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Abstract

We introduce FLOTA (Few Longest Token Ap-
proximation), a simple yet effective method
to improve the tokenization of pretrained lan-
guage models (PLMs). FLOTA uses the vo-
cabulary of a standard tokenizer but tries to
preserve the morphological structure of words
during tokenization. We evaluate FLOTA on
morphological gold segmentations as well as
a text classification task, using BERT, GPT-2,
and XLNet as example PLMs. FLOTA leads to
performance gains, makes inference more ef-
ficient, and enhances the robustness of PLMs
with respect to whitespace noise.

1 Introduction

The first step in NLP architectures using pretrained
language models (PLMs) is to map text to a se-
quence of tokens corresponding to input embed-
dings. The tokenizers used to accomplish this have
been shown to exhibit various undesirable prop-
erties such as generating segmentations that blur
word meaning (Bostrom and Durrett, 2020; Church,
2020; Hofmann et al., 2021) and generalizing sub-
optimally to new domains (Tan et al., 2020; Hong
et al., 2021; Sachidananda et al., 2021).

In this paper, we propose FLOTA (Few Longest
Token Approximation), a simple yet effective
method to mitigate some shortcomings of PLM
tokenizers. FLOTA is motivated by the following
hypothesis: rather than finding a segmentation that
covers all characters of a word but destroys its mor-
phological structure, it can be more beneficial to
find a segmentation that does not cover all charac-
ters but preserves key aspects of the morphology.
We confirm this hypothesis in this paper.

Our study investigates three PLMs and corre-
sponding tokenizers: BERT (base, uncased; Devlin
et al., 2019), which uses WordPiece (Schuster and
Nakajima, 2012; Wu et al., 2016), GPT-2 (base,
cased; Radford et al., 2019), which uses byte-pair
encoding (BPE; Gage, 1994; Sennrich et al., 2016),

and XLNet (base, cased; Yang et al., 2019), which
uses Unigram (Kudo, 2018). We find that FLOTA
increases the morphological quality of all tokeniz-
ers as evaluated on human-annotated gold segmen-
tations as well as the performance of all PLMs on
a text classification challenge set.

Contributions. We introduce FLOTA, a simple
yet effective method to improve the tokenization of
PLMs during finetuning. FLOTA uses the vocabu-
lary of a standard tokenizer but tries to preserve the
morphological structure of words during tokeniza-
tion. We show that FLOTA has three advantages
compared to standard tokenization: (i) it can in-
crease the performance of PLMs on certain tasks,
sometimes substantially; (ii) it makes inference
more efficient by shortening the processed token
sequences; (iii) it enhances the robustness of PLMs
with respect to certain types of noise in the data.
All this is achieved without requiring any addi-
tional parameters or resources compared to vanilla
PLM finetuning. We also release a text classifica-
tion challenge set that can serve as a benchmark for
future studies on PLM tokenizers.1

2 Few Longest Token Approximation

Let V be a set of tokens that constitute the vocabu-
lary of a tokenizer. For the tokenizers discussed in
this paper, V contains words, subwords, and char-
acters. Let φ be a model used by the tokenizer to
map text to a sequence of tokens from V .

FLOTA (Few Longest Token Approximation)
discards φ and uses V in a modified way. Given
a word w not in V , FLOTA tokenizes it by deter-
mining the longest substring s ∈ V of w, returning
s, and recursing on w \ s, the string(s) remain-
ing when s is removed from w. We stop after k
recursive calls or when the residue is null. Fig-
ure 1 provides pseudocode. For the example word
undesirable and k = 2, FLOTA first searches on

1We make our code and data available at https://
github.com/valentinhofmann/flota.
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MAXSUBWORDSPLIT(w, V )

1 l = length(w)
2 for j = l downto 0
3 for i = 0 to l − j + 1
4 s = w[i . . i+ j]
5 if s ∈ V
6 r = w[0 . . i]⊕j w[i+ j . . l]
7 return s, r, i

FLOTATOKENIZE(w, k, V )

1 s, r, i = MAXSUBWORDSPLIT(w, V )
2 if k == 1 or hyphen(r)
3 F = {}
4 F [i] = s
5 return F
6 F = FLOTATOKENIZE(r, k − 1, V )
7 F [i] = s
8 return F

