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Abstract

In text classification tasks, useful information
is encoded in the label names. Label semantic
aware systems have leveraged this information
for improved text classification performance
during fine-tuning and prediction. However,
use of label-semantics during pre-training has
not been extensively explored. We therefore
propose Label Semantic Aware Pre-training
(LSAP) to improve the generalization and data
efficiency of text classification systems. LSAP
incorporates label semantics into pre-trained
generative models (T5 in our case) by per-
forming secondary pre-training on labeled sen-
tences from a variety of domains. As domain-
general pre-training requires large amounts
of data, we develop a filtering and labeling
pipeline to automatically create sentence-label
pairs from unlabeled text. We perform exper-
iments on intent (ATIS, Snips, TOPv2) and
topic classification (AG News, Yahoo! An-
swers). LSAP obtains significant accuracy
improvements over state-of-the-art models for
few-shot text classification while maintaining
performance comparable to state of the art in
high-resource settings.

1 Introduction

Large pre-trained language models have enabled
better performance on many NLP tasks—especially
in few-shot settings (Brown et al., 2020; Schick and
Schütze, 2021a; Wu and Dredze, 2020). More infor-
mative representations of textual inputs often leads
to much higher downstream performance on NLP
applications, which explains the rapid and general
adoption of models such as (Ro)BERT(a) (Devlin
et al., 2019; Liu et al., 2019), GPT-2 (Radford et al.,
2019), and T5 (Raffel et al., 2020). However, while
these models are often used to effectively encode
inputs, fewer works have attempted to give models
access to informative representations of labels as
well.

∗Work done as an intern at Amazon Web Services.

Figure 1: Overview of our approach, label semantic
aware pre-training (LSAP). We collect utterance-intent
pairs and create new pairs from unlabeled Reddit and
Twitter data, convert the intents to natural language,
concatenate the utterance and intent, noise the con-
catenated sequence, and train a sequence-to-sequence
model to denoise the sequence.

Most discriminative approaches to text classi-
fication only give the model access to label in-
dices. A recent stream of work has obtained signifi-
cant improvements in structured prediction tasks by
using sequence-to-sequence (seq2seq) models to
generate labels (Athiwaratkun et al., 2020; Paolini
et al., 2021). Yet these generative approaches make
use of label semantics—the meaning of class la-
bel names—only during fine-tuning and predic-
tion. Thus, we propose Label Semantic Aware Pre-
training (LSAP) to incorporate label semantics as
well as input-label associations into the pre-training
step (Figure 1). Our experiments show that LSAP
yields higher performance with fewer fine-tuning
examples in a variety of domains.

Our contributions include the following:

1. A method to incorporate label semantics into
generative models during pre-training.

2. A method for creating utterance-intent pairs
for label semantic aware pre-training from
unlabeled noisy data.
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3. State-of-the-art few-shot performance on in-
tent and topic classification datasets.

Our code is publicly available.1

2 Related Work

Label semantics has been leveraged in many set-
tings and tasks to improve performance and robust-
ness, even before dense embedding representations
became standard: Chang et al. (2008) achieve over
80% accuracy on binary text classification tasks
without any labeled training examples by giving
naı̈ve Bayes classifiers rich semantic representa-
tions (Gabrilovich and Markovitch, 2007) of labels.
Song and Roth (2014) use a similar approach for
hierarchical and multinomial classification, find-
ing that dataless procedures approached the per-
formance of (and sometimes outperformed) super-
vised approaches.

More recently, label semantics based on dense
embedding representations have become popular—
especially with the rise of contextualized word em-
beddings (Peters et al., 2018). One stream of work
integrates label representations using label vectors
and label attention: label-wise attention networks
(LWAN; Mullenbach et al., 2018) are designed for
datasets with very large structured label spaces, and
where multiple labels can apply to a potentially
very long document. Mullenbach et al. (2018) gen-
erate label feature vectors and use an LWAN based
on convolutional neural networks (CNNs); Rios
and Kavuluru (2018) extend the attention mecha-
nism for zero-shot settings. Chalkidis et al. (2020)
use BERT to embed the labels for an LWAN.2 In
contrast, our label space is flatter and much smaller,
and the input texts are much shorter on average.

