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Abstract

Translate-train is a general training approach
to multilingual tasks. The key idea is to use
the translator of the target language to gener-
ate training data to mitigate the gap between
the source and target languages. However, its
performance is often hampered by the artifacts
in the translated texts (translationese). We
discover that such artifacts have common pat-
terns in different languages and can be mod-
eled by deep learning, and subsequently pro-
pose an approach to conduct translate-train
using Translationese Embracing the effect of
Artifacts (TEA). TEA learns to mitigate such
effect on the training data of a source lan-
guage (whose original and translationese are
both available), and applies the learned mod-
ule to facilitate the inference on the target lan-
guage. Extensive experiments on the multi-
lingual QA dataset TyDiQA demonstrate that
TEA outperforms strong baselines.

1 Introduction

Cross-lingual transfer has drawn wide attention in
recent years (Hu et al., 2020; Liang et al., 2020). It
has great potentials to be applied in advanced in-
dustries and real applications such as for improving
dialog and advertisement systems in multilingual
countries (Schuster et al., 2019; Yu et al., 2021).
It aims to reuse NLP models trained on a source
language for the task of a target language. The
most intuitive method is transfer learning by lever-
aging pre-trained multilingual language models
(LMs) such as mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020). These pre-trained
LMs encode different languages into a joint space
of multilingual representations (Wu and Dredze,
2019; Lauscher et al., 2020), and they perform well
especially for zero-shot cross-lingual tasks (Wu
and Dredze, 2019; Lauscher et al., 2020). An-
other method orthogonal to this is called translate-
train (Hu et al., 2020; Fang et al., 2021). It trans-
lates training data from the source language into
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Figure 1: Monolingual QA performance comparison
between (i) training using originals and (ii) training us-
ing translated texts on TyDiQA. Note that for each lan-
guage, training data and test data are in the same lan-
guage. “EM” stands for Exact Match.

the target language and uses the translated texts for
training. Our paper focuses on this second method.

Translate-train mitigates the language gap be-
tween the source and the target languages in mul-
tilingual tasks in a straightforward manner as it
directly generates the needed target language train-
ing samples. However, the translation process in-
troduces artifacts in the translated texts (i.e., trans-
lationese1). It has been observed that translationese
often exhibits features such as stylistic ones that
are different from text written directly in the same
language (which we call the originals) and thus
can mislead model training (Selinker, 1972; Volan-
sky et al., 2015; Bizzoni et al., 2020). In Figure 1,
we show that even in a monolingual setting where
training and test data are in the same language,
when the test data are original texts, using transla-
tionese to train a QA model results in substantial
performance drop compared with using originals
for training.

To tackle the issue with translationese artifacts,
inspired by domain mapping techniques (Zhu et al.,
2017), we explore the idea of projecting originals

1We refer to texts directly written by humans in a certain
language as originals of that language and translated texts
(translated by either humans or machines) as translationese.
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Figure 2: The XLM-R (Conneau et al., 2020) classifi-
cation results of translationese for different languages
on TyDiQA (Clark et al., 2020). We use the classifiers
trained with only English pairs (originals and transla-
tionese), or randomly initialized (without any training).
More details of the experiments are given in Appendix
B.

and translationese into a common embedding space
to close their gap. Since only the originals of the
source language are available under the translate-
train setting, whether this idea is feasible depends
on whether the projection function is learnable
from the source language and transferable to other
languages. Therefore, we first conduct experiments
to investigate if translationese artifacts, or patterns
of differences between orginals and translationese,
are recognizable and transferable across languages
by deep learning models. Specifically, we train
a binary classifier to distinguish English originals
from English translationese. We then test the effec-
tiveness of this binary classifier on other languages.
Our intuition is that (1) if the model converges, it
suggests that the patterns of translationese artifacts
can be potentially learned to some extent, and 2)
if the trained model recognizes the translationese
of other languages, it means the model can likely
transfer the learned patterns across different lan-
guages. Our results in Figure 2 validate both: 1)
The model converges well and achieves 97% ac-
curacy on English, the training language. (2) It
also performs reasonably well on other languages
(77% ∼ 91%).