Figure 1: FLOTA pseudocode. FLOTA is based on a
recursive function FLOTATOKENIZE that uses a hash
table F to store the longest substring s and its index i
on each recursive call. s and i are found by means of
a second function MAXSUBWORDSPLIT, which also
returns a residue r. In practice, to ensure correct in-
dexing throughout different recursive calls as well as
prevent using discontinuous substrings for tokeniza-
tion, we compute r using an operation ⊕j that concate-
nates two strings by putting j (length of s) hyphens be-
tween them. The recursion stops after k recursive calls
or when r only consists of hyphens (determined by a
boolean function hyphen). The hash table returned by
FLOTATOKENIZE is converted to a tokenization using a
simple wrapper function that sorts the found substrings
by their indices (not shown). If MAXSUBWORDSPLIT
does not find a substring s ∈ V , FLOTATOKENIZE re-
turns an empty hash table (not shown).

undesirable and finds desirable, then searches
on un--------- and finds un, then stops (since
k = 2; it would also stop for k > 2 since the
residue is null) and returns the tokenization un,
desirable. The WordPiece tokenization, on the
other hand, is und, es, ira, ble.

FLOTA is guided by the following observations:
many words not in V are made up of smaller and
typically more frequent elements that determine
their meaning (e.g., they are derivatives such as
undesirable); many of these elements are in V .2

By recursively searching for the longest substrings,
we hope to recover the most important meaningful

2Existing tokenizers have been shown to be able to recover
these elements only to a very limited extent (Bostrom and
Durrett, 2020; Church, 2020; Hofmann et al., 2021).

Model Tokenization C R M

BERT FIRST .869 .817 .664
BERT LONGEST .865 .797 .664
BERT FLOTA .990 .876 .896

GPT-2 FIRST .878 .674 .625
GPT-2 LONGEST .874 .674 .625
GPT-2 FLOTA .988 .845 .861

XLNet FIRST .886 .820 .724
XLNet LONGEST 902 .845 .756
XLNet FLOTA .992 .900 .922

Table 1: Morphological quality. C: morphological cov-
erage (k = 2); R: stem recall; M : full match.

elements. This is also why it makes sense to stop
after k recursions: if FLOTA returns the most im-
portant meaningful elements as the first few tokens,
we expect to not lose much by stopping.

3 Evaluation on Gold Segmentations

English inflection is simple, but the language has
highly complex word formation, i.e., derivation and
compounding (Cotterell et al., 2017; Pierrehumbert
and Granell, 2018). To evaluate the morphological
quality of FLOTA against the standard tokenizers,
we thus focus on derivatives and compounds.

Data. Our evaluation uses CELEX (Baayen
et al., 1995) and LADEC (Gagné et al., 2019), two
large datasets of human-annotated gold segmen-
tations of morphologically complex words. We
merge both datasets and extract all words consist-
ing of a prefix and a stem (prefixed derivatives),
a stem and a suffix (suffixed derivatives), or two
stems (compounds). We create for each PLM a sub-
set of words where both morphological elements
(i.e., stems and affixes) are in the tokenizer vocab-
ulary, but the word itself is not in the tokenizer
vocabulary. In such cases, a word needs to be seg-
mented, and it is guaranteed that the gold segmen-
tation is possible given the tokenizer vocabulary.
This procedure results in 11,272, 11,253, 10,848
words for BERT, GPT-2, XLNet, respectively.

Experimental Setup. We define three metrics
to analyze how closely FLOTA matches the gold
segmentations. We compare against two alterna-
tive tokenization strategies: representing words
as the k first tokens returned by the standard to-
kenizer (FIRST) and representing words as the k
longest tokens returned by the standard tokenizer
(LONGEST). Recall that the WordPiece tokeniza-
tion of the running example undesirable is und,
es, ira, ble. With k = 3, FIRST is und, es,
ira (i.e., it simply returns the first k tokens) and
LONGEST is und, ira, ble (i.e., it returns the k
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Figure 2: Morphological coverage for varying k.

longest tokens in the order in which they occur in
the standard tokenization).

Morphological coverage. We analyze what pro-
portion of morphological elements is covered by
each tokenization strategy for varying k, a mea-
sure that we call morphological coverage, C. For
undesirable and k = 3, FIRST and LONGEST
contain un (C = 0.5) while FLOTA contains both
un and desirable (C = 1). We compute the mean
morphological coverage across all words, C.

