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Abstract

Named entity recognition (NER) is a funda-
mental task in natural language processing. Re-
cent works treat named entity recognition as a
reading comprehension task, constructing type-
specific queries manually to extract entities.
This paradigm suffers from three issues. First,
type-specific queries can only extract one type
of entities per inference, which is inefficient.
Second, the extraction for different types of
entities is isolated, ignoring the dependencies
between them. Third, query construction relies
on external knowledge and is difficult to apply
to realistic scenarios with hundreds of entity
types. To deal with them, we propose Parallel
Instance Query Network (PIQN), which sets up
global and learnable instance queries to extract
entities from a sentence in a parallel manner.
Each instance query predicts one entity, and
by feeding all instance queries simultaneously,
we can query all entities in parallel. Instead of
being constructed from external knowledge, in-
stance queries can learn their different query se-
mantics during training. For training the model,
we treat label assignment as a one-to-many Lin-
ear Assignment Problem (LAP) and dynami-
cally assign gold entities to instance queries
with minimal assignment cost. Experiments on
both nested and flat NER datasets demonstrate
that our proposed method outperforms previous
state-of-the-art models1.

1 Introduction

Named Entity Recognition (NER) aims to identify
text spans to specific entity types such as Person,
Location, Organization. It has been widely used
in many downstream applications such as entity
linking (Ganea and Hofmann, 2017; Le and Titov,
2018) and relation extraction (Li and Ji, 2014;

* This work was conducted when Yongliang Shen was
interning at Alibaba DAMO Academy.

† Corresponding author.
1 Our code is available at https://github.com/

tricktreat/piqn.
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Figure 1: (a) For a sentence, type-specific queries can
only extract entities of one type per inference, so the
model needs to be run multiple times. (b) In contrast,
instance-based queries can be input into the model si-
multaneously, and all entities can be extracted in parallel.
Furthermore, the parallel manner can model the interac-
tions between entities of different types.

Miwa and Bansal, 2016; Shen et al., 2021b). Tradi-
tional approaches for NER are based on sequence
labeling, assigning a single tag to each word in a
sentence. However, the words of nested entities
have more than one tag, thus these methods lack
the ability to identify nested entities.

Recently, Ju et al. (2018); Straková et al. (2019);
Wang et al. (2020a) redesign sequence labeling
models to support nested structures using different
strategies. Instead of labeling each word, Luan
et al. (2019); Tan et al. (2020); Li et al. (2021);
Shen et al. (2021a) perform a classification task on
the text span, and Straková et al. (2019); Paolini
et al. (2021); Yan et al. (2021); Tan et al. (2021)
treat NER as a sequence generation or set pre-
diction task and design encoder-decoder models
to generate entities. Recently, Li et al. (2020b);
Mengge et al. (2020); Zheng et al. (2021) refor-
mulate the NER task as a machine reading task
and achieve a promising performance on both flat
and nested datasets. As shown in Figure 1(a), they
treat the sentence as context and construct type-
specific queries from external knowledge to extract
entities. For example, for the sentence "U.S. Presi-
dent Barack Obama and his wife spent eight years
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in the White House", Li et al. (2020b) constructs
the PER-specific query in natural language form -
"Find person entity in the text, including a single
individual or a group" to extract the PER entities,
such as "U.S. President", "Barack Obama". How-
ever, since the queries are type-specific, only one
type of entities can be extracted for each inference.
This manner not only leads to inefficient prediction
but also ignores the intrinsic connections between
different types of entities, such as "U.S." and "U.S.
President". In addition, type-specific queries rely
on external knowledge for manual construction,
which makes it difficult to fit realistic scenarios
with hundreds of entity types.

In this paper, we propose the Parallel Instance
Query Network (PIQN), where global and learn-
able instance queries replace type-specific ones to
extract entities in parallel. As shown in Figure 1(b),
each instance query predicts one entity, and multi-
ple instance queries can be fed simultaneously to
predict all entities. Different from previous meth-
ods, we do not need external knowledge to con-
struct the query into natural language form. The
instance query can learn different query semantics
during training, such as position-related or type-
related semantics. Since the semantics of instance
queries are implicit, we cannot assign gold entities
as their labels in advance. To tackle this, we treat
label assignment as a one-to-many Linear Assign-
ment Problem (LAP) (Burkard and Çela, 1999),
and design a dynamic label assignment mechanism
to assign gold entities for instance queries.

Our main contributions are as follow:

• Different from type-specific queries that re-
quire multiple rounds of query, our model
employs instance queries that can extract all
entities in parallel. Furthermore, the style of
parallel query can model the interactions be-
tween entities of different types.

• Instead of relying on external knowledge to
construct queries in natural language form,
instance queries learn their query semantics
related to entity location and entity type dur-
ing training.

• To train the model, we design a dynamic one-
to-many label assignment mechanism, where
the entities are dynamically assigned as labels
for the instance queries during training. The
one-to-many manner allows multiple queries

to predict the same entity, which can further
improve the model performance.

• Experiments show that our model achieves
state-of-the-art performance consistently on
several nested and flat NER datasets.