Based on the above intuition and validation,
we propose a Translationese Embracing Artifacts
(TEA) method that projects originals and transla-
tionese into a common space to mitigate the trans-
lationese artifacts. TEA explicitly learns a map-
ping function from originals to translationese us-
ing originals and translationese of the source lan-

guage (English in our experiments), where learn-
ing is through minimizing the distance between
the mapped representation of originals and of the
corresponding translationese. TEA then applies
this mapping function to the originals of the target
language during the testing stage. For evaluation,
we conduct experiments on multilingual QA us-
ing the TyDiQA dataset (Clark et al., 2020)2. Our
results show that TEA outperforms translate-train
baselines and SOTA translationese mitigation meth-
ods designed for machine translation (Marie et al.,
2020; Wang et al., 2021).

2 Related Work

The effect of translationese has been widely stud-
ied in translation tasks (Lembersky et al., 2012;
Zhang and Toral, 2019; Edunov et al., 2020; Gra-
ham et al., 2020; Freitag et al., 2020). Some works
focus on mitigating or controlling the effect of
translationese, e.g., tagged training (Marie et al.,
2020; Riley et al., 2020; Wang et al., 2021), which
are adopted as baselines in our paper. In the field
of cross-lingual transfer, there are very few works
about translationese. Artetxe et al. (2020) is the
only attempt for translate-test and zero-shot learn-
ing. In contrast, we focus on translate-train and
aim to mitigate the artifacts in translationese.

Our research is also related to domain adaptation
(DA) that aims to transfer the knowledge from a
source domain to target domains. Our original-to-
translationese projection function can be seen as
something similar to projecting source domain and
target domain data into a common space, which
has been used before for domain adaptation (Zhu
et al., 2017; Shen et al., 2017).

3 Our Approach (TEA)

Let x represent the input text and y represent the
output label. X denotes the domain (i.e., all pos-
sible values) of x and Y is the set of labels. The
input x comes from different languages, and it can
be either originals or translationese during training.
Specifically, we use Xsrc, orig to denote the domain
of source language originals, and define Xtrgt, orig
and Xtrgt, trans in a similar way (where trgt refers
to the target language and trans refers to transla-
tionese). We further use back-translation (Sennrich
et al., 2016) to generate source language trans-

2To the best of our knowledge, TyDiQA is the only large-
scale multilingual benchmark dataset where test data is origi-
nal text written by humans.
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lationese (i.e., the source language originals are
first translated into a pivot language and then trans-
lated back into the source language), denoted as
Xsrc, trans, for the purpose of learning a mapping
function to project originals and translationese into
the same space.

We now present our TEA method. Our ultimate
goal is to learn a mapping function f ∶ Xtrgt, orig →

Y , which takes target language originals as input.
However, we only have Dsrc, orig ∈ Xsrc, orig×Y and
Dtrgt, trans ∈ Xtrgt, trans×Y during training. The chal-
lenge is that an f learned from either Dsrc, orig or
Dtrgt, trans may not work effectively on Xtrgt, orig be-
cause of the differences between the source and the
target languages and between originals and trans-
lationese. To mitigate the differences between the
source and the target languages, we rely on pre-
trained multilingual language models, as many ex-
isting works do. As for the differences between
originals and translationese, based on the idea dis-
cussed in Section 1, we propose to mitigate the
translationese artifacts of the target language us-
ing an original-to-translationese mapping function,
and because of the lack of target originals, we pro-
pose to learn the original-to-translationese mapping
function from the source language.

To concretely illustrate our idea, we break down
the mapping from X to Y into the following steps3:
Multilingual Projection (MP): First, input x is
projected into a language-agnostic multilingual
space by using a pre-trained multilingual LM. We
use Xml to denote the projected multilingual space,
and fMP is a multilingual projection (i.e., the multi-
lingual LM) that maps an input x in any language
into Xml.
Original-to-Translationese Projection (OTP):
Suppose Xml consists of two subspaces: Xml =

Xml, orig⋃Xml, trans, where Xml, orig and Xml, trans
denote the multilingual representations of any orig-
inals and translationese, respectively. To close the
gap between originals and translationese, we de-
fine an original-to-translationese projection func-
tion fOTP ∶ Xml, orig → Xml, trans to convert the vec-
tor representation of a piece of originals to its cor-
responding representation of translationese.
Language-Agnostic QA (QA): The last step is a
language-agnostic classifier for the QA task itself.
We use fQA ∶ Xml, trans → Y to denote it.

