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Abstract

Abstract Meaning Representation (AMR) pars-
ing aims to translate sentences to semantic rep-
resentation with a hierarchical structure, and
is recently empowered by pretrained sequence-
to-sequence models. However, there exists a
gap between their flat training objective (i.e.,
equally treats all output tokens) and the hi-
erarchical AMR structure, which limits the
model generalization. To bridge this gap, we
propose a Hierarchical Curriculum Learning
(HCL) framework with Structure-level (SC)
and Instance-level Curricula (IC). SC switches
progressively from core to detail AMR seman-
tic elements while IC transits from structure-
simple to -complex AMR instances during
training. Through these two warming-up pro-
cesses, HCL reduces the difficulty of learning
complex structures, thus the flat model can bet-
ter adapt to the AMR hierarchy. Extensive
experiments on AMR2.0, AMR3.0, structure-
complex and out-of-distribution situations ver-
ify the effectiveness of HCL.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) parsing aims to translate a
natural sentence into a directed acyclic graph. Fig-
ure 1(a) illustrates an AMR graph where nodes
represent concepts, e.g., ‘die-01’ and ‘soldier’,
and edges represent relations, e.g., ‘:ARG1’ and
‘:quant’. AMR has been exploited in the down-
stream NLP tasks, including information extraction
(Rao et al., 2017; Wang et al., 2017; Zhang and Ji,
2021), text summarization (Liao et al., 2018; Hardy
and Vlachos, 2018) and question answering (Mitra
and Baral, 2016; Sachan and Xing, 2016).

The powerful pretrained encoder-decoder mod-
els, e.g., BART (Lewis et al., 2020), have been
successfully adapted to the AMR parsing and be-
came the mainstream and state-of-the-art meth-
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Figure 1: The AMR (sub-)graphs of the sentence “Nine
of the twenty soldiers died”. The deeper sub-graphs
contain more sophisticated semantics compared with
shallower ones.

ods (Bevilacqua et al., 2021). Through directly
generating the linearized AMR graph (e.g., Fig-
ure 1(a)) from the sentence, these sequence-to-
sequence methods (Xu et al., 2020b; Bevilacqua
et al., 2021) circumvent the complex data pro-
cessing pipeline and can be easily optimized com-
pared with transition-based or graph-based meth-
ods (Naseem et al., 2019; Lee et al., 2020; Lyu and
Titov, 2018; Zhang et al., 2019a,b; Cai and Lam,
2020; Zhou et al., 2021b). However, there exists
a gap between the flat sentence-to-AMR training
objective1 and AMR graphs, since sequence-to-
sequence models deviate from the essence of graph
representation. Therefore, it is difficult for sequen-
tial generators to learn the inherent hierarchical
structure of AMR (Zhou et al., 2021b).

Humans usually adapt to difficult tasks by deal-
ing with examples gradually from easy to hard, i.e.,
Curriculum Learning (Bengio et al., 2009; Platan-
ios et al., 2019; Su et al., 2021; Xu et al., 2020a). In-
spired by human behavior, we propose a hierarchi-

1Flat means the objective equally treats all output tokens.

333



Sentence: Nine of the twenty soldiers died .

(<R0> / die-01 
:ARG1 (<R1> / soldier

:quant 9
:subset-of (<R2> / soldier

:quant 20)))

AMR graph

sub-graph (depth:1) (<R0> / die-01 
:ARG1 (<R1> / soldier )

(<R0> / die-01 
:ARG1 (<R1> / soldier

:quant 9
:subset-of ( <R2> / soldier )

sub-graph (depth:2)
Training Episodes

St
ru

ct
ur

e 
D

iff
ic

ul
ty

Structure-level 
Curriculum

Sentence:  …end of the decade , ……  $ 400 
million it took to build the original highway .