2 Related Work

Traditional approaches for NER can be divided
into three categories, including tagging-based,
hypergraph-based and span-based approaches. The
typical sequence labeling approach (Huang et al.,
2015) predicts labels for each token, and struggles
to address nested NER. Some works (Alex et al.,
2007; Wang et al., 2020a) adapt the sequence la-
beling model to nested entity structures by design-
ing a special tagging scheme. Different from the
decoding on the linear sequence, the hypergraph-
based approaches (Lu and Roth, 2015; Muis and
Lu, 2017; Katiyar and Cardie, 2018) construct hy-
pergraphs based on the entity nesting structure and
decode entities on the hypergraph. Span-based
methods first extract spans by enumeration (Sohrab
and Miwa, 2018; Luan et al., 2019) or boundary
identification (Zheng et al., 2019; Tan et al., 2020),
and then classify the spans. Based on these, Shen
et al. (2021a) treats NER as a joint task of bound-
ary regression and span classification and proposes
a two-stage identifier of locating entities first and
labeling them later.

Three novel paradigms for NER have recently
been proposed, reformulating named entity recog-
nition as sequence generation, set prediction, and
reading comprehension tasks, respectively. Yan
et al. (2021) formulates NER as an entity span
sequence generation problem and uses a BART
(Lewis et al., 2020) model with the pointer mech-
anism to tackle NER tasks. Tan et al. (2021) for-
mulates NER as an entity set prediction task. Dif-
ferent from Straková et al. (2019), they utilize a
non-autoregressive decoder to predict entity set. Li
et al. (2020b); Mengge et al. (2020) reformulate
the NER task as an MRC question answering task.
They construct type-specific queries using semantic
prior information for entity categories.

Different from Li et al. (2020b); Jiang et al.
(2021), our method attempts to query at the entity
level, where it adaptively learns query semantics
for instance queries and extracts all types of en-
tities in parallel. It is worth noting that Seq2Set
(Tan et al., 2021) is quite different from ours: (1)
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Seq2Set attempts to eliminate the incorrect bias in-
troduced by specified entity decoding order in the
seq2seq framework, and proposes an entity set pre-
dictor, while we follow the MRC paradigm and fo-
cus on extracting entities using instance queries. (2)
Seq2Set is an encoder-decoder architecture, while
our model throws away the decoder and keeps only
the encoder as in Wang et al. (2022a), which speeds
up inference and allows full interaction between
query and context. (3) Seq2Set uses bipartite graph
matching to compute the entity-set level loss, while
we focus on the label assignment for each instance
query and propose a one-to-many dynamic label
assignment mechanism.

3 Method

In this section, we first introduce the task formu-
lation in § 3.1, and then describe our method. As
shown in Figure 2, our method consists of three
components: the Encoder (§ 3.2), the Entity Pre-
diction (§ 3.3) and the Dynamic Label Assignment
(§ 3.4). The encoder encodes both the sentence
and instance queries. Then for each instance query,
we perform entity localization and entity classifi-
cation using Entity Pointer and Entity Classifier
respectively. For training the model, we introduce
a dynamic label assignment mechanism to assign
gold entities to the instance queries in § 3.4.

3.1 Task Formulation

We use (X,Y ) to denote a training sample, where
X is a sentence consisting of N words labeled by
a set of triples Y = {< Y l

k , Y
r
k , Y

t
k >}G−1

k=0 . Y l
k ∈

[0, N − 1], Y r
k ∈ [0, N − 1] and Y t

k ∈ E are the
indices for the left boundary, right boundary and
entity type of the k-th entity, where E is a finite
set of entity types. In our approach, We set up
M(M > G) global and learnable instance queries
I = RM×h, each of which (denoted as a vector of
size h) extracts one entity from the sentence. They
are randomly initialized and can learn the query
semantics automatically during training. Thus we
define the task as follows: given an input sentence
X , the aim is to extract the entities Y based on the
learnable instance queries I .

3.2 Encoder

Model input consists of two sequences, the sen-
tence X of length N and the instance queries I of
length M . The encoder concatenates them into one
sequence and encodes them simultaneously.

Input Embedding We calculate the token em-
beddings Etok, position embeddings Epos and type
embeddings Etyp of the input from two sequences
as follows (Etok, Epos, Etyp ∈ R(N+M)×h):

Etok = Concat(V, I)

Epos = Concat(Pw, P q)

Etyp = Concat([Uw]N , [U q]M )

(1)

where V ∈ RN×h are token embeddings of the
word sequence, I ∈ RM×h are the vectors of in-
stance queries, Pw ∈ RN×h and P q ∈ RM×h are
separate learnable position embeddings. Uw and
U q are type embeddings and [·]N means repeating
N times. Then the input can be represented as
H0 = Etok + Epos + Etyp ∈ R(N+M)×h.

One-Way Self-Attention Normal self-attention
would let the sentence interact with all instance
queries. In such a way, randomly initialized in-
stance queries can affect the sentence encoding
and break the semantics of the sentence. To keep
the sentence semantics isolated from the instance
queries, we replace the self-attention in BERT (De-
vlin et al., 2019) with the one-way version:

OW-SA(H) = αHWv (2)

α = softmax

(
HWq(HWk)

T

√
h

+M
)

(3)

where Wq,Wk,Wv ∈ Rh×h are parameter matri-
ces and M ∈ {0,− inf}(N+M)×(N+M) is a mask
matrix for the attention score where elements in M
set to 0 for kept units and − inf for removed ones.
In our formula, the upper right sub-matrix of M
is a full − inf matrix of size (N × M) and other
elements are zero, which can prevent the sentence
encoding from attending on the instance queries. In
addition, the self-attention among instance queries
can model the connections between each other, and
then enhance their query semantics.

After BERT encoding, we further encode the se-
quence at word-level by two bidirectional LSTM
layers and L extra transformer layers. Finally we
split H ∈ R(N+M)×h into two parts: the sentence
encoding Hw ∈ RN×h and the instance query en-
coding Hq ∈ RM×h.

