
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 892 - 903

May 22-27, 2022 c©2022 Association for Computational Linguistics

Nested Named Entity Recognition with Span-level Graphs

Juncheng Wan, Dongyu Ru, Weinan Zhang∗, Yong Yu
Shanghai Jiao Tong University

{junchengwan,maxru,wnzhang,yyu}@apex.sjtu.edu.cn

Abstract

Span-based methods with the neural net-
works backbone have great potential for the
nested named entity recognition (NER) prob-
lem. However, they face problems such as
degenerating when positive instances and neg-
ative instances largely overlap. Besides, the
generalization ability matters a lot in nested
NER, as a large proportion of entities in the
test set hardly appear in the training set. In
this work, we try to improve the span represen-
tation by utilizing retrieval-based span-level
graphs, connecting spans and entities in the
training data based on n-gram features. Specif-
ically, we build the entity-entity graph and
span-entity graph globally based on n-gram
similarity to integrate the information of sim-
ilar neighbor entities into the span represen-
tation. To evaluate our method, we conduct
experiments on three common nested NER
datasets, ACE2004, ACE2005, and GENIA
datasets. Experimental results show that our
method achieves general improvements on all
three benchmarks (+0.30 ∼ 0.85 micro-F1),
and obtains special superiority on low fre-
quency entities (+0.56 ∼ 2.08 recall).

1 Introduction

Named entity recognition is one of the major sub-
tasks of information extraction for extracting cat-
egorized named entities from unstructured text.
Recently, neural-based NER architectures have
shown remarkable performance with minimal fea-
ture engineering, such as CNN-CRF (Collobert
et al., 2011), BiLSTM+CRF (Lample et al., 2016),
LSTM-CNN-CRF (Ma and Hovy, 2016) and Lat-
tice LSTM (Zhang and Yang, 2018a). Despite
their great success, nested NER raises new chal-
lenges due to the deeply overlapping or nested en-
tities (Finkel and Manning, 2009). In nested NER,
a token may be included in multiple entities (Wang

∗Corresponding author

Another tornado hit Geneva , near the Alabama - Florida line , said Mayor Warren Beck .

GPE

GPE GPE PER

PER

LOC

Figure 1: An example of nested NER in ACE2005
dataset.

and Lu, 2018) instead of a single one in the conven-
tional setting, making the problem more difficult to
solve.

Previous exploration on nested NER can be
mainly divided into three categories, using vari-
ous architectures or different formulation for adap-
tation to the nested scenario. Hypergraph-based
methods use explicit hypergraphs to represent
the possible nested structure or investigate the
graph-shaped lexical/syntactic features (Lu and
Roth, 2015; Katiyar and Cardie, 2018; Wang and
Lu, 2018). Layered-based methods construct the
nested structure through an action sequence (Wang
et al., 2018; Fisher and Vlachos, 2019; Shibuya
and Hovy, 2020) or layered-models (Ju et al., 2018;
Wang et al., 2020). Span-based methods directly
enumerate spans in a sentence, and perform cate-
gorical prediction on each span (Lin et al., 2019;
Eberts and Ulges, 2020; Luan et al., 2019; Tan et al.,
2020). Span-based methods adopt the most simple
and straightforward formulation as span classifica-
tion, thus widely used and applied in joint relation
extraction recently.

Despite the simplicity of span-based models,
they can hardly fully utilize the rich semantics
in spans. Previous investigation has shown that
span-based models are usually confused when the
positive and negative instances are largely over-
lapped (Finkel and Manning, 2009; Tan et al.,
2020), as shown in Fig. 1. The minor differences
between long entities and their similar spans can
easily fool the span-based models. Besides, most
entities during inference statistically never appear
in the training set in nested NER. For example,
in ACE2004, ACE2005, and GENIA, there are

892

53.06%, 41.64% and 51.42% entity mentions from
the validation set appear fewer than three times
in the training set. Learning powerful span rep-
resentations for the prediction of those “unfamil-
iar” entities is difficult for conventional span-based
models.

In this work, we try to improve the span represen-
tation in span-based methods by utilizing retrieval-
based span-level graphs. We seek helpful informa-
tion in the training set beyond the current sentence.
The intuitive assumption is that the entity spans
similar to the candidate spans contain related infor-
mation for discrimination on the candidate spans.
We use n-gram similarity to measure the distance
between spans. Specifically, we treat each entity in
the training set and each raw span as nodes, con-
necting those with high n-gram similarity. The con-
structed span-level heterogeneous graph records
the lexical correlations among entities and various
raw spans. We enhance the span representation by
including the retrieved local subgraph for feature
extraction of a specific span. We perform message
passing with GCNs (Kipf and Welling, 2017) on
the retrieved subgraph for neighbor entities repre-
sentation. The representation of neighbor entities
provides rich correlations beyond the current sen-
tence, thus improving the performance on confus-
ing long spans and low-frequency spans. Our main
contributions are listed as follows:

• We firstly introduce retrieval-based span-level
graphs in nested NER to model the lexical correla-
tions among candidate spans and entities beyond
the current sentence.

• We perform message passing with GCNs and
conduct multitask learning to effectively extract
the rich information from the entity neighbors of
candidate spans.

• We conduct experiments on three common
nested NER datasets (ACE2004, ACE 2005, and
GENIA). The empirical results and extensive anal-
ysis show that our method outperforms strong base-
lines on all three benchmarks and has special supe-
riority on long and low-frequency spans.

2 Related Work

Our work is closely related to nested NER and
graphs used in NER. We introduce them accord-
ingly as below.

2.1 Nested NER

Nested NER, with the challenging nested entities
included, has attracted many researchers recently.
There are three categories of mainstream solutions:
span-based, hypergraph and layered methods.

