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Abstract

When generating natural language from neural
probabilistic models, high probability does
not always coincide with high quality: It
has often been observed that mode-seeking
decoding methods, i.e., those that produce
high-probability text under the model, lead to
unnatural language. On the other hand, the
lower-probability text generated by stochastic
methods is perceived as more human-like.
In this note, we offer an explanation for this
phenomenon by analyzing language gener-
ation through an information-theoretic lens.
Specifically, we posit that human-like language
should contain an amount of information
(quantified as negative log-probability) that
is close to the entropy of the distribution over
natural strings. Further, we posit that language
with substantially more (or less) information is
undesirable. We provide preliminary empirical
evidence in favor of this hypothesis; quality
ratings of both human and machine-generated
text—covering multiple tasks and common
decoding strategies—suggest high-quality text
has an information content significantly closer
to the entropy than we would expect by chance.

1 Introduction

Today’s probabilistic neural language models are
often trained on millions—if not billions—of lines
of human text; thus, at least at an intuitive level,
we would expect high-probability generations
to be human-like. Yet the high-quality1 texts
these models have become famous for producing
(Brown et al., 2020; Clark et al., 2021) are usually
not those assigned the highest probability by the
model (Fan et al., 2018; Holtzman et al., 2020;
Basu et al., 2021; DeLucia et al., 2021). Rather,
the relationship between probability and quality

1We assume that “human-like” is a (necessary but not
sufficient) prerequisite for “high-quality” in the context of
natural language strings.

appears to have an inflection point,2 i.e., quality
and probability are positively correlated only until
a certain threshold, after which the correlation
becomes negative. While the existence of such a
trend has received informal explanations (see, e.g.,
Ippolito et al. (2019) and Zhang et al. (2021) for a
qualitative discussion about the trade-off between
diversity and quality), it lacks a more fundamental
understanding. Why does the lower probability text
produced by stochastic decoding methods—such
as nucleus or top-k sampling—outperform text gen-
erated using probability-maximizing approaches?
In this note, we take an information-theoretic
approach in an attempt to answer this question.

In information theory, probability has another
interpretation: its negative log quantifies in-
formation content. In the context of natural
language, the notion of information content is
intuitive; humans use strings as a means to convey
information. Further, less predictable text, i.e., text
which would be harder for us to anticipate, conveys
more information. If we assume that the goal of
human communication is to transmit messages
efficiently and reliably (Gibson et al., 2019), we
may predict that these strings’ information content
should concentrate inside a specific interval. At
one extreme, strings with more-than-expected
information may be hard to process, and thus
ought to be disfavored when producing language.3

At the other extreme, low-information strings may
be seen as boring and uninformative.

Collectively, these concepts lead us to propose
the expected information hypothesis: Text
perceived as human-like should have an infor-
mation content within a small interval around
the expected information—i.e., the entropy—of
natural language strings. Such a hypothesis offers

2The inflection point is empirically demonstrated in our
App. B or in Fig. 1 of Zhang et al. (2021).

3Many works in psycholinguistics have shown a direct
relationship between information content and processing effort
(Smith and Levy, 2013; Wilcox et al., 2020, inter alia).

36

mailto:clara.meister@inf.ethz.ch
mailto:gian.wiher@inf.ethz.ch
mailto:tp472@cam.ac.uk
mailto:ryan.cotterell@inf.ethz.ch


an intuitive explanation for the trends observed
in natural language generation (NLG), i.e., why
desirable text seems to exist not always at the
high end of the probability spectrum but around a
certain inflection point.4 Moreover, it also gives us
a testable hypothesis: given a language generation
model q whose entropy we can empirically
estimate, we can evaluate whether high-quality
text indeed has an information content that falls
within an interval around this quantity.

To test our hypothesis, we perform an analysis
comparing human and model-generated text,
investigating multiple common decoding strategies
and NLG tasks. Specifically, our analysis focuses
exclusively on English text. We indeed observe
that the information content of highly ranked text
(as judged by humans) often falls within a standard
deviation of model entropy; there is statistically
significant evidence that this is not due to chance.
Further, the best-performing decoding methods
appear to select strings with an information content
within this interval. We take these observations as
empirical support for our hypothesis, helping to
explain the probability–quality paradox observed
in language generation.