3.3 Entity Prediction
Each instance query can predict one entity from the
sentence, and with M instance queries, we can pre-
dict at most M entities in parallel. Entity prediction
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V[SEP]
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Figure 2: The overall architecture of the model.

can be viewed as a joint task of boundary prediction
and category prediction. We design Entity Pointer
and Entity Classifier for them respectively.

Entity Pointer For the i-th instance query Hq
i ,

we first interact the query with each word of the
sentence by two linear layers. The fusion represen-
tation of the i-th instance query and j-th word is
computed as:

Sδ
ij = ReLU(Hq

i W
q
δ +Hw

j W
w
δ ) (4)

where δ ∈ {l, r} denotes the left or right boundary
and W q

δ ,W
w
δ ∈ Rh×h are trainable projection pa-

rameters. Then we calculate the probability that the
j-th word of the sentence is a left or right boundary:

P δ
ij = sigmoid(Sδ

ijWδ + bδ) (5)

where Wδ ∈ Rh and bδ are learnable parameters.

Entity Classifier Entity boundary information
are useful for entity typing. We use P δ

i =
[P δ

i0, P
δ
i1, · · · , P δ

iN−1], δ ∈ {l, r} to weigh all
words and then concatenate them with instance

queries. The boundary-aware representation of the
i-th instance query can be calculated as:

St
i = ReLU

([
Hq

i W
q
t ;P

l
iH

w;P r
i H

w
])

(6)

where W q
t ∈ Rh×h is a learnable parameter. Then

we can get the probability of the entity queried by
the i-th instance query belonging to category c:

P t
ic =

exp(St
iW

c
t + bct)∑

c′∈E exp(S
t
iW

c′
t + bc

′
t )

(7)

where W c′
t ∈ Rh and bc

′
t are learnable parameters.

Finally, the entity predicted by the i-th instance
query is Ti =

(
T l
i , T r

i , T t
i

)
. T l

i = argmaxj(P
l
ij)

and T r
i = argmaxj(P

r
ij) are the left and right

boundary, T t
i = argmaxc(P

t
ic) is the entity type.

We perform entity localization and entity classi-
fication on all instance queries to extract entities
in parallel. If multiple instance queries locate the
same entity but predict different entity types, we
keep only the prediction with the highest classifica-
tion probability.
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3.4 Dynamic Label Assignment for Training

Dynamic Label Assignment Since instance
queries are implicit (not in natural language form),
we cannot assign gold entities to them in advance.
To tackle this, we dynamically assign labels for the
instance queries during training. Specifically, we
treat label assignment as a Linear Assignment Prob-
lem. Any entity can be assigned to any instance
query, incurring some cost that may vary depending
on the entity-query assignment. We define the cost
of assigning the k-th entity (Yk = < Y l

k , Y
r
k , Y

t
k >)

to the i-th instance query as:

Costik = −
(
P t
iY t

k
+ P l

iY l
k
+ P r

iY r
k

)
(8)

where Y t
k , Y l

k and Y r
k denote the indices for the

entity type, left boundary and right boundary of
the k-th entity. It is required to allocate as many
entities as possible by assigning at most one entity
to each query and at most one query to each entity,
in such a way that the total cost of the assignment
is minimized. However, the one-to-one manner
does not fully utilize instance queries, and many
instance queries are not assigned to gold entities.
Thus we extend the traditional LAP to one-to-many
one, where each entity can be assigned to multiple
instance queries. The optimization objective of this
one-to-many LAP is defined as:

min

M−1∑
i=0

G−1∑
k=0

AikCostik

s.t.
∑

k Aik ≤ 1∑
iAik = qk

∀i, k, Aik ∈ {0, 1}
.

(9)

where A ∈ {0, 1}M×G is the assignment matrix,
G denotes the number of the entities and Aik =
1 indicates the k-th entity assigned to the i-th in-
stance query. qk denotes the assignable quantity
of the k-th gold entity and Q =

∑
k qk denotes

the total assignable quantity for all entities. In our
experiments, the assignable quantities of different
entities are balanced.

We then use the Hungarian (Kuhn, 1955) algo-
rithm to solve Equation 9, which yields the label
assignment matrix with the minimum total cost.
However, the number of instance queries is greater
than the total assignable quantity of entity labels
(M > Q), so some of them will not be assigned to
any entity label. We assign None label to them by

extending a column for the assignment matrix. The
new column vector a is set as follows:

ai =

{
0,

∑
k Aik = 1

1,
∑

k Aik = 0
(10)

Based on the new assignment matrix Â ∈
{0, 1}M×(G+1), we can further get the labels Ŷ =
Y. indexby(π∗) for M instance queries, where
π∗ = argmax

dim=1
(Â) is the label index vector for

instance queries under the optimal assignment.

Training Objective We have computed the entity
predictions for M instance queries in § 3.3 and got
their labels Ŷ with the minimum total assignment
cost in § 3.4. To train the model, we define bound-
ary loss and classification loss. For left and right
boundary prediction, we use binary cross entropy
function as a loss:

Lb =−
∑

δ∈{l,r}

M−1∑
i=0

N−1∑
j=0

1[Ŷ δ
i = j] logP δ

ij

+ 1[Ŷ δ
i ̸= j] log

(
1− P δ

ij

) (11)

and for entity classification we use cross entropy
function as a loss:

Lt = −
M−1∑
i=0

∑
c∈E

1[Ŷ t
i = c] logP t

ic (12)

where 1[ω] denotes indicator function that takes 1
when ω is true and 0 otherwise.