Another label-semantic-aware approach for mas-
sively multi-label text classification is CLESS
(Rethmeier and Augenstein, 2022). CLESS per-
forms contrastive pre-training from scratch on a
question-answering dataset with a large and sparse
label space. Using contrasts between positive and
negative answer embeddings, they obtain perfor-
mance comparable to or better than RoBERTa us-
ing only in-domain data. However, CLESS pre-
trains and classifies on the same data, and is meant

1https://github.com/amazon-research/
label-aware-pretrain

2Note that BERT-Base often performs similarly to or bet-
ter than BERT-LWAN, and XLNet performs significantly bet-
ter than BERT-Base in text classification settings that more
closely resemble our setting (Yang et al., 2019). We therefore
opt to compare to XLNet.

for classification in one domain with a very large la-
bel space; our setting contains a larger mismatch be-
tween pre-training (where we have domain-general
data and a large label space) and fine-tuning (where
we have domain-specific data and a small label
space). We want our approach to be more domain-
general and to leverage the simplicity and effective-
ness of token and span reconstruction objectives—
for example, masked language modeling (Devlin
et al., 2019) and span denoising (Raffel et al., 2020).
Thus, we opt to perform secondary pre-training on
data from a variety of domains using an existing
model.

Other work integrates label embeddings into
short-text intent and topic classification systems,
more similarly to our task. Gaonkar et al. (2020)
use label embeddings from BERT and a label at-
tention mechanism to improve emotion classifica-
tion accuracy. Generative approaches like those of
Rongali et al. (2020); Athiwaratkun et al. (2020);
Paolini et al. (2021) implicitly make use of label
semantics for text and token classification tasks by
generating the labels at prediction time. Rastogi
et al. (2019) use embeddings of human-defined
schema which guide a dialogue state tracking sys-
tem.

Few-shot text classification entails performing
classification after training or tuning a model on
only a few examples from the training split of an
evaluation set. Recent approaches to this include
(Ro)BERT(a)-based (Chen et al., 2020) and espe-
cially XLNet-based (Yang et al., 2019) classifiers,
prototypical networks (Snell et al., 2017), dynamic
memory induction networks (Geng et al., 2020),
and generative classification (discussion follows).

Text classification contains more specific sub-
tasks. Here, we evaluate on topic classification (TC;
labeling text with its general domain, e.g. “world
news”) and intent classification (IC; labeling in-
tentful text with what it is trying to accomplish,
e.g. “book flight”). The scarcity of IC data in many
domains prevents the use of many neural text clas-
sification methods (Krone et al., 2020). In IC, the
input is a conversational utterance and the output
is a label describing what the user intends to do;
for example, given a set of intents {BookHotel,
BookFlight, CheckAccount} and an input utter-
ance “I would like a flight to NYC next month”, the
model should classify the utterance as BookFlight.
Recent approaches to few-shot IC include dual en-
coders (Cer et al., 2018; Henderson et al., 2020;
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Casanueva et al., 2020), combining prototypical
networks with meta-learning (Krone et al., 2020),
a nearest-neighbor discriminative method (Zhang
et al., 2020a), and span-level contextualized em-
bedding retrieval (Yu et al., 2021).

Generative text classification has become
more feasible with the advent of large pre-trained
language models (Radford et al., 2019; Brown et al.,
2020). Here, one tunes a model to generate a natu-
ral language label given an input sequence, which
reduces the train-test gap and does not require ar-
chitectural changes.

Pattern-exploiting training (PET; Schick and
Schütze, 2021a,b) entails formatting train and test
examples as cloze-style prompts, where the label
is generally one word. Here, a language model can
see the inputs and the embeddings of the output
classes during tuning and prediction, though un-
like our approach, there is no domain-general train-
ing step. Prompt tuning (Lester et al., 2021; Gao
et al., 2021) improves PET by automatically opti-
mizing the prompt design. Our approach is even
more widely applicable in that we give the model
concatenated utterances and labels and allow it to
transduce to variable-length label sequences, rather
than reformatting the evaluation data into a cloze
format where the label must be one word/token.

Sequence-to-sequence (seq2seq) approaches
based on pointer/copy mechanisms (Rongali et al.,
2020) or T5 (Raffel et al., 2020) tend to be effective
and more data-efficient for text and token classifica-
tion in semantic parsing tasks, including slot label-
ing (Athiwaratkun et al., 2020) and entity-relation
extraction (Paolini et al., 2021). In this method, one
trains or fine-tunes a seq2seq model to transduce
from an unlabeled text sequence to a sequence with
labeled spans (or to just the label). Our approach is
based on T5, but unlike prior work, we perform a
label semantic aware secondary pre-training step
on a variety of datasets before fine-tuning.