Span-based method exhausts all spans in the se-
quence and predicts their classes instead of per-
forming sequence labeling. The classifier can be a
maximum entropy tagger (Byrne, 2007) or a neural
network (Sohrab and Miwa, 2018; Fu et al., 2021;
Ouchi et al., 2020; Li et al., 2020). Some works pro-
pose to utilize relations (Luan et al., 2019; Eberts
and Ulges, 2020) for span prediction or correlation
intensities (Xu et al., 2021), while Tan et al. (2021)
proposes to learn the patterns of the valuable spans.
The span-based method is also improved by the
two-stage method, including locating entities and
predicting type (Lin et al., 2019; Tan et al., 2020;
Zheng et al., 2019; Shen et al., 2021). Our method
abuses complicated tagger or the boundary auxil-
iary but utilizes the n-gram features to improve the
span representation.

Hypergraph method learns hypergraph of nested
relationship (Lu and Roth, 2015), dependency tree
(Yu et al., 2020) or others (Dozat and Manning,
2017; Muis and Lu, 2017; Wang and Lu, 2018;
Katiyar and Cardie, 2018). This method with the
designed proprietary structures can explicitly cap-
ture the nested entities. While a proper graph needs
subtle work or external tools, such as the parser.

Layered method stacks flat NER layers and is
naturally suitable for nested structures. While it
suffers from layer disorientation or error propaga-
tion problem. Ju et al. (2018) recognizes inner enti-
ties and then entities of next layers. Others enhance
this idea with a merge and label method (Fisher and
Vlachos, 2019) or by applying a pyramid-shaped
decoder (Wang et al., 2020). The second-best path
decoding method is explored (Shibuya and Hovy,
2020) and improved (Wang et al., 2021) by exclud-
ing the influence of the best path.

2.2 Graphs Used in NER

Graphs, as a common formulation for structured in-
formation, are widely used in flat NER and nested
NER. For Chinese NER, models with lexicon-
based graph (Zhang and Yang, 2018b; Ding et al.,
2019; Gui et al., 2019) are proposed to fully use
gazetteers. Cetoli et al. (2017) investigates the use
of the dependency tree. Yu et al. (2020) improves
the idea from graph-based dependency parsing via

893

Figure 2: The density of entity frequency in the test set,
where entities have frequency ≤ 20 in the training set.

a biaffine model. The biaffine model is also ex-
plored with the graph of original token sequence
and the graph of tokens in recognized entities (Luo
and Zhao, 2020). Muis and Lu (2017); Wang and
Lu (2018); Katiyar and Cardie (2018) resolve spuri-
ous structures and ambiguous issues of hypergraph
structure of nested NER. Relation information is
used in the graph (Fu et al., 2019) with a relation
extraction model. Instead of building graphs from
a single sentence, our span-level graphs are built
from the whole training set, which has better data
utilization. Besides, our method does not use the
parser for dependency tree or gazetteers as external
knowledge.

3 Our Approach

In this part, we introduce the details of our ap-
proach. We first formulate the target problem,
nested NER, as follows.

Nested NER as Span Classification Follow-
ing Eberts and Ulges (2020), we formulate the
nested NER problem as the span classification task.
The span classification task treats multiple adjacent
tokens as a span and predicts the corresponding la-
bel. Specifically, for a sentence X = {x1, . . . , xn}
of n tokens, we extract all spans (with length≤ 10)
to a span set SX = {sij |1 ≤ i ≤ j ≤ n}, where
sij indicates the span from xi to xj . We predict the
corresponding label of sij as one of the pre-defined
entity types or NA (not an entity).

The formulation as span classification instead
of sequence labeling is more suitable for NER in
nested scenarios but brings two challenges. The
insensitivity to boundaries make the long candidate
spans hard to identify. The low-frequency spans,

taking the majority in data (Fig. 2), also increase
the difficulty on capturing intra-span representa-
tions. We use span-level graphs connecting entities
and raw spans to tackle the problems.

The overview of our model architecture is shown
in Fig. 3. We construct the span-level graph
with n-gram similarity to determine the adjacency
(Sec. 3.1). We initialize the representation of
spans and entities with the encoder described in
Sec. 3.2. The structured correlations among enti-
ties and spans are modeled with GCN (Sec. 3.3).
We incorporate in training the entity categorical
prediction to utilize the label of entity mentions on
the graph (Sec. 3.4).

3.1 Span-level Graph
We propose to improve the span representation by
constructing retrieval-based graphs according to n-
gram features. Our method uses two span-level
graphs, i.e. entity-entity graph and span-entity
graph. If treating each entity mention or raw span
as a span of multiple adjacent tokens, both of these
two graphs model the relationship between spans.

Before describing the method, we denote E the
set of entity mentions, R the set of raw spans,
S = E

⋃
R the set of all spans, and N k

G(v) the
set of k hop neighborhood vertices of vertex v in
graph G. In this work, we design the n-gram sim-
ilarity function between spans fn : S × S −→ R
at byte pair encodings (BPE) (Sennrich et al.,
2016) level. More precisely, fn is the cardinal-
ity of the intersection set of n-gram BPE sets, i.e.
fn(s, s

′) = |n-gram(BPE(s))∩n-gram(BPE(s′))|
for s, s′ ∈ S.

Entity-entity graph First, we introduce the
entity-entity graph GEE = (VEE , EEE). In GEE ,
nodes are from the set of entity mentions E . Entity
mentions with the same tokens but different types
are treated as different nodes. For ei, ej ∈ VEE , the
edge weightw(ei, ej) is calculated by the weighted
n-gram similarity from fn as follows:

w(ei, ej) =
1

N

N∑
n=1

αnfn(ei, ej) (1)

where αn indicates the importance of each n-gram
feature, and N is the largest gram length. A high
value of w(ei, ej) indicates high frequency of the
words co-occurrence between ei and ej .