Follow Al-Rfou et al. (2019) and Carion et al.
(2020), we add Entity Pointer and Entity Classifier
after each word-level transformer layer, and we can
get the two losses at each layer. Thus, the total loss
on the train set D can be defined as:

L =
∑
D

L∑
τ=1

Lτ
t + Lτ

b (13)

where Lτ
t ,Lτ

b are classification loss and boundary
loss at the τ -th layer. For prediction, we just per-
form entity prediction at the final layer.

4 Experiment Settings

4.1 Datasets
To provide empirical evidence for the effectiveness
of the proposed model, we conduct our experiments
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Model ACE04

Pr. Rec. F1

Li et al. (2020b) 85.05 86.32 85.98
Wang et al. (2020a) 86.08 86.48 86.28
Yu et al. (2020) 87.30 86.00 86.70
Yan et al. (2021) 87.27 86.41 86.84
Yang and Tu (2022) 86.60 87.28 86.94
Tan et al. (2021) 88.46 86.10 87.26
Shen et al. (2021a) 87.44 87.38 87.41

PIQN 88.48 87.81 88.14

Model ACE05

Pr. Rec. F1

Lin et al. (2019) 76.20 73.60 74.90
Luo and Zhao (2020) 75.00 75.20 75.10
Li et al. (2021) - - 83.00
Wang et al. (2020a) 83.95 85.39 84.66
Yan et al. (2021) 83.16 86.38 84.74
Yu et al. (2020) 85.20 85.60 85.40
Yang and Tu (2022) 84.61 86.43 85.53
Li et al. (2020b) 87.16 86.59 86.88
Shen et al. (2021a) 86.09 87.27 86.67
Tan et al. (2021) 87.48 86.63 87.05

PIQN 86.27 88.60 87.42

Model GENIA

Pr. Rec. F1

Lin et al. (2019) 75.80 73.90 74.80
Luo and Zhao (2020) 77.40 74.60 76.00
Wang et al. (2020b) 78.10 74.40 76.20
Yang and Tu (2022) 78.08 78.26 78.16
Li et al. (2020b)† 81.14 76.82 78.92
Wang et al. (2020a) 79.45 78.94 79.19
Yan et al. (2021) 78.87 79.6 79.23
Tan et al. (2021) 82.31 78.66 80.44
Yu et al. (2020) 81.80 79.30 80.50
Shen et al. (2021a) 80.19 80.89 80.54

PIQN 83.24 80.35 81.77

Model KBP17

Pr. Rec. F1

Ji et al. (2017) 76.20 73.00 72.80
Lin et al. (2019) 77.70 71.80 74.60
Luo and Zhao (2020) 77.10 74.30 75.60
Li et al. (2020b) 80.97 81.12 80.97
Tan et al. (2021) 84.91 83.04 83.96
Shen et al. (2021a) 85.46 82.67 84.05

PIQN 85.67 83.37 84.50

Model NNE

Pr. Rec. F1

Li et al. (2020b)‡ 53.13 56.67 54.84
Wang and Lu (2018) 77.40 70.10 73.60
Ringland et al. (2019) 91.80 91.00 91.40
Tan et al. (2021)‡ 93.01 89.21 91.07
Shen et al. (2021a)‡ 92.86 91.12 91.98
Wang et al. (2020a)† 92.64 93.53 93.08

PIQN 93.85 94.23 94.04

Table 1: Results for nested NER task. † means the
reproduction on the same preprocessed dataset and ‡
means that we run the code on the unreported dataset.

on eight English datasets, including five nested
NER datasets: ACE04 (Doddington et al., 2004)
, ACE05 (Walker et al., 2006), KBP17 (Ji et al.,
2017), GENIA (Ohta et al., 2002), NNE(Ringland
et al., 2019) and three flat NER dataset: FewNERD
(Ding et al., 2021), CoNLL03 (Tjong Kim Sang
and De Meulder, 2003), OntoNotes (Pradhan et al.,
2013), and one Chinese flat NER dataset: MSRA
(Levow, 2006). FewNERD and NNE are two
datasets with large entity type inventories, contain-
ing 66 and 114 fine-grained entity types. Please re-
fer to Appendix A for statistical information about
the datasets.

4.2 Implementation Details

In our experiments, we use pretrained BERT
(Devlin et al., 2019) in our encoder. For
a fair comparison, we use bert-large
on ACE04, ACE05, NNE, CoNLL03 and
OntoNotes, bert-base on KBP17 and FewN-
ERD, biobert-large (Chiu et al., 2016) on
GENIA and chinese-bert-wwm (Cui et al.,
2020) on Chinese MSRA. For all datasets, we train
our model for 30-60 epochs and use the Adam
Optimizer (Kingma and Ba, 2015) with a linear
warmup-decay learning rate schedule. We initialize
all instance queries using the normal distribution
N (0.0, 0.02). See Appendix B for more detailed
parameter settings and Appendix C for all baseline
models.

4.3 Evaluation Metrics

We use strict evaluation metrics that an entity is
confirmed correct when the entity boundary and
the entity type are correct simultaneously. We em-
ploy precision, recall and F1-score to evaluate the
performance. We also report the F1-scores on the
entity localization and entity classification subtasks
in § 5.2 and Appendix D.2. We consider the local-
ization as correct when the left and right boundaries
are predicted correctly. Based on the accurately lo-
calized entities, we then evaluate the performance
of entity classification.