Given an input x, depending on whether it is
from originals or translationese, we use different

3A diagram showing the pipeline is in Appendix A.

compositions of the functions above to map x to y:

y = { fQA ◦ fOTP ◦ fMP(x) x ∈ X*, orig,
fQA ◦ fMP(x) x ∈ X*, trans.

Here ◦ represents the composition of two func-
tions, i.e., f ◦ g(x) = f(g(x)), and ∗ denotes
source language or target languages. More con-

cretely, for (x,y) ∈ Dsrc, orig, we use Xsrc, orig
fMP
−−→

Xml, orig
fOTP
−−−→ Xml, trans

fQA
−−→ Y; for (x,y) ∈

Dtrgt, trans, we use Xtrgt, trans
fMP
−−→ Xml, trans

fQA
−−→ Y .

As discussed in Section 1, we make use of the
source language originals and translationese to
learn fOTP. Specifically, for (x,y) ∈ Dsrc, orig,
we use x

′
∈ Xsrc, trans to represent its corre-

sponding translationese, i.e., generated by back-
translation (Sennrich et al., 2016) through a pivot
language. Let {(x,x′)} ∈ Dsrc, pairs denotes all the
pairs of originals and translationese in the source
language. Then, we minimize the distance between
fOTP(fMP(x)) and fMP(x′) to optimize fOTP.

In summary, the loss function consists of the
following three components:

L = ∑
(x,y)∈Dsrc, orig

l(fQA ◦ fOTP ◦ fMP(x),y)

+ ∑
(x,y)∈Dtrgt, trans

l(fQA ◦ fMP(x),y)

+ ∑
(x,x′)∈Dsrc, pairs

(1 − g(x,x′)),

where g(x,x′) = cos(fOTP(fMP(x)), fMP(x′).
l(⋅, ⋅) is standard cross entropy loss and cos(⋅, ⋅)
is the cosine similarity function.
Model Details. For fMP, we use XLM-R (Conneau
et al., 2020). For fOTP, we utilize a transformer
layer (Vaswani et al., 2017). fQA is implemented
by a linear layer.

4 Experiments

Dataset. We conduct experiments on Ty-
DiQA (Clark et al., 2020). Specifically, we evaluate
our approach on the gold-passage subtask of Ty-
DiQA, which includes 9 languages. We set English
as source language and others as target languages,
and report the results on target languages. During
training, we utilize translated training data in all
target languages for joint training. We use Exact
Match (EM) and F1 scores as evaluation metrics.
Implementation. Translations of English training
data for target languages are from XTREME (Hu
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Method D ar bn fi id ko ru sw te med all-in-one avg
STT 8 40.4/67.6 47.8/64.0 53.2/70.5 61.9/77.4 10.9/31.9 42.1/67.0 48.1/66.1 43.6/70.1 45.7/67.3 45.2/67.2 43.5/64.3

FILTER 8 50.8/72.8 56.6/70.5 57.2/73.3 59.8/76.8 12.3/33.1 46.6/68.9 65.7/77.4 50.4/69.9 53.7/71.7 51.6/70.3 49.9/67.8
STT∗ 8 58.0/76.6 54.6/70.2 59.0/74.8 64.7/80.2 48.0/61.6 49.5/71.2 58.7/74.6 57.0/76.2 57.5/74.7 56.8/74.4 56.2/73.2
TAG∗

