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Abstract

To understand a story with multiple events,
it is important to capture the proper relations
across these events. However, existing event
relation extraction (ERE) frameworks regard
it as a multi-class classification task, and do
not guarantee any coherence between differ-
ent relation types. For instance, if a phone
line died after storm, then it is evident that
the storm happened before the died. Current
frameworks of event relation extraction do not
guarantee this anti-symmetry and thus enforce
it via a constraint loss function (Wang et al.,
2020). In this work, we propose to modify
the underlying ERE model to guarantee coher-
ence by representing each event as a box rep-
resentation (BERE) without applying explicit
constraints. Our experiments show that BERE
has stronger conjunctive constraint satisfaction
while performing on par or better in terms
of F1 compared to previous models with con-
straint injection.1

1 Introduction

A piece of text can contain several events. In order
to truly understand this text, it is vital to understand
the subevent and temporal relationships between
these events.(Mani et al., 2006a; Chambers and Ju-
rafsky, 2008; Yang and Mitchell, 2016; Araki et al.,
2014). Both temporal as well as subevent relation-
ships between events satisfy transitivity constraints.
For instance, in the paragraph, “There was a storm
in Atlanta in the night. All the phone lines were
dead the next morning. I was not able to call for
help.”, the event marked by dead occurs after storm
and the event call occurs after dead. Hence, by tran-
sitivity, a sensible model should predict that storm
occurs before call. In general, predicting the re-
lationships between different events in the same
document, such that these predictions are coherent,
is a challenging task (Xiang and Wang, 2019).

1The code is available at https://github.com/
iesl/CE2ERE

While previous works utilizing neural methods
provide competitive performances, these works em-
ploy multi-class classification per event-pair inde-
pendently and are not capable of preserving logical
constraints among relations, such as asymmetry
and transitivity, during training time (Ning et al.,
2019; Han et al., 2019a). To address this problem
Wang et al. (2020) introduced a constrained learn-
ing framework, wherein they enforce logical co-
herence amongst the predicted event types through
extra loss terms. However, since the coherence is
enforced in a soft manner using extra loss terms,
there is still room for incoherent predictions. In
this work, we show that it is possible to induce co-
herence in a much stronger manner by representing
each event using a box (Dasgupta et al., 2020).

We propose a Box Event Relation Extraction
(BERE) model that represents each event as a prob-
abilistic box. Box embeddings (Vilnis et al., 2018)
were first introduced to embed nodes of hierar-
chical graphs into Euclidean space using hyper-
rectangles, which were later extended to jointly
embed multi-relational graphs and perform logical
queries (Patel et al., 2020; Abboud et al., 2020). In
this paper, we represent an event complex using
boxes–one box for each event. Such a model en-
forces logical constraints by design (see Section
3.2). Consider the example in Figure 1. Event dead
(e2) follows event storm (e1), indicating e2 is child
of e1. Boxes can represent these two events as sep-
arate representations and by making e1 to contain
the box e2, which not only preserve their seman-
tics, but also can infer its antisymmetric relation
that event e1 is a parent of event e2. However, the
previous models based on pairwise-event vector
representations have no real relation between repre-
sentations (e1, e2) and (e2, e1) that can guarantee
the logical coherence.

Experimental results over three datasets, HiEve,
MATRES, and Event StoryLine (ESL), show that
our method improves the baseline (Wang et al.,

235

https://github.com/iesl/CE2ERE
https://github.com/iesl/CE2ERE


2020) by 6.8 and 4.2 F1 points on single task and
by 0.95 and 3.29 F1 points on joint task over sym-
metrical dataset. Furthermore, our BERE model
decreases conjunctive constraint violation rate by
85∼88% on a single-task models compared to plain
vector model, and by 38% on joint-task model com-
pared to constraint-injected vector model. We show
that handling antisymmetric constraints, that ex-
ist among different relations, can satisfy the inter-
wined conjunctive constraints and encourage the
model towards a coherent output across temporal
and subevent tasks.