5 Results and Analysis

5.1 Performance

Overall Performance Table 1 illustrates the
performance of the proposed model as well as
baselines on the nested NER datasets. We ob-
serve significant performance boosts on the nested
NER datasets over previous state-of-the-art models,

952



achieving F1-scores of 81.77%, 88.14%, 87.42%
and 84.50% on GENIA, ACE04, ACE05, KBP17
and NNE datasets with +1.23%, +0.73%, +0.37%,
+0.45% and +0.96% improvements. Our model
can be applied to flat NER. As shown in Table 2,
our model achieves state-of-the-art performance
on the FewNERD and Chinese MSRA datasets
with +1.44% and +0.88% improvements. On
the CoNLL03 and OntoNotes datasets, our model
also achieves comparable results. Compared with
the type-specific query-based method (Li et al.,
2020b), our model improves by +2.85%, +2.16%,
+0.54%, +3.53% on the GENIA, ACE04, ACE05
and KBP17 datasets. We believe there are three
reasons: (1) Rather than relying on external knowl-
edge to inject semantics, instance queries can learn
query semantics adaptively, avoiding the sensitivity
to hand-constructed queries of varying quality. (2)
Each query no longer predicts a group of entities
of a specific type, but only one entity. This manner
refines the query to the entity level with more pre-
cise query semantics. (3) Instance queries are fed
into the model in parallel for encoding and predic-
tion, and different instance queries can exploit the
intrinsic connections between entities.

Inference Speed We compare the inference
speed on ACE04 and NNE, as shown in Table 4.
Compared to the type-specific query method (Li
et al., 2020b), our model not only improves the
performance, but also gains significant inference
speedup. In particular, on the NNE dataset with
114 entity types, our model speeds up by 30.46×
and improves performance by +39.2%. This is
because Li et al. (2020b) requires one inference
for each type-specific query, while our approach
performs parallel inference for all instance queries
and only needs to be run once. We also compare
previous state-of-the-art models (Tan et al., 2021;
Shen et al., 2021a) and our method is still faster
and performs better.

5.2 Ablation Study

In this section, we analyze the effects of different
components in PIQN. As shown in Table 3, we
have the following observations: (1) Compared to
the static label assignment in order of occurrence,
the dynamic label assignment shows significant
improvement on localization, classification, and
NER F1-score, which improves NER F1-score by
+5.71% on ACE04 and +8.84% on GENIA. This
shows that modeling label assignment as a LAP

Model FewNERD

Pr. Rec. F1

Ding et al. (2021) 65.56 68.78 67.13
Shen et al. (2021a)‡ 64.69 70.87 67.64
Tan et al. (2021)‡ 67.37 69.12 68.23

PIQN 70.16 69.18 69.67

Model English CoNLL03

Pr. Rec. F1

Peters et al. (2018) - - 92.22
Devlin et al. (2019) - - 92.80
Li et al. (2020b)∗ 92.47 93.27 92.87
Yu et al. (2020)∗ 92.85 92.15 92.50
Shen et al. (2021a) 92.13 93.73 92.94

PIQN 93.29 92.46 92.87

Model English OntoNotes

Pr. Rec. F1

Li et al. (2020b)∗ 91.34 88.39 89.84
Yu et al. (2020)∗ 89.74 89.92 89.83
Yan et al. (2021) 89.99 90.77 90.38
Xu et al. (2021) 90.14 91.58 90.85

PIQN 91.43 90.73 90.96

Model Chinese MSRA

Pr. Rec. F1

Devlin et al. (2019) - - 92.60
Li et al. (2020b)† 90.38 89.00 89.68
Shen et al. (2021a)‡ 92.20 90.72 91.46
Tan et al. (2021)‡ 93.21 91.97 92.58

PIQN 93.61 93.35 93.48

Table 2: Results for flat NER task. ∗ means the result
reproduced by (Yan et al., 2021), † means the reproduc-
tion on the same preprocessed dataset and ‡ means that
we run the code on the unreported dataset.

problem enables dynamic assignment of optimal
labels to instance queries during training, eliminat-
ing the incorrect bias when pre-specifying labels.
Furthermore, one-to-many for label assignment is
more effective than one-to-one, improving the F1-
score by +3.86% on ACE04 and +0.51% on GE-
NIA. (2) The one-way self-attention blocks the
attention of sentence encoding on instance queries,
which improves the F1-score by +0.98% on ACE04
and +0.57% on GENIA. It illustrates the impor-
tance of keeping the semantics of the sentence
independent of the query. In contrast, semantic
interactions between queries are effective, which
improves the F1-score by +0.92% on ACE04 and
+0.67% on GENIA. The major reason is that enti-
ties in the same sentence are closely related and the
interaction between instance queries can capture
the relation between them.
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Model ACE04 GENIA

Loc. F1 Cls. F1 Pr. Rec. F1 Loc. F1 Cls. F1 Pr. Rec. F1

Default 92.23 91.53 88.48 87.81 88.14 84.43 87.83 83.24 80.35 81.77

w/o Dynamic LA 88.22 88.29 80.95 83.99 82.43 77.01 81.90 73.56 72.30 72.93
w/o OvM LA 89.22 87.61 87.04 81.68 84.28 83.87 87.38 83.02 79.57 81.26
w/o One Way SA 91.90 90.62 87.56 86.75 87.16 84.11 87.21 82.94 79.53 81.20
w/o Query Interaction 91.84 90.42 88.21 86.26 87.22 83.87 87.05 83.15 79.15 81.10

Table 3: Ablation Study. (1) w/o Dynamic LA: replace dynamic label assignment to static label assignment, i.e.,
assign labels to instance queries in the order of the entities’ occurrence in the sentence. (2) w/o OvM LA: replace
the one-to-many label assignment to one-to-one, i.e., set the number of queries to which each entity can be assigned
to be 1. (3) w/o One Way SA: encode sentences and instance queries using the original BERT. (4) w/o Query
Interaction: eliminate interactions between instance queries by masking the attention weights between them.