4 56.9/76.4 55.5/70.0 59.4/75.2 64.4/79.6 48.6/61.7 49.1/70.4 60.7/76.0 57.8/76.4 57.4/75.5 56.9/74.5 56.5/73.2
TST∗ 4 58.4/75.5 60.2/72.2 58.3/74.4 65.5/78.9 49.3/62.6 49.0/69.7 63.5/76.7 56.2/76.1 58.3/75.0 57.3/74.1 57.6/73.3
GRL∗ 4 57.6/75.6 58.4/72.6 59.7/74.8 65.3/79.9 49.6/62.2 49.1/70.4 62.9/76.9 58.2/77.0 58.3/75.2 57.6/74.6 57.6/73.7
TEA∗

4 56.5/76.1 60.2/74.9 60.9/76.5 63.6/79.3 48.6/61.4 51.5/72.0 66.7/78.9 60.7/78.7 60.5/76.3 58.6/75.6 58.6/74.7

Table 1: Main results (Exact Match / F1 scores) on TyDiQA. All methods use XLM-R as backbone. The “D” col-
umn indicates whether the model design considers translationese artifacts. The columns “ar” to “te” are different
target languages. The “med” and “avg” columns denote median and average performance across the 8 target lan-
guages. The “all-in-one” column is the result by combining all data as one dataset. ∗ indicates our implementation.

et al., 2020) and translationese English is trans-
lated by Google Cloud Translation. German (de)
is selected as the default pivot language in back-
translation. More details are in the Appendix B.
Baselines. We compare our model with the
following baselines: (1) Standard Translate-
Train (STT) (Devlin et al., 2019). (2) FIL-
TER (Fang et al., 2021) is an advanced translate-
train method fully utilizing the parallel data. (3)
Tagging (TAG) (Marie et al., 2020), which distin-
guishes originals and translationese by adding a
tag for machine translation. (4) Two-Stage Train-
ing (TST) (Wang et al., 2021), which is another
approach to address the gap between translationese
and originals for machine translation. It first uses
the combination of them for training followed by
another round of training only on originals. (5) Gra-
dient Reversal Layer (GRL) (Ganin and Lempitsky,
2015), which is a general DA method.
Main results. Table 1 summarizes the compari-
son between our TEA and the baselines. We make
the following observations: (1) TEA outperforms
all baselines. For instance, TEA surpasses STT
by 2.4% (EM) and 1.5% (F1) on average, which
demonstrates the effectiveness of our method. (2)
Methods considering translationese artifacts gen-
erally perform better than methods without such
design, which reinforces the importance of miti-
gating translationese artifacts. (3) Compared to
the baselines for translationese artifacts, TEA still
shows its superiority. We highlight that our OTP
module with explicit projection is better than im-
plicit DA approaches. E.g., TAG only uses different
tags to distinguish the translationese from origi-
nals. (4) The improvements from TEA across dif-
ferent languages are different. For high-resource4

target languages, TEA brings more gains on the
4Here we distinguish high-resource and low-resource ac-

cording to XLM-R (Conneau et al., 2020).

Settings EM F1

STT 56.2 73.2
(1) STT+Xsrc, trans 56.6 73.2
(2) STT+params 56.3 73.5
(3) TOP 57.9 74.1
(4) MLP in OTP 56.7 73.3
(5) MSE loss 58.0 73.9
Full method 58.6 74.7

Table 2: Ablation study on TyDiQA. We report the aver-
age EM and F1 performance on the 8 target languages.

languages in Indo-European family, e.g., ru, and
marginal gains on others, e.g., ar. For low-resource
target languages, the performance improvements
are obvious, e.g., sw. It is because both language
model and machine translation model are of lower
quality on low-resource languages, and thus mit-
igating the gap between translationese and orig-
inals shows more effectiveness in such scenario.
For high-resource languages, TEA prefers Indo-
European languages, which are closer to English.
Ablation studies. We conduct in-depth ablation
studies to analyze TEA. Specifically, we explore
the following settings: (1) Since we use 11% more
data in TEA (unlabeled Xsrc, trans) compared to
STT, here we add labeled Xsrc, trans in STT. (2)
Since we use additional 0.38% parameters (OTP)
in our method compared to STT, here we add
the same OTP module in STT. (3) We replace
the Original-to-Translationese Projection (OTP) by
Translationese-to-Original Projection (TOP). (4)
We replace the self-attention layer in OTP with a
multi-layer perceptron (MLP). (5) We replace the
cosine distance function in loss with mean square
function. The results are summarized in Table 2.
Compared to the variants, our full method performs
best over all settings. (1)/(2) incorporate additional
data/parameters, which demonstrates the improve-
ment of our method is not caused by the two factors.
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Settings Language Family EM F1