2 Probabilistic Language Generators

In this work, we focus on probabilistic models
for language generation tasks. Formally, these
models are probability distributions q over natural
language strings y ∈ Y , where Y is the (countably
infinite) set consisting of all possible strings that
can be constructed from a set vocabulary V:

Y def
= {BOS ◦ v ◦ EOS | v ∈ V∗} (1)

Here, BOS and EOS stand for special reserved
beginning- and end-of-string tokens, respectively,
and V∗ denotes the Kleene closure of V . In
practice, we limit the set of strings we consider to
YN ⊂ Y for some maximum sequence length N .

Note that q may be a conditional model. For
instance, we may model q(· | x) where x is an
input text, as in the case of machine translation, or
an input image, as in the case of image captioning.
However, for notational brevity, we omit this
explicit dependence in most of our subsequent
analyses. In order to estimate q, it is standard
practice to maximize the log-probability of a

4Similar ideas have been used to improve language models
and language generation before (Meister et al., 2020; Wei
et al., 2021).

training corpus C under the model with respect
to the model’s parameters θ. This is equivalent to
minimizing its negative log-probability:

L(θ; C) = −
∑
y∈C

log q(y) (2)

There are many different decision rules one can em-
ploy for generating natural language strings from a
model q; such sets of rules are generally referred to
as decoding strategies; see Wiher et al. (2022) for
an in-depth review. Given the probabilistic nature
of the models we consider, an intuitive strategy for
decoding would be to choose the string with the
highest probability under q, an approach referred
to as maximum-a-posteriori (MAP) decoding.5 Yet
recent research has shown that solutions to MAP
decoding—or, even more generally, to heuristic
mode-seeking methods such as beam search—are
often not high-quality, even in state-of-the-art NLG
models. For example, in the domain of machine
translation, the most probable string under the
model is often the empty string (Stahlberg and
Byrne, 2019). Similarly, in the domain of open-
ended generation, mode-seeking methods produce
dull and generic text (Holtzman et al., 2020).

Where maximization has failed, authors have
turned to stochastic methods, taking random
samples from q. While the resulting text is often
assigned much lower probability than the mode,
it can be qualitatively much better. This peculiarity
has puzzled the language generation community
for the last few years, with only qualitative
intuitions being offered as explanation. This paper
in turn offers a quantitative explanation.

3 Language as Communication

While many aspects of natural language may not
perfectly adhere to Shannon’s mathematical theory
of communication, there are several characteristics
of human language that can fruitfully be described
using an information-theoretic framework.6 Here
we employ this framework for explaining recent
phenomena observed in probabilistic NLG.

5Note that MAP decoding is somewhat of a misnomer
since we are not maximizing over a Bayesian posterior.
Nonetheless, the term has become commonplace in the lan-
guage generation literature.

6A large body of work has explored the extent to which
attributes of human languages—such as word lengths or
phoneme distributions—can be explained as information-
theoretic design features (Gibson et al., 2019). Surprisal the-
ory, for instance, directly relates human language processing
difficulty to information content (Hale, 2001).
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3.1 Measuring Information

We can precisely compute the information content
of a string given the true (perhaps conditional)
probability distribution p over natural language
strings. Fortunately, this is the exact distribution
our language generation models in §2 are trained to
approximate.7 Assuming q approximates p well (as
quantified by metrics such as perplexity), we may
thus use it to estimate such attributes of natural
language strings. In this work, we will measure
the amount of information a specific realization
y contains, which we denote I(y)

def
= − log q(y),

as well as the expected amount of information
a random y ∈ YN drawn from q contains, also
termed the entropy of q:

Eq [I(y)] = H(q) = −
∑
y∈YN

q(y) log q(y) (3)

Note that Pimentel et al. (2021b, Theorem 2) prove
that, as long as the probability of EOS under q is
bounded below by some ϵ > 0, then the entropy of
q is finite. In our case we restrict q to a finite subset
YN of Y , which also implies that Eq. (3) is finite.