Span-entity graph Span-entity graph GSE =
(VSE , ESE) models the relationship between raw

894

Encoder

Word Embeds
Char Embeds
Char BiLSTM

Tok1 Tok2 Tok3 Input

Pre-trained LM

Word-Char BiLSTM

Entity-entity

Span-entity

𝒔𝟔

𝒆𝟏𝑮𝟏 𝑮𝟔𝒆𝟐 𝒆𝟕 𝒆𝒏

Embed𝒉𝒄𝒐𝒏𝒕𝒆𝒙𝒕 𝒉𝒔𝟏 𝒉𝒔𝟔 𝒉𝒆𝟏 𝒉𝒆𝟐 𝒉𝒆𝟑 𝒉𝒆𝟕 𝒉𝒆𝒏−𝟏

Graph Module

Linear Layer

Output𝒍𝒐𝒈𝒊𝒕𝒔𝟏 𝒍𝒐𝒈𝒊𝒕𝒔𝟐 𝒍𝒐𝒈𝒊𝒕𝒔𝟔 𝒍𝒐𝒈𝒊𝒕𝒆𝟏 𝒍𝒐𝒈𝒊𝒕𝒆𝟐 𝒍𝒐𝒈𝒊𝒕𝒆𝒏𝒍𝒐𝒈𝒊𝒕𝒆𝟑

Loss𝑳𝒔

sub-graph

𝒆𝟑

𝒆𝒏

Span-level Graph

𝒆𝟐

𝒔𝟏

𝒆𝟏

𝒔𝟐

𝒆𝟓
𝒆𝟑

𝒆𝟏 𝒆𝟒 𝒆𝟓

𝒆𝒏

GCN

Attention Layer

𝒆𝒏−𝟏

Size Embeds

𝒆𝟒

𝒆𝒏−𝟏

𝒆𝟕

𝒆𝟐

𝒆𝟕

𝒆𝟔

𝒆𝟕𝒆𝟔

𝑳𝒆

Retrieval

𝒉𝒔
𝒇𝒊𝒏𝒂𝒍

𝒉𝒆
𝒇𝒊𝒏𝒂𝒍

𝒆𝟑 𝒆𝒏−𝟏𝑮𝟐

𝒉𝒆𝒏−𝟏𝑮𝟏 𝑮𝟐 𝑮𝟔

𝑮𝟏 𝑮𝟐 𝑮𝟔

Figure 3: An overview of our model. The sub-graph takes 2-hop neighbors of raw spans.

spans and entity mentions, which is more compli-
cated. In GSE , nodes include raw spans and entity
mentions from S and each edge connects one raw
span and one entity mention. By observation, the
gram features of raw spans in natural sentences are
different from that of entities in two aspects. (1)
A raw span can be arbitrary long, as it can be a
single token to the whole sentence. A raw span of
the whole sentence unfairly has more gram overlap
with entity mentions than other spans within it. (2)
Raw spans have more irregular patterns than enti-
ties and always link to meaningless entity mentions
as noise.

Thus, constructing GSE as GEE is not suitable.
Here we propose two simple and effective methods
for these problems. For problem (1), we penalize
long raw spans sij for any edge weight w(sij , e)
by the length l(sij) = j − i+ 1 as follows:

w(sij , e) =
1

N · l(sij)

N∑
k=1

αnfn(sij , e) (2)

For problem (2), we exclude those noise span-entity
edges simply by setting the hard threshold τ ∈ R+

and remove edges with weight below it.

Span-level (sub-)graph The span-level graph
G = (V,E) is the union of GEE and GSE ex-
cluding raw spans. We exclude raw spans for the
training efficiency of a homogeneous graph. Thus,
V = VEE

⋃
VSE − R and E = EEE . For mini-

batch training, we dynamically extract span-level

sub-graphs from GEE and GSE . As the inference
goal is to classify raw spans, we only extract the
K-hop sub-graph of raw spans during training.

The extraction process is as follows. (1) For the
raw span node vs, we take its first-order neighbors
V1 = N 1

GSE
(vs) fromGSE . (2) The union of i-hop

(1 ≤ i ≤ K − 1) entity neighbors of N 1
GSE

(vs),
i.e. V2 =

⋃
v∈N 1

GSE
(vs)

⋃
1≤i≤K−1N i

GEE
(v), are

extracted from GEE . (3) We exclude the raw span
node vs and preserve edges between the rest nodes.
Thus, the sub-graph of vs is an induced sub-graph
G[V1

⋃
V2 − vs] from G.

3.2 The Encoder

For the initialization of raw spans and entity men-
tions, we use char embeddings, word embeddings,
and pre-trained LM. Both sentence and entity men-
tions are treated as a sequence of tokens and are
encoded separately. First, the char embeddings are
fed into bidirectional LSTM (Lample et al., 2016)
(Char-BiLSTM) to capture the orthographic and
morphological features of words. Then, the pre-
trained LM, such as BERT (Devlin et al., 2019),
is used for contextualized representation. The rep-
resentations are averaged BPE embeddings in the
last layer. Finally, the char hidden states, contextu-
alized embeddings, and word embeddings are con-
catenated and then fed into another bidirectional
LSTM (Word-Char BiLSTM) for the encoded rep-
resentation of words. For the span-level representa-
tion, we use max-pooling for encoded representa-

895

tion of words within the span.