2 Background

Task description Given a document consist-
ing of multiple events e1, e2, . . . , en, we wish
to predict the relationship between each event
pair (ei, ej). We denote by r(ei, ej) the relation
between event pair (ei, ej). Its values are de-
fined in the label space {PARENT-CHILD, CHILD-
PARENT, COREF, NOREL} for subevent relation-
ship (HiEve) and {BEFORE, AFTER, EQUAL,
VAGUE} for temporal relationship (MATRES).2

Both subevent and temporal relationships have four
similar-category relationship labels where the first
two labels, (PARENT-CHILD,CHILD-PARENT) and
(BEFORE, AFTER) hold reciprocal relationship, the
third label (COREF and EQUAL) occurs when it is
hard to tell which of the first two labels that event
pair should be classified to. Lastly, the last label
(NOREL and VAGUE) represents a case when an
event pair is not related at all.

Box embeddings A box b =
∏d

i=1 [bm,i, bM,i]
such that b ⊆ Rd is characterized by its min and
max endpoints bm, bM ∈ Rd, with bm,i < bM,i ∀i.
In the probabilistic gumbel box, these min and max
points are taken to be independent gumbel-max
and gumbel-min random variables, respectively.
As shown in Dasgupta et al. (2020), if b and c
are two such gumbel boxes then their volume and
intersection is given as:

Vol(b) =
d∏
i=1

log
(
1 + exp (

bM,i − bm,i
β

− 2γ)
)

b ∩ c =
d∏
i=1

[
l(bm,i, cm,i;β), l(bM,i, cM,i;−β)

]
,

where l(x, y;β) = β log(e
x
β + e

y
β ), β is the tem-

perature, which is a hyperparameter, and γ is the
2See Experimental Setup 4.1 for the detailed information

of HiEve and Matres.

Euler-Mascheroni constant.3

Logical constraints We define symmetry and
conjunction constraints of relations. Symmetry
constraints indicate the event pair with flipping or-
ders will have the reversed relation. For example,
if r(ei, ej) = PARENT-CHILD (BEFORE), then
r̃(ej , ei) = CHILD-PARENT (AFTER). Given any
two events, ei and ej , the symmetry consistency is
defined as follows:

∧

ei,ej∈E,r∈RS

r(ei, ej)↔ r̃(ej , ei) (1)

where r is the relation between events, the E is the
set of all possible events and the RS is the set of
relations, in which symmetry constraints hold.

Conjunctive constraints refer to the constraints
that exist in the relations among any event triplet.
The conjunctive constraint rules indicate that given
any three event pairs, (ei, ej), (ej , ek), and (ei, ek),
then the relation of (ei, ek) has to fall into the con-
junction set specified based on (ei, ej) and (ej , ek)
pairs (see Appendix Table 6). The conjunctive con-
sistency can be defined as:∧

ei,ej ,ek∈E
r1,r2∈R,r3∈D(r1,r2)

r1(ei, ej) ∧ r2(ej , ek) → r3(ei, ek)

∧
ei,ej ,ek∈E

r1,r2∈R,r′3 /∈D(r1,r2)

r1(ei, ej) ∧ r2(ej , ek) → ¬r
′
3(ei, ek)

where the E is the set of all possible events, r1 and
r2 are any possible relations exist in the set of all
relationsR, r3 is the relation, which is specified by
r1 and r2 based on conjunctive induction table, and
D is the set of all possible relations, in which r1
and r2 have no conflicts in between. The full expla-
nation on symmetry and conjunction consistency
can be found in Wang et al. (2020).

3 BERE model

In this section, we present the proposed box model
BERE for event-event relation extraction. As de-
picted in Figure 1, the proposed model encodes
each event ei as a box bi in Rd based on ei’s
contextualized vector representation hi. As de-
scribed in §3.1, the relation between (ei, ej) is
then predicted using conditional probability scores
P (bi|bj) = Vol(bi ∩ bj)/Vol(bj), P (bj |bi) =
Vol(bi ∩ bj)/Vol(bi) defined on box space. Lastly,
§3.2 describes loss function used to learn the pa-
rameters of the model.

3https://en.wikipedia.org/wiki/Euler%
27s_constant
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There was a storm . . .
e1

All the phone lines were dead . . .
e2

. . . not able to call for help
e3

b1: storm

b2: dead b3: call

(B)

(A) 



e1 and e3 are PC
∥∥ e1 is Before e3

e1 and e2 are PC
∥∥ e1 is Before e2
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∥∥ e2 is Before e3

(C)
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)

Softmax Softmax

Figure 1: (A) BOX model architecture. (B) Mapping from box positions to event relations with classification rule below. (C) An
example shows the fundamental difference between VECTOR and BOX model: BOX model will map events into consistent box
representations regardless of the order; VECTOR model treats both cases separately and may not persist logical consistency.

