2) max-pools the LegoFormer object factors
and concatenates the result to the CLIP visual
and language features before passing them to an
MLP scoring function. The MLP model overall
outperforms the SNARE baselines from Table 1,
highlighting the usefulness of the 3D information
for grounding, but does not result in as large an
improvement as the cross-modal transformer. This
suggests that the transformer is better able at
integrating information from the multi-view input.

CLIP Visual Embeddings. Finally, we evaluate
the contribution of the visiolinguistic branch of
the model by removing it and only using the
cross-modal transformer over language and object
factors. As may be observed, there is a large drop
in performance (16.5% overall), particularly for
visual references (20.2%). These results suggest
that maintaining visual information such as color
and texture is critical for performing well on this
task, since the LegoFormer outputs contain only
volumetric occupancy information.

6 Discussion

We have presented the Voxel-informed Language
Grounder (VLG), a model which leverages explicit
3D information from predicted volumetric voxel
maps to improve language grounding performance.
VLG achieves SOTA results on SNARE, and ab-
lations demonstrate the effectiveness of using this
3D information for grounding. We hope this paper
may inspire future work on integrating structured
3D representations into language grounding tasks.
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