Model ACE04 NNE

Speedup F1 Speedup F1

Li et al. (2020b) 1.00× 85.98 1.00× 54.84
Tan et al. (2021) 1.40× 87.26 22.18× 91.07
Shen et al. (2021a) 0.96× 87.41 11.41× 91.98

PIQN 2.16× 88.14 30.46× 94.04

Table 4: Inference Speed on ACE04 and NNE. All
experiments are conducted on a single NVIDIA RTX
A6000 Graphical Card with 48G graphical memory.

5.3 Analysis

In order to analyze the query semantics learned
by the instance query in the training, we randomly
selected several instance queries and analyzed the
locations and types of entities they predicted.
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Figure 3: Kernel density estimation of entity distribution
at different locations.

Entity Location We normalize the predicted cen-
tral locations of the entities and use kernel den-
sity estimation to draw the distribution of the pre-
dicted entity locations for different queries, as
shown in Figure 3. We observe that different in-
stance queries focus on entities at different posi-
tions, which means that the instance queries can
learn the query semantics related to entity position.

For example, instance queries #28 and #39 prefer
to predict entities at the beginning of sentences,
while #11 and #53 prefer entities at the end.

Entity Type We count the co-occurrence of dif-
ferent instance queries and different entity types
they predicted. To eliminate the imbalance of entity
types, we normalize the co-occurrence matrix on
the entity type axis. As shown in Figure 4, differ-
ent instance queries have preferences for different
entity types. For example, instance queries #11
and #13 prefer to predict PER entities, #30 and #43
prefer VEH entities, #25 and #49 prefer WEA enti-
ties, #12 prefers FAC entities, and #35 prefers LOC
entities.
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Figure 4: Co-occurrence statistics between instance
queries and different entity types

We also analyze the auxiliary loss, the dynamic
label assignment mechanism, and the performance
on entity localization and classification, please see
the Appendix D.

6 Case Study

Table 5 shows a case study about model predic-
tions. Our model can recognize nested entities and
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# Sentence with Gold Entities Prediction← Instance Query IDs

1

[0A number of powerful international companies
and commercial agencies , such as [12Ito Bureau
of [15Japan15]GPE

15]ORG , [17Han Hua Group of
[21South Korea22]GPE

22]ORG , [24Jeffrey Group of [27the
US28]GPE

28]ORG , [30etc30]ORG
30]ORG . participated in this

Urumchi Negotiation Meeting .

✓ (24, 28, ORG)← 0 23 33 45 51
✓ (27, 28, GPE)← 2 3 19 26 27 46 50
✓ (15, 15, GPE)← 9 11 14 42
✓ ··· ···
✓ (0, 30, ORG)← 10 20 24 37 53 55
✗ (12, 30, ORG)← 16 22 47 57
None← 1 12 13 15 17 21 29 30 31 32 34 35 40 49 52 59

2

For example , as instant messaging migrates to
cell phones or hand - held computer organizers ,
[17consumers17]PER won ’ t want to have to install multi-
ple services on these devices , said [33Brian Park34]PER ,
[36senior product for [39Yahoo !40]ORG Communications
Services42]PER .

✗ (39, 42, ORG)← 0 2 15 19 26 27 29 35 46 49 50
✓ (17, 17, PER)← 1 10 20 22 24 32 37 47 53 55 57
✓ (33, 34, PER)← 6 9 11 12 14 18 34 38 42 48 59
✓ (36, 42, PER)← 8 17 25 28 30 31 36 40 54 56 58
None← 3 4 5 7 13 16 21 23 33 39 41 43 44 45 51 52

3

[0Hector Rodriguez1]PER told the hearing of [6the
Venezuelan consumer protection agency10]ORG that
[12Bridgeton Firestone13]ORG knew about the tyre de-
fects for many months and should be held responsible
for the accidents .

✓ (0, 1, PER)← 1 10 20 24 32 37 47 53 55
✓ (12, 13, ORG)← 2 3 19 26 27 35 46 49 50
✗ (7, 8, PER)← 4 7 12 18 38 39 41 43 44
✓ (6, 10, ORG)← 5 6 9 11 14 21 48 57 59
✗ (7, 7, GPE)← 8 25 28 30 31 36 40 54 56 58
None← 0 13 15 16 17 22 23 29 33 34 42 45 51 52

Table 5: Cases Study. In the left column, the label in the lower right corner indicates the type of entity, and
the superscripts indicate the positions of the left and right boundary words. In the right column, we show the
correspondence between the instance queries and the predicted entities.

long entities well. In case 1, the entities of length
31 or with the three-level nested structure are pre-
dicted accurately. And thanks to the one-to-many
dynamic label assignment mechanism, each en-
tity can be predicted by multiple instance queries,
which guarantees a high coverage of entity pre-
diction. However, the model’s ability to under-
stand sentences is still insufficient, mainly in the
following ways: (1) There is a deficiency in the
understanding of special phrases. Yahoo ! Com-
munications Services in case 2 is misclassified as
ORG, but in fact Yahoo ! is ORG. (2) Over-focus
on local semantics. In case 3, the model misclas-
sifies Venezuelan consumer as PER, ignoring the
full semantics of the long phrase the Venezuelan
consumer protection agency, which should be ORG.
(3) Insensitivity to morphological variation. The
model confused Venezuelan and Venezuela, and
misidentified the former as GPE in case 3.