3.3 Graph Module
To model the span-level graph, we adopt graph
convolutional networks (GCN) (Kipf and Welling,
2017). Let A be the normalized symmetric adja-
cency matrix of G. The number of GCN layers
is also the hop number K of the sub-graph. The
(k+1)-th layer of the feature matrix Hk+1 is com-
puted as:

Hk+1 = ReLU(AHkWk) (3)

where Wk is the learnable matrix, 0 ≤ k ≤ K, H0

is the output from the encoder.
To integrate the representations of neighborhood

nodes for sub-graph embedding, we use the atten-
tion mechanism. Denote hk0 (0 ≤ k ≤ K) the
hidden state of the raw span in the k-th layer of
GCN and hki (i ≥ 1) that of the i-th entity mention
neighbor of the span in the k-order neighbors. The
sub-graph embedding hgraph of the raw span is:

γi =
exp((hKi)TWah

0
0)∑

j≥1 exp((hKj)TWah00)
(4)

hgraph =
∑

i≥1
γih

K
i (5)

where Wa is a learnable matrix.
Besides, context information of entities is im-

portant as entities are interpreted differently under
different contexts. We use the last hidden state
of “[CLS]” token in pre-trained LM as the context
representation hcontext. We use a learnable weight
matrix for size embeddings hsize.

The raw span representations consists of the en-
coder output h00, the raw span sub-graph embed-
ding, context embedding, and size embedding. The
final representation of a raw span hfinal0 or a entity
mention hfinali (i ≥ 1) is as follows:

hfinal
0 = concat(h00, h

graph, hcontext, hsize) (6)

hfinal
i = concat(h0i , h

K
i , h

size) (7)

3.4 Multitask Learning
To utilize the label of entity mentions, we force
GCN to predict graph neighbors of the raw span
simultaneously. We use feed-forward layers to get
logits as follows:

logitss = Linears(h
final
0) (8)

logitsei = Lineare(h
final
i) (9)

Thus, our algorithm contains two losses to min-
imize, the cross entropy loss Ls (Le) of raw span
(entity mention) prediction.

Ls = CE(logitss) (10)

Le =
∑

i
CE(logitsei) (11)

To balance the two losses, we adopt a multi-task
learning framework with a hyperparameter β:

L = Ls + βLe (12)

where L is the total loss. At the inference stage, we
only infer the raw span.

4 Experiments

In this section, we evaluate our method on three
common nested NER datasets, including ACE2004,
ACE2005, and GENIA.

4.1 Dataset
We use three nested English NER datasets:
ACE20041, ACE20052, and GENIA (Kim et al.,
2003). For GENIA, we use GENIAcorpus3.02p3,
and follow the train/validation/test split of previous
works (Finkel and Manning, 2009; Lu and Roth,
2015) i.e.: (1) split first 81%, subsequent 9%, and
last 10% as train, dev and test set, respectively; (2)
collapse all DNA, RNA, and protein subtypes into
DNA, RNA, and protein, keeping cell line and cell
type, and (3) remove other entity types, resulting in
5 entity types. There are statistical results of these
datasets in Table 1.

4.2 Baselines
As we use pre-trained LM, we compare our method
with methods with similar settings. Besides, we
also include the results of models using additional
supervision, which are not directly comparable to
ours. Our baselines are as follows.

Models without pre-trained LM: Hyper-
Graph (Katiyar and Cardie, 2018) proposes
a hypergraph-based model based on LSTMs.
Stack-LSTM (Wang et al., 2018) uses a scalable
transition-based method to model the nested
structure of mentions. Seg-Graph (Wang and
Lu, 2018) proposes a segmental hypergraph
representation to model overlapping entitys. ARN

1https://catalog.ldc.upenn.edu/
LDC2005T09

2https://catalog.ldc.upenn.edu/
LDC2006T06

896

https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06

ACE2004 ACE2005 GENIA

Train Valid Test Train Valid Test Train Valid Test

sentence
total 6,198 742 809 7,285 968 1,058 15,022 1,669 1,855
nested (%) 2,718 (43.9%) 294 (39.6%) 388 (48.0%) 2,797 (38.4%) 352 (36.4%) 339 (32.0%) 3,222 (21.4%) 328 (19.7%) 448 (24.2%)
avg (max) length (words) 21.4 (120) 22.1 (84) 22.0 (91) 18.8 (99) 18.8 (102) 16.9 (76) 26.5 (174) 25.7 (136) 27.1 (123)

entity

total 22,195 2,514 3,034 24,700 3,218 3,029 47,006 4,461 5,596
nested (%) 10,157 (45.8%) 1,092 (43.4%) 1,417 (46.7%) 9,946 (40.3%) 1,191 (37.0%) 1,179 (38.9%) 8,382 (17.8%) 818 (18.3%) 1,212 (21.7%)
avg (max) length (words) 2.5 (57) 2.6 (35) 2.5 (43) 2.3 (49) 2.1 (31) 2.3 (27) 2.0 (20) 2.2 (20) 2.2 (15)
(%) low frequency (≤ 3) - 53.06% 55.08% - 41.64% 50.08% - 51.42% 53.97%

word
total 132,726 16,417 17,822 137,138 18,174 17,909 397,913 42,847 50,182
avg (max) length (chars) 4.4 (67) 4.4 (18) 4.5 (58) 4.2 (58) 4.2 (19) 4.2 (19) 5.2 (99) 5.2 (36) 5.2 (55)

Table 1: Statistical results of nested NER datasets.

(Lin et al., 2019) leverages the head-driven phrase
structures of entity mentions.

Models with pre-trained LM: Seq2seq
(Straková et al., 2019) views the nested NER
as a sequence-sequence problem. Path-BERT
(Shibuya and Hovy, 2020) treats the tag sequence
as the second-best path within the span of their
parent entity. ML (Fisher and Vlachos, 2019)
proposes a merge and label method. Pyramid
(Wang et al., 2020) is a layered model, in which
text region embeddings are recursively inputted
into stacked flat NER layers. SpERT (Eberts and
Ulges, 2020) is an attention model for span-based
joint entity and relation extraction. We implement
this method with BERT. BENSC (Tan et al., 2020)
is a boundary enhanced span classification model.

Models with additional supervision: BERT-
MRC (Li et al., 2020) formulates NER as a ma-
chine reading comprehension task. NER-DP (Yu
et al., 2020) uses ideas from graph-based depen-
dency parsing to model nested structure. DYGIE
(Luan et al., 2019) shares span representations us-
ing dynamically constructed span graphs.