3 Approach

Our approach, LSAP, performs a secondary pre-
training step with T5 on a large scale collection
of (pseudo-)labeled examples; see Figure 1 for an
overview. In addition to training on existing labeled
datasets (§3.1), we (1) filter unlabeled data using
a dialogue act classifier (§3.1.1); (2) pseudo-label
the utterances that pass the filter using an intent
generator (§3.1.1); and (3) perform secondary pre-
training on the labeled and pseudo-labeled data

using T5 (§3.2). §3.1 details how we collect, select,
and label pre-training data. §3.2 describes the pre-
training formats we test in our experiments.

3.1 Data
Our pre-training data (Table 1) consists of utter-
ances with intent labels. We use intentful utter-
ances for pre-training because intent labels are of-
ten more specific, informative, and varied than sen-
timent or topic labels. For example, consider the
intents BookFlight and ViewAirfare versus the
topic AirTravel. Our pre-training corpus com-
bines gold (human-labeled), silver (heuristically
labeled), and bronze (pseudo-labeled) data.

We first collect gold datasets: here, we use a
set of non-public benchmark datasets as well as
PolyAI Banking (Coope et al., 2020), which yields
approximately 130K training examples containing
over 1,200 unique intents.3

To supplement this data, we add the silver Wiki-
How intents (Zhang et al., 2020b) dataset, which is
heuristically labeled. Each WikiHow example con-
sists of an utterance, the longest step in a WikiHow
article, and an intent label (the article title with
“How To” removed). Training on this dataset has
been shown to improve few-shot IC performance
in a variety of domains (Zhang et al., 2020b).

3.1.1 Pseudo-labeling Noisy Data
Gold and silver conversational datasets are scarce
and tend to focus on one or a few narrow domains.
To obtain more data from a larger variety of do-
mains, we propose a filtering and labeling pipeline
for converting unlabeled conversational data into
pseudo-labeled “bronze” pre-training data. See Fig-
ure 2 for an overview.

We start by collecting conversational utterances.
We first use the Customer Support on Twitter (CST-
witter) dataset;4 this consists of over 2.81M tweets
to and from company customer support agents. We
also use the Reddit PushShift dataset;5 this dataset
is large, so we only download most recent comment
dumps by date until reaching 100M comments.

Dialogue act classifier. In a conversational
dataset, many utterances will not be intentful, and
thus will not lend themselves to informative la-
bels. For example, the statement “Hiking is an

3We ensure that there is no overlap between the gold data
and our evaluation sets.

4https://www.kaggle.com/thoughtvector/
customer-support-on-twitter

5https://files.pushshift.io/reddit/comments/
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Dataset Quality Description Training Examples Intents

Internal benchmark data Gold Benchmark datasets. 15+ domains from
English locales.

119,920 1,172

PolyAI Banking Gold Online banking queries. 10,016 77

WikiHow Intent Classification Silver Automatically labeled intent classifica-
tion dataset. Intent is article title with
”How to” removed, and utterance is the
longest step in the article.

110,573 110,573

Pre-filter Post-filter

Customer Support on Twitter Bronze Conversations (tweets) between con-
sumers and customer support agents on
Twitter.

2,811,774 446,309 122,909

Reddit PushShift Bronze Comments scraped from Reddit. 100,000,000 680,000 220,786

Table 1: Pre-training datasets. “Quality” refers to the source of the labels (human-labeled is gold, deterministically
labeled is silver, probabilistically labeled is bronze). “Pre-filter” and “Post-filter” refer to the number of training
examples before and after using the dialogue act classifier described in §3.1.1.