7 Conclusion

In this paper, we propose Parallel Instance Query
Network for nested NER, where a collection of
instance queries are fed into the model simultane-
ously and can predict all entities in parallel. The
instance queries can automatically learn query se-
mantics related to entity types or entity locations
during training, avoiding manual constructions that
rely on external knowledge. To train the model,
we design a dynamic label assignment mechanism

to assign gold entities for these instance queries.
Experiments on both nested and flat NER datasets
demonstrate that the proposed model achieves state-
of-the-art performance.
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A Datasets

GENIA (Ohta et al., 2002) is an English biol-
ogy nested named entity dataset and contains 5 en-
tity types, including DNA, RNA, protein, cell
line, and cell type categories. Follow Yu
et al. (2020), we use 90%/10% train/test split and
evaluate the model on the last epoch.

ACE04 and ACE05 (Doddington et al., 2004;
Walker et al., 2006) are two English nested datasets,
each of them contains 7 entity categories. We fol-
low the same setup as previous work Katiyar and
Cardie (2018); Lin et al. (2019).

KBP17 (Ji et al., 2017) has 5 entity categories,
including GPE, ORG, PER, LOC, and FAC. We fol-
low Lin et al. (2019) to split all documents into
866/20/167 documents for train/dev/test set.

NNE (Ringland et al., 2019) is a English nested
NER dataset with 114 fine-grained entity types.
Follow Wang et al. (2020a), we keep the original
dataset split and pre-processing.

FewNERD (Ding et al., 2021) is a large-scale
English flat NER dataset with 66 fine-grained en-
tity types. Follow Ding et al. (2021), we adopt a
standard supervised setting.

CoNLL03 (Tjong Kim Sang and De Meulder,
2003) is an English dataset with 4 types of named
entities: LOC, ORG, PER and MISC. Follow Yan
et al. (2021); Yu et al. (2020), we train our model
on the train and development sets.

OntoNotes (Pradhan et al., 2013) is an English
dataset with 18 types of named entity, consisting
of 11 types and 7 values. We use the same train,
development, test splits as Li et al. (2020b).

Chinese MSRA (Levow, 2006) is a Chinese
dataset with 3 named entity types, including ORG,
PER, LOC. We keep the original dataset split and
pre-processing.

In Table 6 and Table 7, we report the number
of sentences, the number of sentences containing
nested entities, the average sentence length, the to-
tal number of entities, the number of nested entities,
the nesting ratio, the maximum and the average
number of entities in a sentence on all datasets.

B Implementation Details

In default setting, we set the number of instance
queries M = 60, and the total assignable quantity

Q = M×0.75 = 45. To ensure that the assignable
quantities of different entities are balanced, we ran-
domly divide Q to different entities and adjust each
division to be larger than Q/G, where G is the num-
ber of the ground-truth entities. When the number
of entities is more than the total assignable quan-
tity, we specify Q = G. We have also tried other
configurations that will be discussed in Appendix
D.3. We set L word-level transformer layers after
BERT and set auxiliary losses in each layer. In the
default setting L equals 5. We compare the effect
of different auxiliary layers on the model perfor-
mance, which will be discussed in Appendix D.1.
Since the instance queries are randomly initialized
and do not have query semantics at the initial stage
of training, we first fix the parameters of BERT and
train the model for 5 epochs, allowing the instance
queries to initially learn the query semantics. When
decoding entities, we filter out the predictions with
localization probability and classification probabil-
ity less than the threshold 0.6 and 0.8, respectively.

C Baselines

We compare PIQN with the following baselines:

• ARN (Lin et al., 2019) designs a sequence-to-
nuggets architecture for nested mention detec-
tion, which first identifies anchor words and
then recognizes the mention boundaries.

• HIT (Wang et al., 2020b) designs a head-tail
detector and a token interaction tagger, which
can leverage the head-tail pair and token inter-
action to express the nested structure.

• Pyramid (Wang et al., 2020a) presents a lay-
ered neural model for nested entity recogni-
tion, consisting of a stack of inter-connected
layers.

• Biaffine (Yu et al., 2020) formulates NER
as a structured prediction task and adopts a
dependency parsing approach for NER.

• BiFlaG (Luo and Zhao, 2020) designs a bi-
partite flat-graph network with two subgraph
modules for outermost and inner entities.