Scottish (gd) Indo-European 58.8 74.0
Korean (ko) Koreanic 57.8 74.0
Chinese (zh) Sino-Tibetan 57.6 73.8
German (de) Indo-European 58.6 74.7

Table 3: Experiment results of utilizing different lan-
guage as pivot language for generating Xsrc, trans.

(3) proves that TOP still mitigates the artifacts, but
OTP obtaining better performance. We argue that
it is because most of the training data is transla-
tionese. (4) and (5) demonstrate the effectiveness
of our loss function and architecture.
Pivot Languages Analysis. Here we study the ef-
fect of pivot language used in generating Xsrc, trans.
Specifically, we select four pivot languages, i.e.,
German (de), Scottish (gd), Korean (ko) and Chi-
nese (zh), for evaluation. We fix our approach and
only replace the Xsrc, trans used in OTP. The results
are reported in Table 3. We observe that pivot lan-
guages from Indo-European family are superior to
that from other language families. We believe it is
because the training data of other target languages
in translate-train is translated from English, while
English belongs to the Indo-European family.

5 Conclusions
We aim to mitigate the translationese artifacts when
training translate-train models. After varifying the
transferability of the translationese patterns across
languages, we propose the TEA that mitigates ar-
tifacts using a source language and to facilitate
the prediction on unseen target languages. Our ap-
proach is simple and generic. Moreover, our results
on multilingual QA show its effectiveness.

Ethical Considerations

Although our method requires fine-tuning of the
pre-trained multilingual language model, the com-
putational cost of our experiments is not high. We
utilize two pieces of NVIDIA V100 and it takes
around 1 hour for the fine-tuning process. This
is partly due to the relatively small QA training
dataset used for fine-tuning. It is possible that if our
method is applied to either a much larger training
dataset for fine-tuning or a much larger pre-trained
language model, the computational cost and power
consumption will go up. To reduce such costs, one
way is to fine-tune only part of the pre-trained lan-
guage model. Another way is to apply the recently
proposed Adapter method (Houlsby et al., 2019) to

fine-tune the language model.
Our method relies on machine translation sys-

tems. It has been found in a previous study that in-
dustrial MT systems as well as SOTA academic MT
systems may suffer from gender bias (Stanovsky
et al., 2019), and it would not be surprising if other
types of societal biases and stereotypes are also
found in machine translated texts. If our method
uses translationese containing societal biases, our
learned original-to-translationese projection func-
tion will likely also contain such biases, which may
affect the fairness of the final trained system. How-
ever, this is not due to our method but rather the
translated text we use. Nevertheless, this is some-
thing we need to keep in mind if our method is
adopted for real applications.
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A Training Pipeline

Figure 3 illustrates the training pipelines our
method. The goal is to map the originals and trans-
lationese domains into the same embedding space
for prediction. Specifically, the module on the top
of the figure is to train the Dsrc, orig and Dtrgt, trans,
i.e., the first two terms of loss function, while the
module at the bottom aims to map the originals-
translationese pairs in Dsrc, pairs into same space,
i.e., the last term of loss function.