3.1 Inference rule on conditional probability
Notice that given two boxes bi and bj , a higher
value of P (bi|bj) (resp. P (bj |bi)) implies that box
bj is contained in bi (resp. bi contained in bj).
Moreover, other than complete containment in ei-
ther direction, there are other two prominent con-
figurations possible, i.e. one where bi, bj overlap
but none contains the other, and the one where
bi, bj do not overlap. It is possible to capture
all four configurations by comparing the values
of P (bi|bj) and P (bj |bi) with a threshold δ. Fig-
ure 1(B) states our classification rule formulated
based on this observation. With this formula-
tion we have the desired symmetry constraint, i.e.,
r(ei, ej) = PARENT-CHILD ⇐⇒ r(ej , ei) =
CHILD-PARENT, satisfied by design.

3.2 Loss functions for training
BCE loss As we require two dimensions of scalar
P (bi|bj) and P (bj |bi) to classify r(ei, ej), and for
ease of notation, we define our label space with
2-dimensional binary variable y(i,j) as shown in
Figure1(b). Where y(i,j)0 = I(P (bi|bj) ≥ δ) and
y
(i,j)
1 = I(P (bj |bi) ≥ δ) where I(·) stands for

indicator function. Now given batch B, BCE loss
(L1) is defined as:

−
∑

(i,j)∈B

y
(i,j)
0 lnP (bi|bj) + (1− y(i,j)0 ) ln (1− P (bi|bj))

+ y
(i,j)
1 lnP (bj |bi) + (1− y(i,j)1 ) ln (1− P (bj |bi)).

Pairwise loss Motivated from previous papers
using pairwise features to characterize relations,
we also incorporate a pairwise box into our learn-
ing objective, and only in learning time, to en-
courage relevant boxes to be concentrated together.

For the event-pair representation, two contextu-
alized event embeddings (hi, hj) are combined
as [hi, hj , hi � hj ] where � represents element-
wise multiplication. Then, a multi-layer perceptron
(MLP) is used to transform pairwise vectors to
box representations bij . The pairwise features we
use here are similar to (Zhou et al., 2020) except
that we do not use subtraction in order to preserve
symmetry between pairwise features of (ei, ej) and
(ej , ei), i.e. bij = bji. For two related events, we
enforce the intersection of corresponding boxes
bi ∩ bj to be inside the pairwise box. For irrelevant
event pairs such as having NOREL or VAGUE, their
intersection and pairwise boxes are forced to be
disjoint. The pairwise loss L2 is defined as:

−
∑

i,j∈R+

logP (bi ∩ bj |bij)−
∑

i,j∈R−
log
(
1− P (bi ∩ bj |bij)

)

where R− is a set of irrelevant relations, such as
NOREL and VAGUE, and R+ stands for comple-
ment set of R−, i.e. all the set of relations that
indicates two events have some relation.

In the remainder of the paper, BERE refers to a
model trained with loss L1 and BERE-p refers to
a model trained with two losses L1,L2 combined.

4 Experiments

In this section, we describe datasets, baseline meth-
ods, and evaluation metrics. Lastly, we provide
experimental results and a detailed analysis of logi-
cal consistency.

4.1 Experimental Setup
Datasets Experiments are conducted over three
asymmetrical event relation extraction corpus,
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Table 1: An overview of dataset statistics.