Figure 2: Our pipeline for creating utterance-intent
pairs from unlabeled conversational data. We automati-
cally filter data for intentful utterances using a dialogue
act classifier, and then run filtered utterances through
a T5-based intent generator. Each filtered utterance
and its respective intent is concatenated to create a pre-
training example.

outdoor activity” does not express a clear goal out-
of-context (i.e., it is non-intentful), whereas “Buy
a plane ticket to NYC for next month” is a com-
mand with a clear goal. Applying an intent label to
a non-intentful utterance may lead to supervision
that is harmful to downstream performance. To
filter for intentful utterances, we tune a RoBERTa-
based binary classifier (intentful vs. non-intentful)
using Multi-Domain Goal-Oriented Dialogue (Mul-
tiDoGO; Peskov et al., 2019) and Schema-guided
Dialogue (SGD; Rastogi et al., 2019; Kale and

Rastogi, 2020). For MultiDoGO, we treat greet-
ings/goodbyes, thank yous, and other generic in-
tents as non-intentful/negative examples; we treat
all other intents that are not out-of-domain as intent-
ful/positive examples. For SGD, we treat any utter-
ance tagged with INFORM intents as non-intentful;
utterances with intents tagged as REQUEST are
treated as intentful. When evaluating on a held-out
set of MultiDoGO and SGD, the classifier achieves
98% precision.

To evaluate the precision of the classifier on our
newly filtered data, we randomly sample 150 utter-
ances (per dataset) tagged as intentful by the clas-
sifier and calculate the proportion that are actually
intentful, as judged by human evaluation. For CST-
witter, we obtain 91% precision; this high precision
may be due to the dataset being composed primar-
ily of intentful customer-service-focused queries.
For Reddit, we initially obtained 54% precision.
We qualitatively find that the probability assigned
by the classifier to the positive label correlates well
with intentfulness, so for Reddit, we exclude all ex-
amples to which our classifier assigned a positive-
label probability lower than the median for all ut-
terances tagged as positive examples. After prob-
ability thresholding, we obtain 76% precision on
Reddit.

Intent generator. To label the intentful utter-
ances, we train a T5-based generative intent la-
beler. We fine-tune T5 on the gold and silver data
to transduce from utterances to intents (e.g., “in-
tent classification: Find me a hotel in NYC” →
“Book hotel”), and then apply this tuned model to
the filtered utterances. We find that this model gen-
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Figure 3: Pre-training formats that we test in our exper-
iments. We find that label denoising is best.

erates intents not seen in the training set for 37%
of the utterances. These novel intents often but do
not always demonstrate lexical overlap with the
utterance (e.g., “i’m wondering if there’s fireworks
for sale there?” → “Fireworks for sale”) or add
specific descriptors to intents from the training set
(e.g., “Find a job” appears in the training set, but
our model generates “Find a job in the UK” which
does not).

3.2 Pre-training Formats

We experiment with different pre-training formats,
all but one of which are based on T5’s span denois-
ing objective. See Figure 3 for an overview of our
formats and an example of each.

First, we try random span denoising. In this
approach, we concatenate each intent label (in nat-
ural language format) to its associated utterance.
Then, we randomly noise 15% of the tokens6 in
the utterance-intent input sequence, reconstructing
the contiguous noised spans in the output sequence.
This is the same objective that T5 uses.7

Our second approach is intent classification (IC)
pre-training, where we supervise T5 with utter-
ances and intents in the same format used for down-
stream supervised fine-tuning. Here, the input se-
quence is “intent classification: ” followed by the
utterance. The output sequence is the intent.

Finally, we implement label denoising, where
we train on utterances and their respective intents as

615% is the proportion of tokens that are noised in the
original pre-training setup (Raffel et al., 2020).

7Unlike T5, we do not pack multiple sequences into single
training examples. When we pack multiple utterance-intent
pairs into training examples of length ≈ 512, we find that
performance drops sharply compared to training on individual
utterance-intent pairs.

before; however, instead of noising random spans,
we deterministically noise the entire label sequence
in the input sequence and reconstruct it in the out-
put sequence. This is a way of framing the intent
classification task as an unsupervised denoising
task. This format is formally equivalent to IC pre-
training in that we must transduce from utterances
to intents, though we empirically show that the un-
supervised denoising format matters a great deal
for downstream IC performance.

3.3 Evaluation Label Overlap is Rare

We search for non-case-sensitive intent matches
with Snips and ATIS in our pre-training dataset,
finding that exact intent matches (or intents with
Snips/ATIS intents as substrings) are very rare in
our data: 682 examples (0.005%) featured exact
or substring overlap. We also search for the pres-
ence of any lexical overlap between the intents
in ATIS/Snips and the intents in our pre-training
examples (i.e., if any word in an ATIS or Snips
intent appears in a pre-training example’s intent,
we count it): less than 8,000 examples (0.6%) in
our pre-training dataset featured lexical overlap.
Utterances tagged with exact intent matches were
often not similar to the kinds of utterances seen in
the evaluation sets; for example, PlayMusic is a
label in Snips that typically refers to playing spe-
cific songs or artists, while the same label in our
pre-training set often referred to requests to buy or
play an instrument.