We find that for all three tokenizers, FLOTA
already covers about 99% of the morphological el-
ements with just k = 2, a value that FIRST and
LONGEST only reach with k = 4 (Table 1, Fig-
ure 2), indicating that FLOTA needs considerably
fewer tokens than the standard tokenization to con-
vey the same amount of semantic and syntactic
information. This can also be seen by examining
the average number of tokens needed to fully to-
kenize a word (i.e., k = ∞), with the values for
FLOTA (BERT: 2.02; GPT-2: 2.03; XLNet: 2.02)
being lower than the values for the standard tok-
enization (BERT: 2.30; GPT-2: 2.23; XLNet: 2.26).
The pairwise differences are statistically significant
(p < 0.001) as shown by two-tailed t-tests.

Stem recall. Given its relevance for the over-
all lexical meaning of a word, we are interested
in how often FLOTA returns the stem at k = 1.
We test this using a measure that we call stem
recall, R (R = 1 if the token is the stem,3 oth-
erwise R = 0), and compute the mean stem re-
call R across all words. We again compare with
FIRST and LONGEST. Notice the stem according
to the gold segmentation is longer than the second
morphological element in 97% of the examined
complex words, which means that LONGEST pro-
vides a close estimate of how often the full standard
tokenization contains the stem (since any other el-
ement in the full standard tokenization is shorter
and hence very unlikely to be the stem).

3For compounds: one of the two stems.

FLOTA returns the stem considerably more often
than either FIRST or LONGEST, but there are clear
differences between the models (Table 1): for GPT-
2, FLOTA increases R by more than 15% while the
difference amounts to 5% for XLNet.

Full match. Extending the evaluation of stem re-
call, we examine whether the tokenization at k = 2
is identical to the gold segmentation (which al-
ways has two elements) using a measure that we
call full match, M (M = 1 if the tokenization
exactly matches the gold segmentation, otherwise
M = 0). We again compute the mean value M
across all words. Here, the values for both FIRST
and LONGEST are identical to the performance of
the full standard tokenization: for the full standard
tokenization to exactly match a segmentation of
two elements, it must consist of two tokens, and
hence it is necessarily equal to both its first two
tokens and its longest two tokens.4 Table 1 shows
that FLOTA substantially improves M .

The evaluation on gold segmentations indicates
that FLOTA increases the morphological quality
of PLM tokenizers compared to the standard to-
kenization and simple alternatives. We also find
underlying differences in the morphological qual-
ity of the tokenizers, with BPE and Unigram lying
at the negative and positive extremes, in line with
prior work (Bostrom and Durrett, 2020). Our anal-
ysis shows that WordPiece lies in between.

4 Evaluation on Downstream Task

We investigate whether the enhanced quality of
FLOTA tokenizations translates to performance on
downstream tasks. We focus on text classification
as one of the most common tasks in NLP.

Data. We create two text classification chal-
lenge sets based on ArXiv,5 each consisting of three
datasets. Specifically, for the subject areas of com-
puter science, maths, and physics, we extract titles
for the 20 most frequent subareas (e.g., Computa-
tion and Language). We then sample 100/1,000
titles per subarea, resulting in three text classifi-
cation datasets of 2,000/20,000 titles each, which
we bundle together as ArXiv-S/L. Our sampling

4Surprisingly, this does not hold for Unigram, which some-
times creates separate start-of-word tokens; e.g., the Unigram
tokenization of americanize is _, american, ize, where
_ is a start-of-word token. Notice that in such cases (with
k = 2), LONGEST (american, ize) matches the gold seg-
mentation while FIRST (_, american) does not, explaining
the performance difference for XLNet.

5kaggle.com/Cornell-University/arxiv
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ArXiv-S ArXiv-L

Model Dev Test Dev Test

BERT .469 .470 .674 .659
+FLOTA .491 .485 .675 .661

GPT-2 .329 .324 .526 .507
+FLOTA .353 .382 .558 .542

XLNet .435 .454 .660 .641
+FLOTA .446 .428 .664 .646

Table 2: Performance. FLOTA leads to gains in av-
eraged F1, particularly for BERT and GPT-2. Perfor-
mance breakdowns for the individual datasets forming
ArXiv-S/L are provided in Appendix A.3.

ensures that ArXiv-S/L require challenging gen-
eralization from a small number of short training
examples with highly complex language. See Ap-
pendix A.1 for more details.