3.2 The Expected Information Hypothesis

Language is used as a means for transferring
information. This property of language has in fact
motivated several theories of language evolution;
many have posited, for instance, that natural
language has developed to optimize for reliable
and efficient data communication, subject to
cognitive resources (Zipf, 1949; Hockett, 1960;
Hawkins, 2004; Piantadosi et al., 2011). The
above theories arguably imply that humans tend
to produce natural language strings with a certain
amount of information; they also imply that, on the
receiving end of communication, humans would
expect similar strings. We argue that this amount
is intuitively close to the language’s entropy, i.e.,
close to the average string’s information content.

Expected Information Hypothesis. Text per-
ceived as human-like typically encodes an amount
of information close to the expected information
content of natural language strings, i.e., in the in-
terval [H(p)− ε, H(p)+ ε] for a natural language

7To see this, recall that minimizing the objective in Eq. (2)
is (up to an additive constant) equivalent to minimizing
the Kullback–Leibler divergence—an information-theoretic
quantity that measures the amount of information lost when
approximating one probability distribution with another—
between the empirical distribution p and our model q.

string distribution p and some ε.8 Text that falls out-
side of this region is likely perceived as unnatural.

This viewpoint can be applied to the problem of
decoding neural text generators. In the context of
a model q of the distribution p, this implies that—
when q is a good approximation—human-like text
should typically have a negative log-probability
close to the entropy of q. In §4, we provide
empirical evidence for this hypothesis.

Relationship to the typical set. The set of
strings that we discuss has an intuitive relationship
to the typical set (Shannon, 1948), an information-
theoretic concept defined for stationary ergodic
stochastic processes. However, generation from
standard neural probabilistic language models can-
not be framed as such a process.9 While we cannot
utilize the formal mathematical underpinnings of
typicality, the connection can still be useful for un-
derstanding why strings with a given information
content exhibit certain characteristics. An overview
of the concept is in App. A for the interested reader;
also see Dieleman (2020) for further insights on
typicality in the context of generative models.

4 Experiments

Our experiments present an analysis of the distri-
bution of information content in text generated by
both humans and probabilistic models. Specifically,
we look at the relationship between information
content and quality—as measured by human judg-
ments. We perform experiments on two natural
language generation tasks: abstractive summariza-
tion and story generation. We present the results
for story generation here, while the results for sum-
marization can be found in App. B due to space
constraints. A recreation of the probability versus
quality plots of Zhang et al. (2021) can also be
found in App. B.

We use the following Monte Carlo estimator for
the entropy, i.e., expected information content, of

8While we do not offer a concrete explanation of why
distributions over natural language strings have a particular
entropy, we posit that it is determined by cognitive constraints,
as observed with other phenomena in natural language (Coupé
et al., 2019; Pimentel et al., 2021a).

9Specifically, most neural language models are neither
stationary (due to their ability to encode arbitrarily long se-
quences; Welleck et al. 2020) nor ergodic (because of the ab-
sorbing nature of the EOS state). This implies that we cannot
guarantee the existence of an entropy rate, which is necessary
to define the typical set.
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Figure 1: The distribution over information I(y) values
of: MODEL, the model, as estimated using samples
from q; REFERENCE, the reference strings; TOP 1 and
BOTTOM 1, model-generated strings ranked first and last
(respectively) among all decoding strategies by human
annotators. The latter 3 are all w.r.t. a held-out test
set. Same graph is reproduced for individual decoding
strategies in App. B.

our model q:

Ĥ(q) =
1

M

M∑
m=1

− log q(y(m)) (4)

where we sample y(m) i.i.d.∼ q. Algorithmically,
taking these samples may be done in linear time
using ancestral sampling. All computations are
performed with the test sets of respective datasets.
Note that for both abstractive summarization and
story generation, where we condition on some input
x, we must compute the conditional entropy for
each input, i.e., using q(· | x) instead of q(·). For
each x, we take M = 100 to estimate Ĥ(q(· | x)).