(<R0> / possible-01
:ARG1 (<R1> / see-01

:ARG0 (<R2> / we)
……

:ARG4 (<R10> / past
:op1 (<R11> / monetary-quantity 

……
:ARG1-of (<R21> / take-10

:ARG0 (<R22> / build-01
:ARG1 (<R23> / highway

:mod (<R24> / original))))
……

:degree (<R30> / well))

AMR graph

Training Episodes

In
st

an
ce

 D
iff

ic
ul

ty

Instance-level 
Curriculum

…

𝑆𝑆!
𝑆𝑆"

𝑆𝑆#

𝑆𝑆$

…

…

𝐼𝐼!
𝐼𝐼"
𝐼𝐼#

𝐼𝐼%

𝐼𝐼&

(a) (b)

(depth:3)

(depth:8)

Figure 2: The overview of our hierarchical curriculum learning framework with two curricula, Structure-level (SC)
and Instance-level Curricula (IC). During training, SC follows the principle of learning core semantics first, which
switches progressively from shallow to deep AMR sub-graphs. IC follows the human intuition to start with easy
instances, which transits from easy to hard AMR instances.
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Figure 3: The average SMATCH scores for AMR graphs
with different depths. The AMR graphs with at least
depth 7 accounted for 43.6% in the AMR-2.0 test set.

cal curriculum learning framework with two curric-
ular strategies to help the flat pretrained model pro-
gressively adapt to the hierarchical AMR graph. (1)
Structure-level Curriculum (SC). AMR graphs
are organized in a hierarchy where the core se-
mantic elements stay closely to the root node (Cai
and Lam, 2019). As depicted in Figure 1, the con-
cepts and relations that locate in the different layers
of the AMR graph correspond to different levels
of abstraction in terms of the semantic represen-
tation. Motivated by the human learning process,
i.e., core concepts first, then details, SC enumer-
ates all AMR sub-graphs with different depths, and
deals with them in order from shallow to deep. (2)
Instance-level Curriculum (IC). Our preliminary
study in Figure 3 shows that the performance of
the vanilla BART baseline would drop rapidly as
the depth of AMR graph grows, which indicates
that handing deeper AMR hierarchy is more diffi-
cult for pretrained models. Inspired by the human
cognition, i.e., easy ones first, then hard ones, we
propose IC which trains the model by starting from
easy instances with a shallower AMR structure and
then handling hard instances.

To sum up: (1) Inspired by the human learn-
ing process, i.e., core concepts first and easy in-

stances first, we propose a hierarchical curriculum
learning (HCL) framework to help the sequence-to-
sequence model progressively adapt to the AMR
hierarchy. (2) Extensive experiments on AMR2.0,
AMR3.0, structure-complex and out-of-distribution
situations verify the effectiveness of HCL.

2 Methodology

We formulate AMR parsing as a sequence-to-
sequence transformation. Given a sentence x =
(x1, ..., xN ), the model aims to generate a lin-
earized AMR graph y = (y1, ..., yM ). As shown
in Figure 1(a), following Bevilacqua et al. (2021),
the AMR graph is linearized by the DFS-based
linearization method with special tokens to indi-
cate variables and parentheses to mark visit depth.
Specifically, variables of AMR nodes are set to a
series of special tokens <R0>, ..., <Rk> (more de-
tails of linearization are included in Appendix A).
In this paper, we propose a hierarchical curriculum
learning framework (Figure 2) with the structure-
and instance-level curricula to help the flat model
progressively adapt to the structured AMR graph.

2.1 Structure-level Curriculum

Motivated by learning core concepts first, we pro-
pose Structure-level Curriculum (SC). AMR graphs
are organized in a hierarchy where the core seman-
tics stay closely to the root (Cai and Lam, 2019),
thus SC divides all AMR sub-graphs into N buck-
ets according to their depths {Si : i = 1, 2, ..., N},
where Si contains AMR sub-graphs with the depth
i. As shown in Figure 2(a), SC has N training
episodes, and each episode consists of Tsc steps.
In each step of the i-th episode, the training sched-
uler samples a batch of examples from buckets
{Sj : j ≤ i} to train the model. When parsing
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Model SMATCH
Structure-independent Structure-dependent