To check whether there was semantic overlap
more broadly between the utterances in our pre-
training set and those in Snips/ATIS, we obtain
sentence embeddings for 5 randomly sampled utter-
ances from each intent in Snips and ATIS, and for
each utterance in our pre-training dataset. Sentence
embeddings are obtained using a sentence-BERT
model (Reimers and Gurevych, 2019); we use
all-MiniLM-L6-v2, as it is both fast and performs
best on semantic similarity tasks. We then calcu-
late pairwise semantic similarity between the utter-
ances in our pre-training set and the Snips/ATIS
utterances by calculating the cosine similarity be-
tween sentence embedding pairs. When observing
the most similar utterances, we do not often see
much semantic overlap. For example, “Play some
Mf Doom from the sixties on pandora” (in Snips)
has the greatest sentence embeddings similarity to
“I love doom and won’t let some launcher protest
stop me from playing it” (in our dataset); there is
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lexical overlap in the utterance, but the sentence in
our dataset refers to playing a video game rather
than a song. However, there were rare instances
where semantic overlap was significant: for exam-
ple, “Add this tune to the Rock Save the Queen
playlist” (in Snips) was similar to “Please add the
Fresh Prince of Bel-Air song to this” in our dataset.

4 Experimental Setup

We aim to understand whether LSAP can improve
text classification performance over a variety of
state-of-the-art (SOTA) baselines.

Dataset Train Test Classes Balanced?

Snips 13,784 700 7 X
ATIS 4,978 700 20
TOPv2 (reminder) 494 338 9
TOPv2 (weather) 177 148 4

Yahoo! Answers 1.4M 60,000 10 X
AG News 120,000 7,600 4 X

Table 2: Evaluation datasets for intent classification
(top) and topic classification (bottom). For TOPv2, we
use the two provided low-resource domains as separate
evaluation sets; we use the 25 Samples per Intent and
Slot (SPIS) splits from Chen et al. (2020) as the maxi-
mum split size.

We evaluate LSAP on two text classification
tasks: intent classification (IC) and topic classi-
fication (TC). IC is the most similar task to our
pre-training objective. Our IC evaluation datasets
include Snips (Coucke et al., 2018), ATIS (Price,
1990), and the low-resource reminder and weather
domains provided in TOPv2 (Chen et al., 2020).
Snips’ intents are each from different domains.
ATIS focuses on the flight domain; some intents
appear only once or not at all in the training set, and
some utterances are tagged with multiple intents
(we count these as separate intents). For multi-class
examples, we separate intents with the character “#”
(e.g., “book flight # airfare”). TOPv2 (reminder)
focuses on the creation and modification of per-
sonal reminders, while TOPv2 (weather) focuses
on queries regarding the weather and time of sun-
rise/sunset.

For TC, we evaluate on Yahoo! Answers (YA)8

and AG News.9 YA consists of conversational user
questions labeled with the general category of the

8https://www.kaggle.com/soumikrakshit/
yahoo-answers-dataset

9http://groups.di.unipi.it/∼gulli/AG corpus
of news articles.html

question (e.g., “Health”, “Sports”). AG News con-
sists of formal-register news articles labeled with
their category (e.g., “Business”, “World”).

4.1 Fine-tuning

When fine-tuning our T5-based models, the input
sequence consists of an “intent classification:” pre-
fix followed by the utterance. The output sequence
is the intent in a natural language format. For ex-
ample: “intent classification: Find me a flight from
NYC to Baltimore.” → “Book flight”.10

We create few-shot splits of size k for each eval-
uation set, where we sample≤ k examples for each
class i from the set of labeled training examples T .
More specifically, ∀k ∈ {1, 2, 4, 8, 16, 32},∀i ∈ T ,
if |Ti| ≥ k, we randomly sample k training exam-
ples from Ti without replacement; if |Ti| < k, we
simply use Ti. We ensure that smaller splits are
subsets of larger splits such that we may perform
more principled comparisons across split sizes. In
low-resource settings, the random seed can have a
large impact on performance. We therefore average
all accuracies over 5 random fine-tuning seeds.

See Appendix G for hyperparameters.