4.1 Setup

Models and Data. We only conduct experiments
on the English language. For story generation, we
fine-tune GPT-2 (medium) (Radford et al., 2019)
(checkpoint made available by OpenAI) on the
WRITINGPROMPTS dataset (Fan et al., 2018). For
abstractive summarization, we use BART (Lewis
et al., 2020), fine-tuned on the CNN/DAILYMAIL

dataset (Nallapati et al., 2016). We rely on the
open-sourced code-base from the HuggingFace
framework (Wolf et al., 2020) for reproducibility.

Decoding Strategies. We explore text generated
according to a number of different decoding strate-
gies. Unless otherwise stated, we use the imple-
mentation provided by Hugging Face for each of
the decoding algorithms. Along with standard an-
cestral sampling, we experiment with the following
six decoding strategies:

• greedy search;

Figure 2: The distribution of the difference in total in-
formation content for (1) test-set references and (2) top-
ranked model-generated strings from the (conditional)
entropy of the model from which they were generated.

• beam search with beam sizes k = 5 and
k = 10;

• diverse beam search (Vijayakumar et al.,
2016) with Hamming distance as a dissimilar-
ity function and λ = 0.7 and G = k = 5;10

• ancestral sampling;
• top-k sampling (Fan et al., 2018) with k =
30;

• nucleus sampling (Holtzman et al., 2020)
with p = 0.85;11

• minimum Bayes risk decoding (MBR;
Eikema and Aziz 2020)12 with 32 Monte
Carlo samples13 from q and BEER (Stanojević
and Sima’an, 2014) as the utility function.

Human Evaluations. We use the prolific
platform to obtain human judgments of text
quality (according to 2 criteria per task) from 5
different annotators on 200 examples per decoding
strategy–per task. This gives us a total of > 3000
annotated examples. We largely follow the
guidelines recommended by van der Lee et al.
(2021) in setting up our evaluations: For abstrac-
tive summarization, we ask annotators to rate
quality and accuracy while for story generation,
annotators rate fluency and naturalness. More
details on our setup can be found in App. B.1.

4.2 Results
In Fig. 1, we plot the distribution of information
content assigned by q to four different sets of
strings: our reference (human-generated) text, the

10The choice of dissimilarity function and hyperparameters
(λ,G, k) is based on the recommendations from the original
work.

11This choice is based on experiments in (DeLucia et al.,
2021) that suggest a parameter range p ∈ [0.7, 0.9].

12We use the github.com/Roxot/mbr-nmt framework.
13The number of Monte Carlo samples was chosen based

on the batch size constraint.
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Figure 3: Human scores for strings (including both
reference text and model-generated text) within 1 std of
model entropy and outside of this interval. There is a
statistically significant difference in means (p < 0.001).

top and bottom ranked (according to human an-
notators) strings generated from q via our differ-
ent decoding strategies,14 and strings sampled i.i.d.
from q. Note that the latter should represent the
distribution of negative log-probabilities assigned
to strings by the model. We see that both the refer-
ences and the top-ranked model-generated strings—
both of which we assume are of relatively high
quality—contain an amount of information clus-
tered around the (estimated) model entropy. On the
other hand, the distribution of the information con-
tent of poorly rated strings is skewed towards much
lower values. The same trends hold when look-
ing at information normalized by string length, i.e.,
I(y)/|y| (see App. B), demonstrating these trends
are not purely an artifact of string length. We note
that in our human evaluations, the reference string
was ranked first in 47% of cases and it was tied
for first in an additional 16% of the cases. This
suggests that the quality of the reference strings is
on par with—if not higher than—the set of “top 1”
model-generated strings.

Fig. 2 shows the distribution of deviations of
strings’ information content from the model en-
tropy;15 results are shown for both reference strings
and top-ranked model-generated strings. Because
these values are distributed quite evenly around 0,
we take this as additional evidence that high-quality
text usually has information content close to H(q).
Further, the shapes of these curves motivate us to
perform our next set of tests using ε = σ, the stan-
dard deviation of information values under q.16

We employ statistical hypothesis testing to
see if the percentage of high-quality strings
whose information content falls in the interval

14Specifically, for each input, we generate a single string
according to each decoding strategy. We then rank these
strings according to scores from human annotators.

15Note that this is not simply Fig. 1 shifted by a constant,
as deviations are computed w.r.t. input-dependent conditional
entropy estimates, i.e., Ĥ(q(· | x)).