4.3 Training Details

For word embeddings, we use 100-dimensional
GloVe embeddings trained on 6B tokens 3 for
ACE2004/ACE2005, 200-dimensional embeddings
trained on biomedical4 for GENIA. We fix
word embeddings during training. We use 30-
dimensional char embeddings and Char BiLSTM
of 60-dimensional hidden state. The hidden size of
Word-Char BiLSTM is 300-dimensional. For size
embeddings, we use 25-dimensional vectors.

For pretrained LM, we use BERT-base-cased
model (Devlin et al., 2019) 5 for ACE2004 and

3https://nlp.stanford.edu/projects/
4https://github.com/cambridgeltl/

BioNLP-2016
5https://github.com/huggingface/

transformers

ACE2005, BioBERT v1.1 (Lee et al., 2020)6 for
GENIA. We fine-tune BERT with optimizer Adam
(Kingma and Ba, 2015) with learning rate in {1e−
5, 2e− 5, 3e− 5} and weight regularization 1e−
8. For other model parameters, we use learning
rate in {1e − 4, 5e − 4, 1e − 3}. Batch size is in
{2, 4, 8} and dropout in {0.1, 0.2, 0.3}. For stable
convergence, we use linear learning rate scheduler,
with maximal number of epoch 50 and warm-up
ratio 0.01.

For the graph, we set the largest gram size
N = 3 and use BERT-base-cased tokenizer for
BPE encoding. The n-gram weight αk = 0.5k,
where k ∈ {1, 2, 3}. We prune the span-level graph
G with τ = 0.8 and edges with weight below it
are removed. The GCN layer size K = 2 and
hidden size is 400. These hyperparameters are se-
lected by ourselves and more detailed analyses are
in Appendix A. During training, we sample 100
negative spans randomly. The multi-task coeffi-
cient β = 0.1. We use DGL7 to implement GCN.
The inference speed and GPU usage are discussed
in Appendix B.

We pick the model by the performance in the val-
idation set. We use span-level micro-averaged pre-
cision, recall, and F1 on the test set for evaluation.
Results are averaged on 3 runs for reproducibility.

4.4 Main Results

In Table 2, our method has significant improve-
ment compared with nested NER models without
pre-trained LM and with pre-trained LM. Com-
pared with models without pre-trained LM, our
method has at least +6.01, +5.69, +1.50 F1 im-
provement for ACE2004, ACE2005, and GENIA,
which is statistically significant. Compared with
methods using pre-trained LM, our method also
yields at least +0.85, +0.78 F1 improvement for
ACE2004 and ACE2005. Besides, our method has

6https://github.com/naver/
biobert-pretrained

7https://www.dgl.ai

897

https://nlp.stanford.edu/projects/
https://github.com/cambridgeltl/BioNLP-2016
https://github.com/cambridgeltl/BioNLP-2016
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/naver/biobert-pretrained
https://github.com/naver/biobert-pretrained
https://www.dgl.ai

ACE2004 ACE2005 GENIA

P R F1 P R F1 P R F1

Hyper-Graph (Katiyar and Cardie, 2018) 73.60 71.80 72.70 70.60 70.40 70.50 77.70 71.80 74.60
Stack-LSTM (Wang et al., 2018) - - 73.30 - - 73.00 - - 73.90
Seg-Graph (Wang and Lu, 2018) 78.00 72.40 75.10 76.80 72.30 74.50 77.00 73.30 75.10
BENSC (Tan et al., 2020) 78.10 72.80 75.30 77.10 74.20 75.60 78.90 72.70 75.70
Pyramid (Wang et al., 2020) 81.10 79.40 80.30 80.00 78.90 79.40 78.60 77.00 77.80
ARN (Lin et al., 2019) - - - 76.20 73.60 74.90 75.80 73.90 74.80
ML (Fisher and Vlachos, 2019) - - - 75.10 74.10 74.60 - - -
Pyramid-Full (Wang et al., 2020) 81.14 79.42 80.27 80.01 78.85 79.42 78.60 77.02 77.78

with Pre-trained LM
Seq2seq (BERT) (Straková et al., 2019) - - 84.40 - - 84.33 - - 78.31
ML (ELMo) (Fisher and Vlachos, 2019) - - - 79.70 78.00 78.90 - - -
ML (BERT) (Fisher and Vlachos, 2019) - - - 82.70 82.10 82.40 - - -
Path-BERT (Shibuya and Hovy, 2020) 83.73 81.91 82.81 82.98 82.42 82.70 78.07 76.45 77.25
BENSC (BERT-based) (Tan et al., 2020) 85.80 84.80 85.30 83.80 83.90 83.90 79.20 77.40 78.30
Pyramid (BERT-based) (Wang et al., 2020)† 85.41 85.50 85.46 83.39 85.04 84.21 - - -
Pyramid (BioBERT-based) (Wang et al., 2020)† - - - - - - 79.63 78.38 79.00
SpERT (BERT-based) (Eberts and Ulges, 2020)‡ 85.04 84.33 84.68 82.25 85.31 83.75 - - -
SpERT (BioBERT-based) (Eberts and Ulges, 2020)‡ - - - - - - 77.24 78.56 77.89

with Additional Supervision
DYGIE (Luan et al., 2019) - - 84.70 - - 82.90 - - 76.20
BERT-MRC (Li et al., 2020) 85.05 86.32 85.98 87.16 86.59 86.88 85.18 81.12 83.75
NER-DP (Yu et al., 2020) 87.30 86.00 86.70 85.20 85.60 85.40 81.80 79.30 80.50

Our method (BERT-based) 86.70 85.93 86.31 84.37 85.87 85.11 - - -
Our method (BioBERT-based) - - - - - - 77.92 80.74 79.30

Table 2: Comparison of our method with other models on three nested NER datasets. Models with “†” are rerun
with released code by ourselves. Models with “‡” are implemented and rerun by ourselves.