4.2 Baselines

XLNet (Yang et al., 2019) is an autoregressive
Transformer-based (Vaswani et al., 2017) language
model which sees various word order permutations
of the inputs during pre-training. We append a lin-
ear layer to the mean-pooled output of XLNet to
obtain an XLNet-based classifier. This model has
achieved SOTA performance on many text classifi-
cation datasets, including AG News.

SEQ2SEQ-PTR (Rongali et al., 2020) is based
on sequence-to-sequence (Sutskever et al., 2014)
and pointer generator networks (Vinyals et al.,
2015; See et al., 2017); it achieves SOTA IC/SL
performance on Snips, ATIS, and TOPv2. It
transduces from an unlabeled utterance to a se-
quence with labeled spans (including the intent
label, where the span is the entire sentence).

LM-BFF (Gao et al., 2021) is a prompt-tuning-
based model for few-shot text classification. It uses
automatically generated and optimized prompts
(from T5) to perform generative classification (with
RoBERTa) by predicting a masked token after the

10We also try label denoising fine-tuning to reduce the mis-
match between pre-training and fine-tuning, but we find that
this is not as effective as the traditional T5 fine-tuning setup.
See Appendix F for scores.
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Snips ATIS TOPv2 (reminder) TOPv2 (weather)

Format 1-shot 4-shot Full 1-shot 4-shot Full 1-shot 4-shot Full 1-shot 4-shot Full

Span denoising 80.9 92.0 99.1 67.0 85.4 97.8 60.9 80.0 92.0 61.5 77.1 86.4
IC pre-training 67.1 90.9 99.0 67.0 86.9 97.4 68.2 77.4 87.1 70.5 80.1 87.1
Label denoising 88.7 93.5 99.0 68.7 87.8 97.6 69.0 80.6 91.4 72.7 81.4 89.1

Table 3: 1-shot, 4-shot, and full-resource accuracies across LSAP pre-training formats on each IC evaluation set.
Label denoising is consistently best in few-shot settings while obtaining similar performance to other formats in
full-resource settings. Subsequent tables refer to the label denoising variant as LSAP for brevity. Results for all
models and split sizes in Appendix C.

input. It achieves SOTA scores on few-shot bi-
nary/trinary sentiment classification and NLI tasks.
We employ the best-performing prompt-tuning with
demonstrations approach, adapting it for IC by re-
ducing the intent labels to single words.

T5 is the closest baseline to LSAP: our model
differs only in the addition of the label aware pre-
training step. We thus compare LSAP against T5 to
understand the contribution of our label aware pre-
training approach to downstream performance. T5
is comparable to TANL (Paolini et al., 2021), which
is based on vanilla T5; TANL’s SOTA performance
on a variety of structured prediction tasks indicates
that T5 as-is can be a strong baseline.

To test whether performance improvements with
LSAP can be attributed to label semantics or do-
main adaptation on the utterances, we also present
results for T5 adapted (with random span denois-
ing) on only on the utterances and not the intents in
our pre-training data. This is equivalent to LSAP
with random span denoising, but without the intent
labels. We refer to this as “T5 (adapted)”.

5 Results

Which pre-training format is best? We present 1-
shot, 4-shot, and full-resource IC accuracies on
each evaluation set in Table 3. Label denoising is
the best-performing pre-training format in few-
shot settings across all evaluation sets. Differ-
ences in performance between LSAP formats de-
crease as we increase the fine-tuning set size; in
full-resource settings, the difference between span
denoising and label denoising is not significant.
This suggests that explicitly demarcating intents
from utterances during pre-training may help T5
better leverage the pre-training examples.11 As
“label denoising” performs best, we focus on that
variant of LSAP from here on, though note that all

11These results are stable across random samples of the
few-shot splits. See Appendix B.

LSAP formats outperform T5 and T5 (adapted).
Table 4 displays IC accuracies across mod-

els. Compared to T5, the T5 (adapted) baseline
achieves consistently higher IC accuracies. How-
ever, T5 (adapted) is vastly outperformed by LSAP
(by up to 18% on Snips and 3% on ATIS in 1-
shot settings), even though the utterances are the
same across these settings; this indicates that much
of the improvements may be attributed to label
semantics, and that domain adaptation is only re-
sponsible for a small portion of the improvement.