B Implementation

General Implementation. We adopt the Hugging-
Face Transformers (Wolf et al., 2020) toolkit to im-
plement the pre-trained language model, i.e., XLM-
R. The maximal input length, i.e., concatenation
of question and passage tokens, is set as 384. We
also utilize a document sliding window with stride
length of 128 to tackle the long passage issue. The
learning rate and batch size are set as 2e−5 and 32,
respectively. We use back-translate (Sennrich et al.,
2016) to generate the translationese. Back-translate
means to translate the source language to a pivot
language and then translate back to the source lan-
guage. By doing this, we are able to obtain the
translationese of source language.
Implementation of Experiment in Figure 1. Ty-
DiQA (Clark et al., 2020) provides both training
and testing datasets of originals for all languages.
Here we adopt the originals training data to gener-
ate the corresponding translationese training data
through back-translation 5. The results in Fig-
ure 1 are obtained by training originals and gener-
ated translationese data for en, ar and fi, respec-
tively. Note all the translationese is generated
by the Google Cloud Translation6 service, where
the English translationese is generated by back-
translationese with de as pivot language, the trans-
lationeses of ar and fi use en as pivot language. The
The test set is originals of each language.
Implementation of Experiment in Figure 2.
Similarly, we generate the translationese of the orig-
inals for each language using Google Cloud Trans-
lation service, where en is set as pivot language for
non-English languages, and German for English
language. We split the originals-translationese
pairs of English into two groups, where 80% sam-
ples are used for training, and the rest 20% samples
together with all pairs of other languages are used
for evaluation. As the originals and translationese
are paired, a random guess could achieve 50% ac-
curacy for all languages ideally.
Implementation of TEA. It is worth noting that
we can only access the originals of English and
the translationese of other target languages during
training. We use the translationese data, i.e., the
target language data translated from English, from

5We emphasize that non-English originals data is only
utilized in Figure 1 and Figure 2 for analysis purpose. In
addition, we only utilize the originals data of English in exper-
iment, which follows the same settings as previous works, for
translate-train.

6https://cloud.google.com/translate
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Figure 3: Overall training pipeline of TEA. All modules are shared. Indicator is used to forward different kind of
data into upper path or lower path, i.e., originals data for upper path and translationese data for lower path. The
task losses are standard cross entropy loss and the map loss is computed by cosine distance function.

XTREME official website7, while the translated
data from XTREME is utilized in translate-train
for all previous works (Fang et al., 2021). Besides,
we also augment translationese of English, which is
generated by back-translation, in our TEA. Again,
we resort to the Google Cloud Translation service
to generate the translationese for all experiments
in Section 4, where the German is set as pivot lan-
guage by default.

C Data and Parameters

The sample sizes of the data sets in all 9 languages
are equal, since they are all translated from En-
glish originals training data. The standard translate-
train (STT) directly adopt the data samples of 9
languages for training. In addition to the data sam-
ples of 9 languages, we also incorporate the En-
glish translationese, leading to 11% more samples
used compared to SST. Besides, our Original-to-
Translationese Projection (OTP) module also intro-
duce additional parameters compared to SST.

D Additional Experiments

Main Results. In this part, we replenish the Ty-
DiQA results of two advanced multilingual lan-
guage models, i.e., VECO (Luo et al., 2021) and
HICTL (Wei et al., 2020) in Table 4.
Originals-Translationese Pair Sample. In Fig-
ure 4, we list examples of originals-translationese
pair in English used for TEA training.
Effect of Translation Quality on Translationese
English. Here we conduct an ablation study about

7https://console.cloud.google.com/
storage/browser/xtreme_translations

the effect of translation quality on translationese
English used in cosine distance loss. Due to the
limited resource, we are unable to train a machine
translation model from scratch by ourselves. In-
stead, we select the free Google Translate toolkit8

(compared to the paid Google Cloud service) as the
proxy of low-quality translator. We fix all the im-
plementation settings and change the translationese
English data only. Consequently, we obtain the av-
erage performance of EM/F1 = 58.0/73.9. The
result indicates that a better translator is more effec-
tive for the translationese English generation. It is
because that the low-quality translator may create
more translation errors, then those errors are propa-
gated during training, which hinders the learning
of the originals to translationese mapping.