HiEve MATRES ESL
# of Documents

Train 80 183 155
Dev - 72 51
Test 20 20 52

# of Pairs
Train 35001 6332 2238
Test 7093 827 619
# of Pairs for Symmetrical Dataset
Test 8693 1493 1222

Table 2: Mapped relation labels from ESL to HiEve

Original labels in ESL Mapped Labels
RISING_ACTION

PARENT-CHILD
CONTAINS
BEFORE
PRECONDITION
ENDED_ON
FALLING_ACTION

CHILD-PARENT
AFTER
BEGUN_ON
CAUSE
OVERLAP NOREL

HiEve (Glavaš and Šnajder, 2014), MATRES (Ning
et al., 2018), and Event StoryLine (ESL) (Caselli
and Vossen, 2017). Table 1 shows a brief summary
of dataset statistics. HiEve consists of 100 articles
and the narratives in news stories are represented
as event hierarchies. The annotations include
subevent and coreference relations. MATRES is a
four-class temporal relation dataset, which contains
275 news articles drawn from a number of different
sources. Event StoryLine (ESL) corpus is a dataset
that contains 258 news documents and includes
event temporal and subevent relations. The ESL
dataset is defined differently compared to HiEve
and MATRES, so we mapped the ESL labels into
the labels in HiEve similar to (Wang et al., 2020)
as shown in Table 2.

For creating symmetrical dataset, we augment
PARENT-CHILD and CHILD-PARENT (BEFORE

and AFTER) pairs by their reversed relations
CHILD-PARENT and PARENT-CHILD (AFTER and
BEFORE), respectively.

Baseline We compare our BERE, BERE-p
against the state-of-the-art event-event relation ex-

Table 3: F1 scores of BERE and BERE-p

Model F1 Score
HiEve MATRES

BERE 0.4483 0.7069
BERE-p 0.4771 0.7105

traction model proposed by (Wang et al., 2020).
This model utilizes RoBERTa with frozen parame-
ters and further trains BiLSTM to represent text in-
puts into vector hi (for ei) and then further utilizes
MLP to represent pairwise representation vij for
(ei, ej). Given vij , vector model (Vector) simply
computes softmax over projected logits to produce
probability for every possible relations. On top of
this, as (Wang et al., 2020) showed that constraint
injection improves performance, we also compare
with the constraint-injected model (Vector-c).

For a fair comparison, we utilize the same
RoBERTa + BiLSTM + MLP architecture for pro-
jecting event to box representation.

Metrics Following the same evaluation setting in
previous works, we report the micro-F1 score of
all pairs, except VAGUE pairs, on MATRES (Han
et al., 2019b; Wang et al., 2020). On HiEve and
ESL, the micro-F1 score of PARENT-CHILD and
CHILD-PARENT pairs is reported (Glavaš and Šna-
jder, 2014; Wang et al., 2020).

4.2 Results and Discussion
Impact of pairwise box, Table 3 We first show
the results of the BERE and BERE-pwith and with-
out pairwise loss. The model with pairwise loss
shows about 2.8 F1 point improvement on HiEve
and 1 F1 point improvement on MATRES. It in-
dicates that promoting the relevant event pairs to
mingle together in the geometrical space is helpful
and it is particularly useful when most of the rela-
tion extraction model encodes individual sentences
independently.

Vector-based vs. Box-based, Table 4 Table 4
shows a comparison of our box approach to the
baseline with the ratio of symmetric and conjunc-
tive constraint violations. Our approach clearly
outperforms the baseline methods on symmetric
evaluation with a gain of 6.79, 4.26, and 9.34 F1

points on the single task over HiEve, MATRES,
and ESL datasets, respectively and with a gain of
0.95 and 3.29 F1 points on the joint task over HiEve
and MATRES. The performance gains from asym-
metrical to symmetrical datasets with BERE-p are
much larger compared to the increase of Vectors.
This demonstrates the BERE-p successfully cap-
tures symmetrical relations, while previous vec-
tor models do not. In addition, it is noteworthy
that our method without constrained learning ex-
cels Vector-c, which is trained with constrained
learning. This suggests that the inherent ability to
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Table 4: F1 scores with symmetric and conjunctive constraint violation results over original and symmetrical
datasets. symm const. and conj const. denote symmetric and conjunctive constraint violations (%), respectively;
H, M, and ESL are HiEve, MATRES, Event StoryLine datasets, respectively; single task (top) and joint task
(bottom)

Model
F1 Score symmetry const. conjunctive const.