Snips: Examples per Label

Model 1 2 4 8 16 32 Full

XLNet 70.0 77.6 88.1 92.9 96.2 96.9 99.0
LM-BFF 75.3 82.2 88.3 94.0 96.5 97.6 98.9
SEQ2SEQ-PTR 75.8 84.2 89.5 93.5 96.2 97.1 99.0
T5 71.1 79.5 89.5 92.9 95.2 96.5 99.0
T5 (adapted) 74.9 81.3 91.2 94.4 96.2 96.9 98.9
LSAP 88.7 90.5 93.5 94.8 96.7 97.3 99.0

ATIS: Examples per Label

Model 1 2 4 8 16 32 Full

XLNet 24.1 46.8 70.2 77.2 92.4 94.4 98.0
SEQ2SEQ-PTR 15.6 31.6 45.8 77.0 83.3 95.3 97.4
T5 45.8 78.7 83.9 90.3 92.3 94.5 97.4
T5 (adapted) 66.9 78.0 84.5 91.7 93.6 95.5 97.6
LSAP 68.7 79.5 87.8 92.4 95.7 96.4 97.6

Table 4: Mean intent classification accuracies across 5
seeds on Snips and ATIS at various few-shot split sizes.
Smaller splits are subsets of larger splits. LSAP is con-
sistently best in lower-resource settings while maintain-
ing comparable performance to other models in higher-
resource settings. Standard deviations and results for
TOPv2 are in Appendix C.

We next observe that generative approaches
are generally more effective than discrimina-
tive approaches, especially in lower-resource
settings. The XLNet classifier does not have access
to label semantics during fine-tuning, instead ob-
serving class indices and utterances only; all other
approaches hence have access to more information
during fine-tuning and prediction.
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Yahoo! Answers: Examples per Label

Model 1 2 4 8 16 32 Full

XLNet 23.9 42.4 44.0 52.8 62.3 65.9 77.6
T5 41.9 54.0 59.3 61.3 64.6 65.6 77.8
LSAP 49.2 58.8 60.7 63.3 64.7 66.4 77.7

AG News: Examples per Label

Model 1 2 4 8 16 32 Full

XLNet 55.3 63.5 69.7 79.4 85.4 86.8 95.6
T5 62.0 74.4 77.2 81.1 84.6 85.9 94.8
LSAP 74.8 77.2 80.7 82.3 85.4 86.5 94.8

Table 5: Few-shot text classification accuracies on Ya-
hoo! Answers (top) and AG News (bottom). Smaller
splits are subsets of larger splits. Our LSAP approach
yields improvements over the SOTA XLNet model.
LSAP also improves up over vanilla T5, indicating that
our approach generalizes to topic classification.

Snips: Examples per Label

Pre-training Data 1 2 4 8 16 32

None 71.2 79.5 89.5 92.9 95.2 96.5

gold 82.2 86.9 91.7 94.0 95.9 96.5
+silver 81.6 85.3 92.0 95.0 96.0 96.8

+CSTwitter 82.9 88.4 92.7 94.4 96.7 97.1
+Reddit 88.7 90.5 93.5 94.8 96.7 97.3

CSTwitter+Reddit 80.9 90.1 93.7 95.2 96.6 97.6
C4 82.4 87.1 92.8 94.9 96.2 97.3

Table 6: Pre-training dataset ablation using LSAP (with
label denoising). We display intent classification accu-
racies on Snips. Each pre-training dataset improves per-
formance, but we can recover most of the performance
from our best dataset when using only our bronze data.

LSAP induces better performance than LM-
BFF and SEQ2SEQ-PTR in very low-resource
settings, though LM-BFF and SEQ2SEQ-PTR per-
form better than T5. Note that for ATIS, LM-BFF
does not effectively handle the multi-class exam-
ples due to the single-word cloze format, nor the
high number of similar labels due to the intended
contrastive word use case; we thus do not compare
to LM-BFF here.

As we increase the size of the fine-tuning splits,
performance increases and converges across meth-
ods. Thus, the primary contribution of LSAP is
inducing quicker generalization across domains.

Finally, we present topic classification accura-
cies for YA and AG News (Table 5). Our LSAP
approach yields up to 35% improvements on AG
News over the SOTA XLNet model in 1-shot set-
tings, and over 100% on YA; we also maintain
comparable performance to the SOTA XLNet base-

line in full-resource settings. LSAP also improves
up to 21% on AG News and 18% on YA over
vanilla T5; this is evidence that our pre-training
procedure is not just tuning T5 to recognize
utterance-intent associations: it is also teaching
T5 how to be a better text classifier in general.
This also indicates that our procedure generalizes to
labels that have not been seen during pre-training:
topic labels are not present in the pre-training data,
though some of these labels do appear as substrings
of more specific intent labels (e.g., while “Health”
does not appear as a label in our pre-training data,
“Get health information” does appear).