NoWSD Conc. NER Neg. Wiki. Unll. Reen. SRL
A

M
R

2.
0

Lyu and Titov (2018)G 74.4 75.5 85.9 86.0 58.4 75.7 77.1 52.3 69.8
Zhang et al. (2019a)G 76.3 76.8 84.8 77.9 75.2 85.8 79.0 60.0 69.7
Cai and Lam (2020) 78.7 79.2 88.1 87.1 66.1 81.3 81.5 63.8 74.5
Cai and Lam (2020)G 80.2 80.8 88.1 81.1 78.9 86.3 82.8 64.6 74.2
Fernandez Astudillo et al. (2020) 80.2 80.7 88.1 87.5 64.5 78.8 84.2 70.3 78.2
Zhou et al. (2021a) 81.7 82.3 88.7 88.5 69.7 78.8 85.5 71.1 80.8
Bevilacqua et al. (2021) 83.8 84.4 90.2 90.6 74.4 84.3 86.1 70.8 79.6
HCL (Ours) 84.3 85.0 90.2 91.6 75.9 84.0 87.7 74.5 83.2

A
M

R
3.

0

Cai and Lam (2020) 78.0 78.5 88.5 83.7 68.9 75.7 81.9 63.7 73.2
Cai and Lam (2020)G 76.7 77.2 86.5 74.7 72.6 77.3 80.6 62.6 72.2
Zhou et al. (2021a) 80.3 - - - - - - - -
Bevilacqua et al. (2021) 83.0 83.5 89.8 87.2 73.0 82.7 85.4 70.4 78.9
HCL (Ours) 83.7 84.2 89.5 89.0 73.0 82.6 86.9 73.9 82.4

Table 1: SMATCH and fine-grained F1 scores on the AMR 2.0 and 3.0 test set. Our results are the average of 3 runs
with different random seeds. ModelsG indicate models with graph re-categorization (a data processing method that
may hurt the model generalization ability Bevilacqua et al. (2021)).

a sentence into a sub-graph with the depth d, we
append a special string “parse to d layers” to the
input sentence, and replace the start token of the
decoder with an artificial token <d>, so the model
can perceive layers that need to be parsed.

2.2 Instance-level Curriculum

Inspired by learning easy instances first, we pro-
pose Instance-level Curriculum (IC). Figure 3
shows AMR graphs with deeper layers can be re-
garded as harder instances for the flat pretrained
model, thus IC divides all AMR graphs into M
buckets according to their depths {Ii : i =
1, ...,M}, where Ii contains AMR graphs with the
depth i. As shown in Figure 2(b), IC has M train-
ing episodes, and each episode consists of Tic steps.
In each step of the i-th episode, the training sched-
uler samples a batch of examples from buckets
{Ij : j ≤ i} to train the model. Specifically, we
first use SC and then IC to train the model, since SC
(follows learning core semantics first) is for AMR
sub-graphs, which can be regarded as a warming-
up stage of IC (obeys learning easy instances first),
which is for AMR full graphs.

3 Experiments

Datasets and Evaluation Metrics We evalu-
ate our hierarchical curriculum learning frame-
work on two popular AMR benchmarks, AMR2.0
(LDC2017T10) and AMR3.0 (LDC2020T02).
Please refer to the Appendix B for details of two
benchmarks. Following Bevilacqua et al. (2021),
we use the SMATCH scores (Cai and Knight, 2013)

and the fine-grained evaluation metrics (Damonte
et al., 2017)2 to evaluate the performances.

Experiment Setups Our implementation is
based on Huggingface’s transformers library (Wolf
et al., 2020) and the open codebase of Bevilac-
qua et al. (2021)3. We use BART-large as our
sequence-to-sequence model the same as Bevilac-
qua et al. (2021). We utilizes RAdam (Liu et al.,
2020) as our optimizer with the learning rate 3e-
5. The batch size is 2048 graph linearization to-
kens with the gradient accumulation 10. Dropout
is set to 0.25 and beam size is 5. The train-
ing steps Tsc is 1000 and Tic is 500. After the
curriculum training, the model is trained for 30
epochs on the training set. We use cross-entropy
as our loss function. We train our model on a
single NVIDIA TESLA V100 GPU with 32GB
memory. We adopt the same post-processing pro-
cess as Bevilacqua et al. (2021). Our code and
model are available at https://github.com/
Wangpeiyi9979/HCL-Text2AMR.