Model P R F1

Char + Word + LM Embeds 81.98 85.61 83.75
+ Span-entity Graph 83.35 85.28 84.30(+0.55)
+ Entity-entity Graph 84.60 84.68 84.64(+0.34)
+ Multitask Training 84.37 85.87 85.11(+0.47)

Table 3: Abalation study on ACE2005 dataset. We add
components to our method step by step.

comparable results with the Pyramid model in GE-
NIA. Although a little worse than BERT-MRC and
NER-DP, our method does not introduce additional
supervision, such as the syntax and dependency
structures, or human prior knowledge.

4.5 Ablation Study

In Table 3, we conduct an ablation study on the
ACE2005 dataset by adding components to our
method step by step. It shows that the span-entity
graph is the most effective component (+0.55 F1
score). As the first-order sub-graph in the span-
level graph, it provides direct guidance for the pre-
diction of the raw span. Besides, multitask training
also improves our method by +0.47 F1 score. As
multitask training utilizes the label of graph neigh-
bors, which may contain the ground truth of the
raw span.

ACE2004 ACE2005 GENIA

Model base. ours. base. ours. base. ours.

Graph usage # ! # ! # !

Valid
Overall 84.37 85.33(+0.96) 82.85 84.46(+1.61) 79.29 82.16(+2.87)
Nested 81.78 82.78(+1.00) 82.70 84.55(+1.85) 66.26 72.13(+5.87)

Test
Overall 84.33 85.93(+1.60) 85.31 85.87(+0.66) 78.56 80.74(+2.18)
Nested 83.91 84.84(+0.93) 83.38 84.65(+2.27) 66.09 70.13(+4.04)

Table 4: Comparison of SpERT and our method on the
recall of nested entities on the validation and test sets.

SpERT. (w/o graph) Ours. (with graph)

len. % P R F1 P R F1

1 56.32 86.81 87.16 86.98 86.66 88.34 87.49(+0.51)
2 20.96 81.38 83.31 82.33 82.90 85.51 84.19(+0.82)
3 8.19 75.56 81.05 78.21 79.09 83.87 81.41(+0.36)
4 4.62 74.00 79.29 76.55 79.72 81.43 80.57(+4.02)
5 2.97 84.38 90.00 87.10 84.78 86.67 85.71(-1.39)
6 1.65 64.29 72.00 67.92 78.43 80.00 79.21(+11.29)
7 1.02 54.29 61.29 57.58 68.97 64.52 66.67(+9.09)
8 0.83 68.00 68.00 68.00 80.00 64.00 71.11(+13.11)
9 0.63 64.71 57.89 61.11 76.47 68.42 72.22(+11.11)
10 0.66 66.67 60.00 63.16 85.71 60.00 70.59(+7.43)

Table 5: Length-wise results on ACE2005 test set to
detect the effect of graph module.

4.6 Recognition of Different Entities

To analyze the benefits of including span-level
graphs for extracting span representations, we take
studies on the performance of nested entities, enti-

898

Figure 4: Case study in ACE2005 validation set. “Graph neighbors” presents the statistics of entity types for
each raw span. The inner circle represents first-order neighbors and the outer circle represents the whole 2-hop
sub-graph.

ACE2004 ACE2005

freq. % SpERT ours. % SpERT ours.

= 0 46.3 77.71 80.06(+2.35) 41.0 78.66 79.47(+0.81)
≤ 1 52.1 78.43 80.96(+2.56) 45.9 79.71 80.43(+0.72)
≤ 2 55.1 78.88 81.21(+2.33) 50.1 80.62 81.28(+0.66)
≤ 3 57.0 79.06 81.20(+2.14) 52.7 81.02 81.58(+0.56)
≤ 4 58.5 79.27 81.35(+2.08) 54.3 81.03 81.69(+0.66)
≤ +∞ 100.00 84.33 85.93(+1.60) 100.00 85.31 85.87(+0.56)

Table 6: Comparison of SpERT and our method on
low-frequency entities on ACE2004 and ACE2005 test
sets.

ties with different lengths, and entities with differ-
ent frequencies in training data, respectively.

Nested entities In Table 4, we compare the re-
call of nested entities of our method and baseline
SpERT on the validation and test sets of nested
NER. Our method improves the recall of nested
entities in both validation and test set by +1.00 ∼
5.87. Generally, the improvement on nested enti-
ties is slightly larger than overall entities, which
proves that our method tackles the nested problem
better than the baseline.

Entities of different length Table 5 makes a de-
tailed comparison with SpERT for entities of length
1 ∼ 10 on ACE2005 test set. Generally, our
method has a higher F1 score. It can be seen that
our method can effectively handle long entities with
length ≥ 6. The largest improvement is +13.11 F1
for entities of length 8. We attribute it to that longer
entities have richer n-gram features. The longer
entities link more useful entity mentions in the
span-level graph. The more informative neighbors
of long entities significantly boost the performance
by utilizing the label information of neighbors.

Low-frequency entities Table 6 compares with
SpERT on the recall of entities with frequency ≤ 4
in the training set in ACE2004 and ACE2005 test
sets. Our method yields +2.08 ∼ 2.56 and +0.56
∼ 0.83 improvements in ACE2004 and ACE2005
respectively. For entities not in the training set,
our method has +2.35 and +0.81 improvement in
ACE2004 and ACE2005. Our span-level graphs
provide information beyond the current entity and
the sentence as lexically correlated similar entities.
The information beyond the current sentence help
improve the performance of “unseen” entities.