• BERT-MRC (Li et al., 2020b) formulates the
NER task as a question answering task. They
construct type-specific queries using semantic
prior information for entity categories.
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ACE04 ACE05 KBP17 GENIA NNE

Train Dev Test Train Dev Test Train Dev Test Train Test Train Dev Test

#S 6200 745 812 7194 969 1047 10546 545 4267 16692 1854 43457 1989 3762
#NS 2712 294 388 2691 338 320 2809 182 1223 3522 446 28606 1292 2489
#E 22204 2514 3035 24441 3200 2993 31236 1879 12601 50509 5506 248136 10463 21196

#NE 10149 1092 1417 9389 1112 1118 8773 605 3707 9064 1199 206618 8487 17670
NR 45.71 46.69 45.61 38.41 34.75 37.35 28.09 32.20 29.42 17.95 21.78 83.27 81.11 83.36
AL 22.50 23.02 23.05 19.21 18.93 17.2 19.62 20.61 19.26 25.35 25.99 23.84 24.20 23.80

#ME 28 22 20 27 23 17 58 15 21 25 14 149 58 64
#AE 3.58 3.37 3.73 3.39 3.30 2.86 2.96 3.45 2.95 3.03 2.97 5.71 5.26 5.63

Table 6: Statistics of the nested datasets used in the experiments. #S: the number of sentences, #NS: the number of
sentences containing nested entities, #E: the total number of entities, #NE: the number of nested entities, NR: the
nesting ratio (%), AL: the average sentence length, #ME: the maximum number of entities in a sentence, #AE: the
average number of entities in a sentence

CoNLL03 OntoNotes FewNERD Chinese MSRA

Train Dev Test Train Dev Test Train Dev Test Train Dev Test

#S 14041 3250 3453 49706 13900 10348 131965 18824 37648 41728 4636 4365
#E 23499 5942 5648 128738 20354 12586 340247 48770 96902 70446 4257 6181
AL 14.50 15.80 13.45 24.94 20.11 19.74 24.49 24.61 24.47 46.87 46.17 39.54

#ME 20 20 31 32 71 21 50 35 49 125 18 461
#AE 1.67 1.83 1.64 2.59 1.46 1.22 2.58 2.59 2.57 1.69 0.92 1.42

Table 7: Statistics of the flat datasets used in the experiments. #S: the number of sentences, #E: the total number of
entities, AL: the average sentence length, #ME: the maximum number of entities in a sentence, #AE: the average
number of entities in a sentence

• BARTNER (Yan et al., 2021) formulates
NER as an entity span sequence generation
problem and uses a unified Seq2Seq model
with the pointer mechanism to tackle flat,
nested, and discontinuous NER tasks.

• Seq2Set (Tan et al., 2021) formulates NER
as an entity set prediction task. Different
from Straková et al. (2019), they utilize a non-
autoregressive decoder to predict entity set.

• Locate&Label (Shen et al., 2021a) treats
NER as a joint task of boundary regression
and span classification and proposed a two-
stage identifier of locating entities first and
labeling them later.

For a fair comparison, we did not compare with
Sun et al. (2020); Li et al. (2020a); Meng et al.
(2019) on Chinese MSRA because they either used
glyphs or an external lexicon or a larger pre-trained
language model. In addition, some works (Wang
et al., 2021, 2022b) used search engines to retrieve
input-related contexts to introduce external infor-
mation, and we did not compare with them as well.

D Analysis

D.1 Analysis of Auxiliary Loss

Many works (Al-Rfou et al., 2019; Carion et al.,
2020) have demonstrated that the auxiliary loss
in the middle layer introduces supervised signals
in advance and can improve model performance.
We compared the effect of the different number
of auxiliary-loss layers on the model performance
(F1-score on ACE04). Overall, the model performs
better as the number of auxiliary-loss layers in-
creases. The model achieves the best results when
the number of layers equals 5.
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Figure 5: Analysis of Auxiliary Loss
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D.2 Analysis of Two Subtasks
We compare the model performance on entity lo-
calization and entity classification subtasks on the
ACE04 dataset, as shown in Table 8. Compared
with the previous state-of-the-art models (Tan et al.,
2021; Shen et al., 2021a), our model achieves better
performance on both entity localization and entity
classification subtasks. This illustrates that the in-
stance queries can automatically learn their query
semantics about location and type of entities, which
is consistent with our analysis in 5.3.

Model Localization

Pr. Rec. F1

Tan et al. (2021) 92.75 90.24 91.48
Shen et al. (2021a) 92.28 90.97 91.62
PIQN 92.56 91.89 92.23

Model Classification

Pr. Rec. F1

Tan et al. (2021) 95.36 86.03 90.46
Shen et al. (2021a) 95.40 86.75 90.87
PIQN 95.59 87.81 91.53

Table 8: Localization and Classification Performance
on ACE04

D.3 Analysis of Label Assignment

(M,Q) Loc. F1 Cls. F1 Pr. Rec. F1

(60, 15) 91.05 90.15 87.57 85.67 86.61
(60, 30) 91.76 90.37 88.23 86.16 87.18
(60, 45) 92.23 91.53 88.48 87.81 88.14
(60, 50) 92.01 90.81 87.38 87.12 87.25

(30, 15) 91.26 89.66 88.61 84.88 86.70
(60, 30) 91.76 90.37 88.23 86.16 87.18
(90, 45) 91.88 90.56 88.23 86.46 87.34
(120, 60) 91.75 90.45 87.19 86.56 86.87

Table 9: Analysis on Dynamic Label Assignment for
different combinations of the number M of instance
queries and the total assignable quantity Q of labels.

We analyze the impact of dynamic label assign-
ment on model performance for different combi-
nations of the number M of instance queries and
the total assignable quantity Q of labels. From
Table 9, we observe that (1) there is a tradeoff be-
tween M and Q, and the model achieves the best
performance with a ratio of 4:3. With this setting,
the ratio of positive to negative instances of in-
stance queries is 3:1. (2) The number of instance
queries and the total assignable quantity is not as
large as possible, and an excessive number may de-

grade the model performance. In our experiments
(M,Q) = (60, 45) is the best combination.
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