Original data Symmetric evaluation
H M ESL H M ESL H M ESL H M ESL

Vector 0.4437 0.7274 0.2660 0.5385 0.7288 0.4444 22.49 35.81 60.9 4.91 2.53 6.1
BERE-p 0.4771 0.7105 0.3214 0.6064 0.7714 0.5379 0 0 0 0.71 0.30 0

Joint model (H&M) Joint eval (H&M) Joint eval (H&M)
Vector 0.4727 0.7291

n/a
0.5517 0.7405

n/a
24.08

n/a
6.17

n/aVector-c 0.5262 0.7068 0.6166 0.7106 28.83 2.98
BERE-p 0.5053 0.7125 0.6261 0.7734 0 1.84

Table 5: Symmetric evaluation of Vector* (Vector
trained with reciprocal dataset) and BERE-p trained
with original dataset on joint task. s-const. and c-const.
denote symmetric and conjunctive constraint violations
(%), respectively

Model F1 Score
HiEve MATRES s-const. c-const.

Vector* 0.6120 0.7720 12.01 6.70
BERE-p 0.6261 0.7734 0 1.84

model symmetrical relations helps satisfy the in-
tertwined conjunctive constraints, thus producing
more coherent results from a model. See Appendix
E for constraint violation statistics for asymmetric
dataset.

Constraint Violation Analysis, Table 8 (Ap-
pendix) We analyze constraint violations for
each label from both HiEve and MATRES. For
label pairs from the same dataset, our approach
excels in almost every cases. For label pairs across
datasets, our approach also shows fewer or similar
levels of violation. This further indicates, with-
out explicitly injecting constraints into objectives,
our model can persist logical consistency among
different relations.

5 Ablation Study

We conduct additional experiments to see whether
Vector trained with the augmented symmetri-
cal dataset will affect the conclusion of BERE-p.
The results in Table 5 reconfirm the BERE-p’s su-
perior ability in handling constraints with better
performance, while Vector requires significantly
longer training time due to the extended training
dataset with worse performance. We also note that
training Vector with the augmented symmetrical
dataset does not help with conjunctive constraint
violations (6.17→ 6.70), although it reduces sym-
metrical constraint violations (24.08→ 12.01).

6 Conclusion

We propose a novel event relation extraction
method that utilizes box representation. The pro-
posed method projects each event to a box represen-
tation which can model asymmetric relationships
between entities. Utilizing this box representation,
we design our relation extraction model to han-
dle antisymmetry between events of (ei, ej) and
(ej , ei) which previous vector models were not ca-
pable of. Through experiments on three datasets,
we show that the proposed method not only free of
antisymmetric constraint violations but also have
drastically lower conjunctive constraint violations
while maintaining similar or better performance
in F1. Our model shows that box representation
can provide coherent classification across multi-
ple event relations and opens up future research
for box representations in event-to-event relation
classification.
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A Hyperparameters

We utilize 768 dimensional pretrained RoBERTa
model to compute word embeddings for events.
models are trained for 100 epochs with AMSGrad
optimizer and the learning rate is set to be 0.001.
On HiEve and ESL, we sample NOREL in trainset
using downsample ratio, which is fixed to 0.015,
and the downsample ratio for valid and test sets is
fixed to 0.4. This is to encourage the models to
learn and evaluate all types of relations that exist
in the datasets when NOREL overwhelmingly rep-
resents the dataset. We use three weights, λ1, λ2,
and λ3, to balance our three learning objectives L1,
L2, and L3 (see Section 3.2 and Appendix B), in
which the weights are selected between 0.1 and 1.
A threshold δ for HiEve is selected between -0.4
and -0.3 and a threshold for MATRES is chosen
between -0.7 and -0.6. We use wandb (Biewald,
2020) tool for efficient hyperparameter tuning.

B Conjunctive Consistency Loss

With consistency requirements on conjunctive
relations over temporal and subevent datasets
(as shown in Table 6), we incorporate the
loss function introduced by (Wang et al., 2020)
into our box model to handle conjunctive con-
straints. Three events are grouped into three
pairs, (e1, e2), (e2, e3) and (e1, e3), and the re-
lation score for each class is calculated based on
conditional probabilities and its binary logits. With
the relation labels defined for each class (see Sec-
tion 3.2), the relation score, r(e1, e2), is calculated
as:

ri = y
(i,j)
0 logP (bi|bj) + y

(i,j)
1 logP (bj |bi) (2)

where y(i,j)0 = I(P (bi|bj) ≥ δ) and y(i,j)1 =

I(P (bj |bi) ≥ δ) and y(i,j)0 and y(i,j)1 are the first
and second binary logits in relation label, respec-
tively. Using this relation score, we now define the
loss function for modeling conjunction constraints:

L3 =
∑
|Lt1|+

∑
|Lt2|, (3)

where the two transitivity losses are defined as

Lt1 = log r(e1,e2) + log r(e2,e3) + log r(e1,e3)

Lt2 = log r(e1,e2) + log r(e2,e3) + log(1− r(e1,e3))

Table 7 presents the results of BERE-p com-
bined with the above learning objective, denoted as
BERE-c. Compared to the results from BERE-p,

BERE-c shows a significantly smaller ratio of
constraint violations than BERE-p, while sacri-
ficing F1 by ∼2 point from the performance with
BERE-p.

C Vector model architecture

Refer to Figure 2 for architecture of previous vector
models.

The police went to arrest him
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Her husband killed the two girls
e3
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Figure 2: VECTOR model architecture.

D Detailed analysis on conjunctive
constraint violation

Constraint Violation Analysis, Table 8 We
further break down constraint violations for each
label on HiEve and MATRES. The comparison
of constraint violations between the vector model
with constrained learning (Vector-c) and the
box model without constrained learning (BERE-p)
is shown in Table 8. "n/a" refers to no predictions
and this frequently appears on COREF and EQUAL

due to their sparsity in the corpus. Our approach
shows a smaller ratio of constraint violations in
most of the categories, with only a few exceptions.
2nd and 3rd quadrants (HiEve→MATRES and
MATRES→HiEve) stand for cross-category,
while 1st and 4th quadrants (HiEve→HiEve
and MATRES→MATRES) stand for the same-
category. Interestingly, our approach without any
injected constraints shows a smaller or similar
ratio to Vector-c in the cross-category as well
as in the same-category. We calculated rc =
total # of cross-category const-violations

total # of cross-category event triplets and

rs =
total # of same-category const-violations

total # of same-category event triplets ,
where const-violations refers to constraint vi-
olations. rc for Vector-c is 6.26% and for
BERE-p is 4.55% and rs for Vector-c is 0.05%
and for BERE-p is 0.017%. This confirms the
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Table 6: The induction table for conjunctive constraints on temporal and subevent relations (Wang et al., 2020).
Given three events, e1, e2, and e3, the left-most column is r1(e1, e2) and the top row is r2(e2, e3).

PC CP CR NR BF AF EQ VG
PC PC, -AF – PC, -AF -CP, -CR BF, -CP, -CR – BF, -CP, -CR –
CP – CP, -BF CP, -BF -PC, -CR – AF, -PC, -CR AF, -PC, -CR –
CR PC, -AF CP, -BF CR, EQ NR BF, -CP, -CR AF, -PC, -CR EQ VG
NR -CP, -CR -PC, -CR NR – – – – –
BF BF, -CP, -CR – BF, -CP, -CR – BF, -CP, -CR – BF, –CP, –CR -AF, -EQ
AF – AF, -PC, -CR AF, -PC, -CR – – AF, -PC, -CR AF, -PC, -CR -BF, -EQ
EQ -AF -BF EQ – BF, -CP, -CR AF, -PC, -CR EQ VG, -CR
VG – – VG, -CR – -AF, -EQ -BF, -EQ VG -

Table 7: F1 scores and the ratio of symmetric and conjunctive constraint violations of box model with constrained
learning over Eval-A and Eval-S; Eval-A and Eval-S denote asymmetrical and symmetrical evaluation
datasets, respectively. const. means constraint violations; results are on joint task.

Model
F1 Score symmetry const. (%) conjunctive const. (%)

Eval-A Eval-S
Eval-A Eval-S Eval-A Eval-SHiEve MATRES HiEve MATRES

BERE-p 0.5053 0.7125 0.6261 0.7734 0 0 3.12 1.84
BERE-c 0.5083 0.7021 0.6183 0.7562 0 0 0.39 0.19

Table 8: Constraint violation analysis over HiEve and
MATRES. See Appendix B for conjunctive consistency
requirements; PARENT-CHILD (PC), CHILD-PARENT
(CP), COREF (CR), NOREL (NR), BEFORE (BF),
AFTER (AF), EQUAL (EQ), VAGUE (VG); "-" means
no existing constraint violations; constraint injected
vector model (top), box model with using pairwise loss
(bottom).