4.7 Case Study

Figure 4 is a case study in ACE2005 validation set
to compare our method with SpERT. The original
sentence has three entities to recognize. One entity
is “The Bradleys”, which is the Bradley fighting
vehicle (VEH). However, the baseline SpERT clas-
sifies “The Bradleys” as a person (PER) with the
misleading context. Our sub-graph links 2 VEH
entities and makes the prediction correct. Besides,
our method predicts “coaxial machine guns” cor-
rectly as a whole entity instead of “machine guns”
partially. This attributes to the external guidance of
23 weapon (WEA) entity nodes in the span-level
graph.

5 Conclusions

In this work, we enhance the span-based method
for nested NER by including retrieval-based span-
level graphs. Our method builds the entity-entity
graph and the span-entity graph globally based on
n-gram feature similarity. We use GCN to encode
such structured correlations to obtain better span

899

representation. We include multi-task learning to
encode the label information of similar entities in
the graph. The experimental results on three com-
monly used nested NER datasets, i.e. ACE2004,
ACE2005 and GENIA, show that our method can
improve the F1 score generally and improve recall
for entities with low frequency in the training set.

6 Acknowledgements

This work is partly supported by Shanghai Mu-
nicipal Science and Technology Major Project
(2021SHZDZX0102) and National Natural Science
Foundation of China (62177033).

References
Kate Byrne. 2007. Nested named entity recognition in

historical archive text. In ICSC 2007, pages 589–
596.

Alberto Cetoli, Stefano Bragaglia, Andrew O’Harney,
and Marc Sloan. 2017. Graph convolutional net-
works for named entity recognition. In Proceed-
ings of the 16th International Workshop on Tree-
banks and Linguistic Theories, pages 37–45, Prague,
Czech Republic.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res., 12:2493–2537.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ruixue Ding, Pengjun Xie, Xiaoyan Zhang, Wei Lu,
Linlin Li, and Luo Si. 2019. A neural multi-digraph
model for Chinese NER with gazetteers. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1462–
1467, Florence, Italy. Association for Computational
Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Markus Eberts and Adrian Ulges. 2020. Span-based
joint entity and relation extraction with transformer
pre-training. In ECAI 2020, volume 325, pages
2006–2013.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Nested named entity recognition. In Proceedings of
the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pages 141–150, Singa-
pore. Association for Computational Linguistics.

Joseph Fisher and Andreas Vlachos. 2019. Merge and
label: A novel neural network architecture for nested
NER. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 5840–5850, Florence, Italy. Association
for Computational Linguistics.

Jinlan Fu, Xuanjing Huang, and Pengfei Liu. 2021.
SpanNER: Named entity re-/recognition as span pre-
diction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 7183–7195, Online. Association for Computa-
tional Linguistics.

Tsu-Jui Fu, Peng-Hsuan Li, and Wei-Yun Ma. 2019.
GraphRel: Modeling text as relational graphs for
joint entity and relation extraction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1409–1418, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Tao Gui, Yicheng Zou, Qi Zhang, Minlong Peng, Jin-
lan Fu, Zhongyu Wei, and Xuanjing Huang. 2019.
A lexicon-based graph neural network for Chinese
NER. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1040–1050, Hong Kong, China. Association for
Computational Linguistics.

Meizhi Ju, Makoto Miwa, and Sophia Ananiadou.
2018. A neural layered model for nested named en-
tity recognition. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1446–1459, New Orleans, Louisiana. Association
for Computational Linguistics.

Arzoo Katiyar and Claire Cardie. 2018. Nested named
entity recognition revisited. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 861–871, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi Tsu-
jii. 2003. Genia corpus—a semantically annotated
corpus for bio-textmining. Bioinformatics, 19:i180–
i182.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,

900

https://aclanthology.org/W17-7607
https://aclanthology.org/W17-7607
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P19-1141
https://doi.org/10.18653/v1/P19-1141
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://aclanthology.org/D09-1015
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/2021.acl-long.558
https://doi.org/10.18653/v1/2021.acl-long.558
https://doi.org/10.18653/v1/P19-1136
https://doi.org/10.18653/v1/P19-1136
https://doi.org/10.18653/v1/D19-1096
https://doi.org/10.18653/v1/D19-1096
https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.18653/v1/N18-1079
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2020. Biobert: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinform., 36(4):1234–
1240.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020. A unified MRC
framework for named entity recognition. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5849–
5859, Online. Association for Computational Lin-
guistics.

Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun.
2019. Sequence-to-nuggets: Nested entity mention
detection via anchor-region networks. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 5182–5192,
Florence, Italy. Association for Computational Lin-
guistics.

Wei Lu and Dan Roth. 2015. Joint mention extrac-
tion and classification with mention hypergraphs.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
857–867, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A gen-
eral framework for information extraction using dy-
namic span graphs. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3036–3046, Minneapolis, Minnesota.
Association for Computational Linguistics.

Ying Luo and Hai Zhao. 2020. Bipartite flat-graph net-
work for nested named entity recognition. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6408–
6418, Online. Association for Computational Lin-
guistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Aldrian Obaja Muis and Wei Lu. 2017. Labeling gaps
between words: Recognizing overlapping mentions
with mention separators. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2608–2618, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Hiroki Ouchi, Jun Suzuki, Sosuke Kobayashi, Sho
Yokoi, Tatsuki Kuribayashi, Ryuto Konno, and Ken-
taro Inui. 2020. Instance-based learning of span
representations: A case study through named en-
tity recognition. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6452–6459, Online. Association for
Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang,
Wen Wang, and Weiming Lu. 2021. Locate and
label: A two-stage identifier for nested named en-
tity recognition. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2782–2794, Online. Association for
Computational Linguistics.

Takashi Shibuya and Eduard Hovy. 2020. Nested
named entity recognition via second-best sequence
learning and decoding. Transactions of the Associa-
tion for Computational Linguistics, 8:605–620.