Experimental Setup. We split the six datasets
of ArXiv-S and ArXiv-L into 60% train, 20% dev,
and 20% test. We then train the three PLMs with
classification heads on the six train splits, once with
the standard tokenizers and once with FLOTA. See
Appendix A.2 for hyperparameters. For FLOTA,
we treat k as an additional tunable hyperparameter.
We use F1 as the evaluation metric.

Performance. The FLOTA models perform bet-
ter than the models with standard tokenization, al-
beit to varying degrees for the three PLMs (Table 2).
The difference is most pronounced for GPT-2, with
FLOTA resulting in large performance gains of up
to 5%. In addition, GPT-2 performs worse than
the other two PLMs on all datasets, suggesting
that BPE is generally not a good fit for complex
language. BERT also clearly benefits from using
FLOTA, particularly on ArXiv-S. Out of the three
considered PLMs, XLNet obtains the smallest per-
formance gain from using FLOTA, but it still bene-
fits in the majority of cases.

The advantage of FLOTA mirrors the differences
observed in the morphological analysis, indicating
that FLOTA helps close the morphological quality
gap between standard tokenizations and gold seg-
mentations. Where the gap is large, gains due to
FLOTA are large (GPT-2/BPE); where it is small,
gains due to FLOTA are small (XLNet/Unigram).
BERT/WordPiece again lies in between.

Impact of k. To test how the performance varies
with k, we focus on BERT and compare the FLOTA
models for k ∈ {1, 2, 3, 4} with the two alterna-
tives FIRST and LONGEST from Section 3. See
Appendix A.4 for hyperparameters.

Figure 3 shows that FLOTA only drops slightly
as we decrease k, with the minimum F1 at k = 1

Figure 3: FLOTA is less impaired by smaller val-
ues of k (maximum number of tokens per word) than
FIRST/LONGEST. Results are averaged F1 of BERT
on ArXiv-S (dev/test merged).

FLOTA

Model ST k = 1 k = 2 k = 3 k = 4

BERT 12.9 8.3 10.5 11.4 11.6
GPT-2 12.9 8.3 10.7 11.5 11.8
XLNet 13.6 8.3 10.9 11.9 12.2

Table 3: Average sequence length of titles (ArXiv-L,
physics). ST: standard tokenization.

(43.6%) lying less than 2% below the maximum
F1 at k = 3 (45.4%). In contrast, FIRST and
LONGEST drop substantially as we decrease k;
for FIRST, the minimum F1 at k = 1 (38.2%) lies
more than 6% below the maximum F1 at k = 4
(44.8%). The fact that FLOTA is more effective at
preserving performance while reducing the number
of tokens aligns with the observation that it covers
a larger number of morphemes and hence more
semantic and syntactic content than FIRST and
LONGEST for small k (Section 3).

Efficiency. FLOTA allows to reduce the num-
ber of tokens used to tokenize text by varying
k. Since the attention mechanism scales quadrati-
cally with sequence length (Peng et al., 2021), this
has beneficial effects on the computational cost
involved with employing a model trained using
FLOTA. We empirically find that even for k = 4
(the largest value used in the experiments), token
sequences generated by FLOTA are on average
shorter than the token sequences generated by the
standard tokenizations. Table 3 shows for one
dataset (ArXiv-L, physics) the average sequence
length of titles encoded with the standard tokeniza-
tion versus FLOTA with varying k ∈ {1, 2, 3, 4}
for the three PLMs.

Robustness. To examine robustness against
noise, a well-known problem for PLMs (Pruthi
et al., 2019), we focus on missing whitespace be-
tween words (Soni et al., 2019). We randomly drop
the whitespace between two adjacent words with
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ArXiv-S (N) ArXiv-L (N)

Model Dev Test Dev Test

BERT .428 .412 .579 .554
+FLOTA .486 .447 .652 .632

GPT-2 .313 .315 .481 .463
+FLOTA .359 .357 .541 .518

XLNet .392 .397 .609 .589
+FLOTA .434 .421 .641 .623

Table 4: Performance with noise (N). FLOTA clearly
increases F1 on ArXiv-S/L for all PLMs when input is
noisy. See Appendix A.5 for hyperparameters. Perfor-
mance breakdowns for the individual datasets forming
ArXiv-S/L are provided in Appendix A.6.

probability p = 0.3 in ArXiv-S/L. We use unseen
noise, i.e., we only inject noise during evaluation,
not training, which is the more realistic and chal-
lenging scenario (Xue et al., 2021).