8https://translate.google.com
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LM Method ar bn fi id ko ru sw te avg
XLM-R STT 40.4/67.6 47.8/64.0 53.2/70.5 61.9/77.4 10.9/31.9 42.1/67.0 48.1/66.1 43.6/70.1 43.5/64.3

FILTER 50.8/72.8 56.6/70.5 57.2/73.3 59.8/76.8 12.3/33.1 46.6/68.9 65.7/77.4 50.4/69.9 49.9/67.8
STT∗ 58.0/76.6 54.6/70.2 59.0/74.8 64.7/80.2 48.0/61.6 49.5/ 71.2 58.7/74.6 57.0/76.2 56.2/73.2

TAG∗ 56.9/76.4 55.5/70.0 59.4/75.2 64.4/79.6 48.6/61.7 49.1/70.4 60.7/76.0 57.8/76.4 56.5/73.2
TST.∗ 58.4/75.5 60.2/72.2 58.3/74.4 65.5/78.9 49.3/62.6 49.0/69.7 63.5/76.7 56.2/76.1 57.6/73.3
GRL∗ 57.6/75.6 58.4/72.6 59.7/74.8 65.3/79.9 49.6/62.2 49.1/70.4 62.9/76.9 58.2/77.0 57.6/73.7
TEA∗ 56.5/76.1 60.2/74.9 60.9/76.5 63.6/79.3 48.6/61.4 51.5/72.0 66.7/78.9 60.7/78.7 58.6/74.7

HICTL STT 52.1/72.7 45.3/64.6 61.8/79.1 61.7/79.6 37.1/53.8 51.6/71.3 56.9/71.5 51.7/68.3 52.3/70.1
VECO STT 57.5/77.0 56.6/72.2 59.3/76.6 64.4/80.0 52.2/63.4 50.5/72.8 67.1/79.4 58.0/76.0 58.2/74.7

Table 4: Main results on TyDiQA dataset. “LM”: language models; “avg” denotes average performance across 8
languages; “∗”: our implementation.

Originals Translationese

Quantum field theory naturally began with the study of
electromagnetic interactions, as the electromagnetic
field was the only known classical field as of the 1920s.

Quantum field theory, of course, began by studying the
electromagnetic interactions, because in the 1920s
electromagnetic fields was the only classical fields known
at the time.

The Guardians of the Universe are a fictional race of
extraterrestrials appearing in American comic books
published by DC Comics, commonly in association with
Green Lantern.

The video game series took inspiration from the novel
Alamut by the Slovenian writer Vladimir Bartol, while
building upon concepts from the Prince of Persia
series. It begins with the self-titled game in 2007, and
has featured eleven main games.

The video game series was inspired by the novel Alamut
by Slovenian writer Vladimir Bartol, and is based on the
concept of the Prince of Persia series. It starts with the
self-titled game in 2007 and has presented eleven major
games.

The total number of military and civilian casualties in
World War I were about 40 million: estimates range
from 15 to 19million deaths and about 23million
wounded military personnel, ranking it among the
deadliest conflicts in human history.

The total number of military and civilian casualties in
World War I was approximate 40 million: estimates
between 15 and 19 million deaths and around 23 million
military personnel wounded, making them one of the
deadliest conflicts in human history.

Wolfstein was founded in 1275 on Habsburg King
Rudolph I's orders, which called for a “fortified and free”
town near his castle, “Woluisstein”, now known as the
Alt-Wolfstein (“Old Wolfstein”) ruin. Rudolph forthwith
granted the new town the same town rights.

Wolfstein was established in 1275 on the orders of the
Habsburg King Rudolf I, who demanded a "fortified and
free" city near his castle "Woluisstein", which is known
today as the Alt-Wolfstein-Ruin. Rudolph immediately
granted the new city the same rights.

Hitler later declared that this was when he realized he
could really "make a good speech". At first, Hitler
spoke only to relatively small groups, but his
considerable oratory and propaganda skills were
appreciated by the party leadership.

Hitler later stated that this was when he realized that he
could really "give a good speech". Initially, a relatively
small group was the subject of Hitler's speech, but his
considerable eloquence and propaganda skills were
valued by the party leadership.

Super Editions are stand-alone books in the Warriors
series that are approximately double the length of a
normal Warriors book.

Super Editions are stand-alone books in the Warriors
series that are roughly twice as long as a regular
Warriors book.

The Guardians of the Universe are a fictional race of
aliens, usually related to Green Lantern and appearing
in American comic books published by DC Comics.

Figure 4: Examples of originals-translationese pair in English from TyDiQA (Clark et al., 2020). The main differ-
ences are underlined.
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