Mohammad Golam Sohrab and Makoto Miwa. 2018.
Deep exhaustive model for nested named entity
recognition. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2843–2849, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Jana Straková, Milan Straka, and Jan Hajic. 2019. Neu-
ral architectures for nested NER through lineariza-
tion. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 5326–5331, Florence, Italy. Association for
Computational Linguistics.

Chuanqi Tan, Wei Qiu, Mosha Chen, Rui Wang, and
Fei Huang. 2020. Boundary enhanced neural span
classification for nested named entity recognition.
In The Thirty-Fourth AAAI Conference on Artificial

901

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/D15-1102
https://doi.org/10.18653/v1/D15-1102
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/2020.acl-main.571
https://doi.org/10.18653/v1/2020.acl-main.571
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/D17-1276
https://doi.org/10.18653/v1/D17-1276
https://doi.org/10.18653/v1/D17-1276
https://doi.org/10.18653/v1/2020.acl-main.575
https://doi.org/10.18653/v1/2020.acl-main.575
https://doi.org/10.18653/v1/2020.acl-main.575
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.18653/v1/D18-1309
https://doi.org/10.18653/v1/D18-1309
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://aaai.org/ojs/index.php/AAAI/article/view/6434
https://aaai.org/ojs/index.php/AAAI/article/view/6434

Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 9016–9023. AAAI Press.

Zeqi Tan, Yongliang Shen, Shuai Zhang, Weiming Lu,
and Yueting Zhuang. 2021. A sequence-to-set net-
work for nested named entity recognition. In IJCAI
2021, pages 3936–3942.

Bailin Wang and Wei Lu. 2018. Neural segmental hy-
pergraphs for overlapping mention recognition. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
204–214, Brussels, Belgium. Association for Com-
putational Linguistics.

Bailin Wang, Wei Lu, Yu Wang, and Hongxia Jin. 2018.
A neural transition-based model for nested mention
recognition. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1011–1017, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Jue Wang, Lidan Shou, Ke Chen, and Gang Chen. 2020.
Pyramid: A layered model for nested named en-
tity recognition. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5918–5928, Online. Association for
Computational Linguistics.

Yiran Wang, Hiroyuki Shindo, Yuji Matsumoto, and
Taro Watanabe. 2021. Nested named entity recog-
nition via explicitly excluding the influence of the
best path. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3547–3557, Online. Association for Computa-
tional Linguistics.

Yongxiu Xu, Heyan Huang, Chong Feng, and Yue Hu.
2021. A supervised multi-head self-attention net-
work for nested named entity recognition. In AAAI
2021, pages 14185–14193.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.

Yue Zhang and Jie Yang. 2018a. Chinese NER us-
ing lattice LSTM. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1554–
1564, Melbourne, Australia. Association for Compu-
tational Linguistics.

Yue Zhang and Jie Yang. 2018b. Chinese NER us-
ing lattice LSTM. In Proceedings of the 56th An-
nual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1554–
1564, Melbourne, Australia. Association for Compu-
tational Linguistics.

Changmeng Zheng, Yi Cai, Jingyun Xu, Ho-fung Le-
ung, and Guandong Xu. 2019. A boundary-aware
neural model for nested named entity recognition. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 357–
366, Hong Kong, China. Association for Computa-
tional Linguistics.

A Hyper-parameters Analysis

Loss coefficient Multi-task loss coefficient β
is important for the balance of raw span clas-
sification and entity label usage. We set β ∈
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5} and test the sensitiv-
ity in Fig. 5. The results show that both large
and small values of β degenerate the performance.
The best results are attained when β is 0.1 ∼ 0.3
for ACE2004 and ACE2005, and 0.1 for GENIA.
Small β won’t train entity representation suffi-
ciently, which the raw span takes attention from.
While β disables models focusing on span classifi-
cation.

Figure 5: The effect of loss balance coefficient β. We
set β ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} for each dataset.

Graph hyper-parameters We explore two
graph hyper-parameters edge threshold τ and GCN
layers K in ACE2004/ACE2005. In Fig. 6(a), we
set τ ∈ {0.0, , 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4} and
τ around 1.0 achieves the best performance. Large
edge threshold influences the performance slightly
while small τ degenerates the performance a lot by
introducing much noise into the graph.

In Fig. 6(b), we set GCN layersK ∈ {1, 2, 3, 4}
and find that 2-layer GCN with 2-hop span-level
graph performs better. When K = 1, our method
degrades to using only a span-entity graph and the

902

https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2020.acl-main.577
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/D19-1034
https://doi.org/10.18653/v1/D19-1034

performance decreases a little. Stacking multiple
layers of GCNs leads to high complexity in back-
propagation, which is not conducive to the training.

(a) Edge Threshold

(b) GCN Layers

Figure 6: The effect of graph hyper-parameters in
ACE2004 and ACE2005 datasets. We set edge thresh-
old τ ∈ {0.0, , 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4} and
GCN layers M ∈ {1, 2, 3, 4}.

B Time and Space Analysis

Inference speed In Fig. 7(a), we compare our
method with SpERT at the inference speed, where
metrics is the number of words decoded per sec-
ond. We evaluate at four nested NER test set on
GTX 1080 Ti. The batch size is fixed to 4. Our
inference speed is around half of SpERT. Although
the introduction of the graph module increases the
inference time, the cost is acceptable considering
the significant recognition improvement.

GPU usage In Fig. 7(b), we compare the GPU
memory usage (/MB) of our method and baseline
SpERT on ACE2005 test set with batch size in
{2, 4, 8, 16}. It shows that the graph module only
increases the GPU usage for a small part, around
100 ∼ 500 MB. With the increase of batch size,
the GPU usage increment also increases.

(a) Inference Speed

(b) GPU Usage

Figure 7: The inference speed of our method and base-
line on the test sets. We evaluate word per second (w/s).
The GPU memory usage (/MB) of our method and base-
line with different batch size on ACE2005 training set.
We use GeForce GTX 1080 Ti as the device.

903