Vector-c
PC CP CR NR BF AF EQ VG

PC 0.05 - 0.13 0.02 0.20 - 0.5 -
CP - 0.33 0.46 0.01 - 0.25 n/a -
CR 0.12 0.42 0.68 0.08 0.19 0.43 n/a 0.27
NR 0.01 0.03 0.13 - - - - -
BF 0.23 - 0.41 - 0.12 - 0.42 0.02
AF - 0.33 0.30 - - 0.01 0.13 0.05
EQ 0.00 0.50 n/a - 0.25 0.00 n/a 0.50
VG - - 0.34 - 0.03 0.02 n/a -

BERE-p
PC CP CR NR BF AF EQ VG

PC 0.13 - n/a 0.00 0.16 - 0.30 -
CP - 0.23 n/a 0 - 0.28 0.34 -
CR n/a n/a n/a n/a n/a n/a n/a n/a
NR 0.00 0.00 n/a - - - - -
BF 0.24 - n/a - 0.08 - 0.32 0.00
AF - 0.17 n/a - - 0.05 0.12 0.00
EQ 0.23 0.29 n/a - 0.15 0.18 n/a 0.00
VG - - n/a - 0.00 0.00 0.13 -

effectiveness of having boxes in handling logical
consistency among different relations.

E Symmetric and conjunctive constraint
violations over origianl data

Table 9 shows the F1 and symmetry and con-
junctive constraint violation results over original
dataset. The results of symmetry and conjunctive
constraint violations confirm our expectation and
exhibit a similar observation from Table 4.

F Related Work

F.1 Event-Event Relation Extraction

This task has been traditionally modeled as a pair-
wise classification task with hand-engineered fea-
tures and early attempts applied conventional ma-
chine learning methods, such as logistic regressions
and SVM (Mani et al., 2006b; Verhagen et al.,
2007; Verhagen and Pustejovsky, 2008). Later
works utilized a structured learning (Ning et al.,
2017) and neural methods to characterize relations.
The neural methods have been shown effective and
ensure logical consistency on relations through in-
ference step (Dligach et al., 2017; Ning et al., 2018,
2019; Han et al., 2019a). More recent works pro-
posed a constrained learning framework, which fa-
cilitates constraints during training time (Han et al.,
2019b; Wang et al., 2020). Motivated by these
works, we propose a box model to automatically
handle inherent constraints without heavily relying
on constrained learning across two different tasks.

F.2 Box Embeddings

Box embeddings (Vilnis et al., 2018) were intro-
duced as a shallow model to embed nodes of hier-
archical graphs into euclidean space using hyper-
rectangles, which were later extended to jointly
embed multi-relational graphs and perform logical
queries (Patel et al., 2020; Abboud et al., 2020).
Recent works have successfully used box represen-
tations in conjunction with neural networks to rep-
resent input text for tasks like entity typing (Onoe
et al., 2021), multi-label classification (Patel et al.,
2022), natural language entailment (Chheda et al.,
2021), etc. In all these works, the input is rep-

243



Table 9: F1 scores with symmetric and conjunctive constraint violation results over original datasets. symm const.
and conj const. denote symmetric and conjunctive constraint violations, respectively; H, M, and ESL are HiEve,
MATRES, Event StoryLine datasets, respectively; single task(top) and joint task(bottom)

Model
F1 Score symmetry const. (%) conjunctive const.(%)

Original data
H M ESL H M ESL H M ESL

Vector 0.4437 0.7274 0.2660 22.73 38.63 56.7 5.66 0.69 9.4
BERE-p 0.4771 0.7105 0.3214 0 0 0 0.75 0.46 0

Joint H+M H+M
Vector 0.4727 0.7291

n/a
23.04

n/a
10.85

n/aVector-c 0.5262 0.7068 23.83 3.52
BERE-p 0.5053 0.7125 0 3.12

resented using a single box by transforming the
output of the neural network into a hyper-rectangle.
In this paper, we take this a step forward by rep-
resenting the input event complex using multiple
boxes. Our single box model represents each even
in an input paragraph using a box and the pairwise
box model adds on top of these, one box each for
every pair of events (see section 3.2).
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