Main Results We compare our method with pre-
vious approaches in Table 1. As is shown, on
AMR2.0 and AMR3.0, our hierarchical curriculum
learning model achieves 84.3± 0.1 and 83.7± 0.1
SMATCH scores, and outperforms Bevilacqua et al.
(2021) 0.5 and 0.7 SMATCH scores, respectively.
For the fine-grained results, our model achieves
the best performance in 6 out of 8 metrics on both
AMR2.0 and AMR3.0, which shows the effective-

2https://github.com/mdtux89/amr-evaluation
3https://github.com/SapienzaNLP/spring
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Model AMR2.0 AMR3.0

Ours 84.3 83.7
w/o instance curriculum 84.1 83.5
w/o structure curriculum 84.0 83.3
w/o curricula 83.8 83.0

Table 2: The effect of our proposed curricula on the test
set of AMR2.0 and AMR3.0. ‘w/o’ denotes without.

ness of our method. Although Cai and Lam (2020)
outperforms our model in Neg. and Wiki. on
AMR2.0, they adopt a complex process, which
may hurt the model generalization ability. Bevilac-
qua et al. (2021) outperforms slightly our model
in Conc. and Wiki. on AMR3.0. However, these
metrics are unrelated to the AMR structure that our
HCL focuses on.

4 Analysis

Structure Benefit In order to explore the ef-
fectiveness of our HCL framework for the struc-
tured AMR parsing. We divide the fine-grained
F1 scores into 2 categories, “structure-dependent”
(unlabelled, re-entrancy and SRL) and “structure-
independen” (the left 5 metrics). Please refer
to Appendix C for the reason for this division.
As shown in Table 1, compared with Bevilac-
qua et al. (2021) (also a sequence-to-sequence
model based on BART-large), our method achieves
2.97 and 2.83 average F1 scores improvement on
3 structure-dependent metrics on AMR2.0 and
AMR3.0, respectively, which proves HCL helps
the flat sequence-to-sequence model better adapt to
AMR with the hierarchical and complex structure.

Hard Instances Benefit Figure 4 shows the per-
formances of our HCL and Bevilacqua et al. (2021)
(SPRING) at different layers. As is shown, as the
number of layers increases, HCL exceeds SPRING
greater, which shows our HCL helps the model
better handle hard instances.4 In addition, to some
extend, out-of-distribution (OOD) instances can be
regarded as hard instances, thus we also consider
the OOD situation. Bevilacqua et al. (2021) pro-
pose the OOD evaluation for AMR parsers. Follow-
ing Bevilacqua et al. (2021), we train our model on
the training dataset of AMR2.0, and then evaluate
it on 3 OOD test datasets, BIO, TLP and News3.
Please refer to Appendix B for details of OOD
datasets. As shown in Table 3, our method out-

4An intuitive case study for the hard instance parsing is
included in Appendix D.

Model BIO TLP News3

Bevilacqua et al. (2021) 59.7 77.3 73.7
HCL (Ours) 61.1 78.2 75.3

Table 3: Results on out-of-distribution data.
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Figure 4: The average SMATCH scores of our HCL and
Bevilacqua et al. (2021) (SPRING) at different depths
on the AMR2.0 test set.

performs Bevilacqua et al. (2021) on all 3 OOD
datasets, which shows our HCL framework can also
improve the generalization ability of the model.

Ablation Study To illustrate the effect of our pro-
posed curricula. We conduct ablation studies by
removing one curriculum at a time. Table 2 shows
the SMATCH scores on both AMR2.0 and AMR3.0.
As shown in Table 2, we can see both curricula are
conducive to the performance of the model, and
they are complementary to each other. Specifically,
the structure-level curriculum (SC) is more effec-
tive than the instance-level curriculum (IC). We
think the reason is that SC constructs AMR sub-
graphs for training, which enhances the model’s
ability to perceive the AMR hierarchy.