The results show that synthetic noise increases
the performance gap between FLOTA and standard
tokenization (Table 4). While there is a drop in
performance for all models compared to the exper-
iments without noise, the drop is much more pro-
nounced for standard tokenization; e.g., BERT’s
performance on ArXiv-L (test) drops by 3% with
FLOTA, but by 10% without it.

5 Limitations

While we find FLOTA to work well on text clas-
sification, there are tasks for which FLOTA might
prove a less suitable tokenization method: e.g., for
small values of k, FLOTA often discards suffixes,
which can be important for tasks with a syntactic
component such as POS tagging.

Similar considerations hold for transfer to lan-
guages other than English: e.g., in the case of
languages with a non-linear morphology such as
Arabic, FLOTA is expected to inherit the insuffi-
ciencies of the underlying tokenizer (Alkaoud and
Syed, 2020; Antoun et al., 2020).

6 Related Work

The question how PLMs are affected by their
tokenizer has attracted growing interest recently.
Bostrom and Durrett (2020), Church (2020), Klein
and Tsarfaty (2020), and Hofmann et al. (2021)
focus on the linguistic properties of tokenizers.
We contribute to this line of work by conducting
the first comparative analysis of all three common
PLM tokenizers and releasing a challenge set as a
benchmark for future studies. Another strand of
research has sought to improve PLM tokenizers by

training models from scratch (Clark et al., 2021; Si
et al., 2021; Xue et al., 2021; Zhang et al., 2021) or
modifying the tokenizer during finetuning, mostly
by adding tokens and corresponding embeddings
(Chau et al., 2020; Tan et al., 2020; Hong et al.,
2021; Sachidananda et al., 2021). FLOTA crucially
differs in that it can be used during finetuning but
does not add any parameters to the PLM. Further-
more, there has been work improving tokenization
by variously exploiting the probabilistic nature of
tokenizers (Kudo, 2018; Provilkov et al., 2020; Cao
and Rimell, 2021). By contrast, our method does
not need access to the underlying model.

Our study also relates to computational work on
derivational morphology (Cotterell et al., 2017; Vy-
lomova et al., 2017; Cotterell and Schütze, 2018;
Deutsch et al., 2018; Hofmann et al., 2020a,b,c)
and word segmentation (Cotterell et al., 2016; Kann
et al., 2016; Ruzsics and Samardžić, 2017; Mager
et al., 2019, 2020; Seker and Tsarfaty, 2020; Am-
rhein and Sennrich, 2021). We are the first to sys-
tematically evaluate the segmentations of PLM to-
kenizers on human-annotated gold data.

Conceptually, the findings of our study are in
line with evidence from the cognitive sciences that
knowledge of a longer (i.e., more detailed and in-
formative) sequence takes priority over any knowl-
edge about smaller sequences (Caramazza et al.,
1988; Laudanna and Burani, 1995; Baayen et al.,
1997; Needle and Pierrehumbert, 2018).

7 Conclusion

We introduce FLOTA (Few Longest Token Approx-
imation), a simple yet effective method to improve
the tokenization of pretrained language models
(PLMs). FLOTA uses the vocabulary of a standard
tokenizer but tries to preserve the morphological
structure of words during tokenization. FLOTA
leads to performance gains, makes inference more
efficient, and substantially enhances the robustness
of PLMs with respect to whitespace noise.
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Ethical Considerations

FLOTA shortens the average length of sequences
processed by PLMs, thus reducing their energy re-
quirements, a desirable property given their other-
wise detrimental environmental footprint (Schwartz
et al., 2019; Strubell et al., 2019).
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2020. Tackling the low-resource challenge for
canonical segmentation. In Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP) 2020.

Jeremy M. Needle and Janet B. Pierrehumbert. 2018.
Gendered associations of english morphology. Jour-
nal of the Association for Laboratory Phonology,
9(1):119.

Hao Peng, Jungo Kasai, Nikolaos Pappas, Dani
Yogatama, Zhaofeng Wu, Lingpeng Kong, Roy
Schwartz, and Noah A. Smith. 2021. ABC: At-
tention with bounded-memory control. In arXiv
2110.02488.