16Similarly to our estimation of H(q) in Eq. (3), σ can be
estimated from the distribution of values of I(y) sampled from
the model.

[H(q) − σ, H(q) + σ] is greater than chance.
For each input x (i.e., either a story prompt
or article), we compute the information con-
tent of the reference and top-3 human-ranked
strings. We then compute the percentage
of items (among these four) that fall within
[H(q(· | x)) − σ, H(q(· | x)) + σ]. We compare
this percentage to the percentage of strings sampled
directly from q(· | x) that falls within this interval.
The former should (in expectation) be greater than
the latter if the probability of high-quality strings
having information content within this interval is
greater than chance. Specifically, we test this using
a paired, unequal-variance t-test, where samples
with the same input are paired. At significance
level α = 0.01, we reject our null hypothesis—i.e.,
we reject that the percentage of highly rated strings
(reference plus top-3 human-ranked strings) that
fall within this interval is equal to (or less than)
what we should expect by chance. Further, using
a simple unpaired t-test, we find that the mean
human score of strings (across all decoding strate-
gies) within this region is significantly higher than
those outside of this region. This characteristic is
visualized in Fig. 3, where we plot the distributions
of human quality ratings for strings inside and
outside of this interval. We include a version of
Fig. 3 further broken down by whether strings fall
above or below this interval in App. B.

Additional plots reinforcing these observations
can be found in App. B. Also see Meister et al.
(2022) for follow-up experiments to this work.

5 Conclusion

In this work, we present the expected information
hypothesis, which states that human-like strings
typically have negative log-probability close to the
expected information content of the probabilistic
model from which they were generated. We use
this hypothesis to explain why high-quality text
seems to exist not necessarily at the high end of
the probability spectrum but, rather, close to the en-
tropy of the model. We provide empirical evidence
in support of our hypothesis in an analysis of both
human and machine-generated text, demonstrating
that, overwhelmingly, high-quality text indeed has
information content in the proposed region.

Ethics Statement

In order to complete our human evaluation, we
used a crowdsourcing platform. For each task, we
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estimated the amount of time we expected the task
to take and made sure that the crowdworkers would
be paid (at minimum) a wage of $15 per hour. A
further ethical consideration of this work is in the
context of the use of language models for text gen-
eration. Language models have been used for the
generation of malicious text, e.g., fake news and
triggering content. The results in this work may
provide insights for those using language models
for such purposes as to how generations can be
chosen to seem more “human-like.”
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Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Steven T. Piantadosi, Harry Tily, and Edward Gibson.
2011. Word lengths are optimized for efficient com-
munication. Proceedings of the National Academy of
Sciences, 108(9):3526–3529.

Tiago Pimentel, Clara Meister, Elizabeth Salesky, Si-
mone Teufel, Damián Blasi, and Ryan Cotterell.
2021a. A surprisal–duration trade-off across and
within the world’s languages. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 949–962, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Tiago Pimentel, Irene Nikkarinen, Kyle Mahowald,
Ryan Cotterell, and Damián Blasi. 2021b. How (non-
)optimal is the lexicon? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4426–4438, Online.
Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Claude E. Shannon. 1948. A mathematical theory
of communication. Bell System Technical Journal,
27:623–656.

Nathaniel J. Smith and Roger Levy. 2013. The effect
of word predictability on reading time is logarithmic.
Cognition, 128(3):302–319.

Felix Stahlberg and Bill Byrne. 2019. On NMT search
errors and model errors: Cat got your tongue? In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, pages 3356–3362, Hong Kong, China.
Association for Computational Linguistics.
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A The Typical Set

Let us imagine flipping N biased coins; specifically, let X ∼ p be an indicator random variable that takes
values H and T. Take p(X=H) = 0.6 and p(X=T) = 0.4. Flipping N biased coins is then equivalent to
taking N i.i.d. samples xn ∼ p. For reasonably large N , what might you expect the sequence x1, . . . , xN
to look like? Few people would answer “all heads,” even though this is technically the highest probability
sequence. Rather, intuition tells you: an expected sequence would be one comprised of approximately
60% heads and 40% tails.