5 Conclusion

In this paper, we propose a Hierarchical Curricu-
lum Learning (HCL) framework for sequence-
to-sequence AMR parsing, which consists of
Structure-level Curriculum (SC) and Instance-level
Curriculum (IC). inspired by human cognition, SC
follows the principle of learning the core concepts
of AMR first, and IC obeys the rule of learning
easy instances first. SC and IC train the model on
different hierarchies (AMR sub-graphs and AMR
full graphs). Extensive experiments on AMR2.0,
AMR3.0, structure-complex and out-of-distribution
situations verify the effectiveness of HCL.
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A Linearzation
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DFS Linearization:
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01 : ARG0 <R2> :ARG1 ( <R4> dog ) ) :ARG2 ( <R2> I ) )

Figure 5: The linearization for the AMR graph of the
sentence “You told me to wash the dog”.

As shown in Figure 5, following Bevilacqua et al.
(2021), the AMR graph is linearized by the DFS-
based linearization method according to the edge
order (‘:ARG0’→‘:ARG1’→‘:ARG2’). Variables
of the AMR graph are set to a series of special
tokens <R0>, <R1>, <R2>, <R3>, <R4>, and
the depth is marked by parentheses.

B Datasets

B.1 In-domain Distribution

AMR2.0 (LDC2017T10) contains 36, 521,
1, 368 and 1, 371 sentence-AMR pairs in training,
development and testing sets, respectively.

AMR3.0 (LDC2020T02) is larger than AMR2.0
in size, which contains 55, 635, 1, 722 and 1, 898
sentence-AMR pairs for training development and
testing set, respectively. AMR3.0 is a superset of
AMR2.0.

B.2 Out-domain Distribution

BIO is a test set of the Bio-AMR corpus, consist-
ing of 500 instances.

TLP is a AMR dataset annoated on the children’s
novel The Little Prince (version 3.0), consisting of
1, 562 instances.

New3 is a sub-set of AMR3.0, which is not in-
cluded in the AMR2.0 training set, consisting of
527 instances.

C Fine-grained Metric Division

There are 8 fine-grained AMR metrics: (1) Unla-
beled: Smatch score computed on the predicted
graphs after removing all edge labels. (2) No
WSD.: Smatch score while ignoring Propbank

senses (e.g., duck-01 vs duck-02). (3) Named Ent.:
F-score on the named entity recognition (:name
roles). (4) Wikification: F-score on the wikifi-
cation (:wiki roles). (5) Negation: F-score on
the negation detection (:polarity roles). (6) Con-
cepts: F-score on the concept identification task.
(7) Reentrancy: Smatch computed on reentrant
edges only, e.g., the edges of node ‘I’ in Figure A.
(8) SRL: Smatch computed on :ARG-i roles only.

We only regard Unlabeled, Reentrancy and SRL
as “structure-dependent” metrics, since: (1) Unla-
beled does not consider any edge labels, and only
considers the graph structure. (2) Reentrancy is a
typical structure feature for the AMR graph. With-
out reentrant edges, the AMR graph is reduced to a
tree. (3) SRL denotes the core-semantic relation of
the AMR, which determines the core structure of
the AMR. (4) As described above, all other metrics
have little relationship with the structure.

D Case Study
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can get your deadlines extended to try and ease the pressure a bit?
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Figure 6: A specific case from the test set of AMR2.0.
For the input sentence, our method achieves the
right AMR, while the baseline model (i.e., SPRING
(Bevilacqua et al., 2021)) gets a shallower and wrong
structure AMR.

Figure 6 shows a case study (we omit some de-
tails of AMR graphs for a more clear description).
As is illustrated, our method achieves the right
AMR for the input sentence. However, the AMR
parsed by the SPRING model (depth:5) is shal-
lower than the gold AMR (depth:9), and their struc-
tures are also different (e.g., the root of the gold
AMR and the SPRING parsed AMR are ‘possible-
01’ and ‘and’, respectively). This case intuitively
shows our HCL framework can help the model
better handle the hard instance with complex struc-
ture.
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