Janet B. Pierrehumbert and Ramon Granell. 2018. On
hapax legomena and morphological productivity. In
Workshop on Computational Research in Phonetics,
Phonology, and Morphology (SIGMORPHON) 15.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Annual Meeting of the Association
for Computational Linguistics (ACL) 58.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. In Annual Meeting of
the Association for Computational Linguistics (ACL)
57.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Tatyana Ruzsics and Tanja Samardžić. 2017. Neu-
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A Appendix

A.1 Preprocessing

We exclude texts written in a language other than
English and lowercase all words. We exclude ti-
tles with less than three and more than ten words.
For each title, we compute the proportion of words
starting with a productive prefix from the list pro-
vided by Crystal (1997). During sampling, we then
weight titles by this proportion in order to make the
language contained within the datasets as complex
and challenging as possible.

A.2 Hyperparameters

The vocabulary size is 28,996 for BERT, 50,257
for GPT-2, and 32,000 for XLNet. The number
of trainable parameters is 109,497,620 for BERT,
124,455,168 for GPT-2, and 117,324,308 for XL-
Net. The classification head for all three models
uses softmax as the activation function.

We use a batch size of 64 and perform
grid search for the number of epochs
n ∈ {1, . . . , 20} and the learning rate

l ∈ {1× 10−5, 3× 10−5, 1× 10−4} (selec-
tion criterion: F1). We tune l on ArXiv-L (physics)
and use the best configuration on all datasets.
For the FLOTA models, we additionally tune
k ∈ {1, 2, 3, 4} (selection criterion: F1). Models
are trained with categorical cross-entropy as the
loss function and Adam (Kingma and Ba, 2015)
as the optimizer. Experiments are performed on a
GeForce GTX 1080 Ti GPU (11GB).

A.3 Performance
Table 5 provides breakdowns of the performance
for the individual datasets forming ArXiv-S/L.

A.4 Hyperparameters
All hyperparameters are as for the main experi-
ment (see Appendix A.2). For the learning rate,
we use the best configuration from the main ex-
periment. For FIRST and LONGEST, we tune
k ∈ {1, 2, 3, 4} (selection criterion: F1), identi-
cally to FLOTA in the main experiment.

A.5 Hyperparameters
All hyperparameters are as for the main experiment
(see Appendix A.2). For the learning rate, we use
the best configuration from the main experiment.

A.6 Performance
Table 6 provides breakdowns of the performance
for the individual datasets forming ArXiv-S/L.
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ArXiv-S ArXiv-L

Dev Test Dev Test

Model CS MATH PHYS CS MATH PHYS CS MATH PHYS CS MATH PHYS

BERT .546 .358 .502 .498 .407 .504 .682 .660 .679 .649 .653 .675
+FLOTA .546 .414 .514 .483 .404 .567 .677 .663 .686 .652 .658 .672

GPT-2 .354 .281 .353 .316 .261 .395 .493 .506 .578 .465 .498 .559
+FLOTA .348 .313 .398 .370 .323 .454 .520 .549 .603 .498 .540 .587

XLNet .473 .357 .476 .489 .358 .515 .654 .643 .684 .627 .642 .655
+FLOTA .450 .402 .486 .415 .346 .522 .660 .651 .681 .633 .641 .665

Table 5: Performance (F1). CS: computer science; MATH: mathematics; PHYS: physics.

ArXiv-S (N) ArXiv-L (N)

Dev Test Dev Test

Model CS MATH PHYS CS MATH PHYS CS MATH PHYS CS MATH PHYS

BERT .479 .333 .470 .566 .566 .605 .417 .338 .481 .531 .544 .588
+FLOTA .548 .400 .511 .652 .640 .664 .452 .372 .518 .631 .620 .644

GPT-2 .336 .261 .342 .452 .461 .530 .326 .252 .366 .423 .454 .511
+FLOTA .358 .316 .402 .514 .527 .582 .370 .296 .405 .481 .511 .562

XLNet .431 .311 .433 .607 .594 .625 .470 .300 .421 .587 .576 .605
+FLOTA .432 .398 .474 .646 .623 .655 .435 .360 .466 .627 .612 .631

Table 6: Performance (F1) with noise (N). CS: computer science; MATH: mathematics; PHYS: physics.
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