The samples that fall into the latter category have a distinctive characteristic: they contain a near-average
amount of information w.r.t the support of the distribution over X1, . . . , XN , where the information
content of a realization x1, . . . , xN is defined as its negative log-probability. More formally, the (weakly)
(ε,N)-typical set A(N)

ε for a chosen ε > 0 is the set of assignments x1, . . . , xN to random variables
−→
X = X1, . . . , XN such that

2−N(H(p)+ε) ⩽ p(x1, . . . , xN ) ⩽ 2−N(H(p)−ε)

where H(p)
def
= −

∑
x p(x) log p(x) is the entropy—or equivalently, the expected value of the information

content—of the random variable X . Under this definition we can prove that, for every ε > 0, there exists an
N0 such that for all N > N0, we have that the (ε,N)-typical set contains at least (1−ε) of the probability
mass of the joint distribution over

−→
X . The concept of the typical set also generalizes to stochastic processes

when we can actually compute their average information rate—or equivalently, their entropy rate.

B Experimental Design

B.1 Human Evaluations
For story generation and abstractive summarization, the raters are first presented with a news article/prompt.
Next, they are presented, in random order, with the corresponding reference and the summaries/stories
generated by different decoders. For each of two rating criteria, a score from 0 to 7 is assigned. For story
generation the criteria are FLUENCY and NATURALNESS while for abstractive summarization QUALITY

and ACCURACY are used. We provide the following short descriptions of the criteria to the raters:
FLUENCY: How fluent is the English text?

NATURALNESS: Does the text seem to be natural English text?

QUALITY: How high is the overall quality of the text?

ACCURACY: How well does the summary summarize the article?

After we obtain the ratings, we reject ratings that have not been filled out with care. Specifically, a rater is
rejected if he assigns high scores to multiple examples that do not fulfill the specified criteria at all. If a
rater has been rejected, we obtain a fresh set of ratings from a new rater.

C Additional Figures

We provide several additional results, looking further into the relationship between text information
content and perceived quality. We see that in general, the distribution of information content of reference
strings is quite close to that of the model. While the distribution of information content of top 1 ranked
strings is also closer to the model distribution than many of the individual decoding strategies, the overlap
is not as high as for reference strings.
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Figure 4: Human scores for strings (including both ref-
erence text and model-generated text) within 1 std of
model entropy and above/below this interval. Note that
“above” corresponds to text that has lower probability
than the specified interval; due to the nature of the de-
coding strategies explored in this work, which all to
some extent (except for ancestral sampling) dispropor-
tionately favor higher probability strings, only < 5%
of all strings evaluated fall into the “above” category.
Thus, we do not have a representative evaluation of this
region of the probability space. However, it is often ob-
served that extremely low-probability strings are usually
incoherent or nonsensical.

Figure 5: For story generation, median human scores
(averaged across the two criterion) versus information,
grouped by intervals; bars represent std. We normalize
I(y) by length to mimic setup of Zhang et al. (2021),
which controls for length during generation. As with
Zhang et al. (2021), we see an inflection point in
the relationship along the information (equivalently,
negative log-probability) axis.

Figure 6: For abstractive summarization, the distribu-
tion over information I(y) values of: (model) the model,
as estimated using samples from q; (reference) the ref-
erence strings; model-generated strings ranked (top 1)
first and (bottom 1) last among all decoding strategies
by human annotators. The latter 3 are all w.r.t. a held-
out test set.

Figure 7: For abstractive summarization, the distribution
of the difference in total information content for (1)
test-set references and (2) top-ranked model-generated
strings from the entropy of the model from which they
were generated.

Figure 8: For story generation, the distribution over
information (I(y)) values normalized by length of:
(model) the model, as estimated using samples from
q; (reference) the reference strings; model-generated
strings ranked (top 1) first and (bottom 1) last among all
decoding strategies by human annotators. The latter 3
are all w.r.t. a held-out test set.
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(a) a

(b) a
Figure 9: The distribution over information (I(y)) values for strings generated under different decoding strategies
for story generation (top) and abstractive summarization (bottom). Inputs are taken from a held-out test set.
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