Our model also generalizes well to joint IC/SL.
See Appendix A.

5.1 Dataset Ablation

Using LSAP with label denoising, we ablate over
each pre-training dataset and observe the effect on
downstream IC performance (Table 6).

The gold data improves few-shot IC performance
over T5 by over 10%. Adding the silver data does
not significantly change performance. Adding CST-
witter improves performance in few-shot settings,
though it also increases variance across random
seeds. The best accuracies and lowest variances are
achieved after adding the Reddit data.

Notably, we find that pre-training on only auto-
matically filtered and labeled examples still im-
proves performance over T5. To test whether this
is due to CSTwitter and Reddit simply being well-
suited to our evaluation sets, we try automatically
filtering and labeling a less conversational dataset:
Colossal Cleaned Common Crawl (C4; Raffel et al.,
2020), the same dataset used for pre-training T5.
We use the same number of training examples as
in our combined CSTwitter+Reddit data for com-
parability (1,126,309 examples). We still observe
performance improvements when pre-training on
this dataset, and the difference between pre-training
on this versus CSTwitter+Reddit is only significant
at 2 examples per label. This is evidence that our
method for creating new pre-training examples
is effective with different types of data, includ-
ing non-conversational data. Note that adding
C4 to the gold+silver+CSTwitter+Reddit data does
not significantly improve performance; we there-
fore do not include it in our final pre-training
dataset.
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Snips: Examples per Label

Model Shuffled pre-train labels? Remapped eval labels? 1 2 4 8 16 32

T5 N/A X -18.0 -9.9 -0.9 -0.4 -1.4 -0.2
T5 (adapted) N/A X -21.6 -11.9 -7.8 -2.9 +0.1 -0.1
LSAP 7 X -23.6 -9.4 -1.8 -1.7 0.0 -0.2
LSAP X 7 -42.4 -27.0 -15.7 -14.2 -17.4 -14.1
LSAP X X -40.6 -31.9 -17.9 -10.6 -15.4 -8.9

ATIS: Examples per Label

Model Shuffled pre-train labels? Remapped eval labels? 1 2 4 8 16 32

T5 N/A X -17.2 -25.2 -7.0 -6.2 -9.0 -5.8
T5 (adapted) N/A X -41.1 -29.7 -9.7 -7.9 -4.3 -1.3
LSAP 7 X -35.7 -29.6 -10.6 -6.9 -4.5 -2.8
LSAP X 7 -35.4 -19.5 -17.6 -15.4 -8.8 -9.0
LSAP X X -41.8 -30.4 -36.0 -28.0 -21.7 -16.7

Table 7: Absolute difference in intent classification accuracy relative to LSAP on Snips and ATIS at all few-shot
split sizes after shuffling labels assigned to utterances in the pre-training set (random label semantics), remapping
labels in the evaluation set (misleading label semantics), or both.

5.2 The Importance of Meaningful Labels

Including label sequences in the pre-training data
results in large performance increases. Is this due
solely to intent sequences being helpful indepen-
dent information, or is the model learning useful
associations between the inputs and labels? To
investigate this, we experiment with misleading
and random label semantics. For “misleading label
semantics,” we remap the labels in an evaluation
dataset by defining a bijective function from each
intent to a randomly selected different intent, ensur-
ing that identity mappings do not occur. In other
words, if label i is replaced with label j, all in-
stances of i are systematically converted to j in the
training and test sets. We then fine-tune our mod-
els on these remapped-intent datasets and observe
whether performance decreases, and by how much.
Significant performance decreases indicate reliance
on input-label associations.

We also define a “random label semantics” vari-
ant of LSAP, where we randomly shuffle the intents
with respect to the utterances in the pre-training
data and then pre-train with label denoising on the
shuffled data. Unlike the evaluation label remap-
ping, this shuffling procedure preserves the number
of instances of each intent such that our pre-training
set is technically the same—the intents and utter-
ances are simply mismatched.

Performance with misleading and/or random la-
bel semantics (Table 7)12 decreases considerably
across datasets, and this is especially apparent in

12Misleading label semantics results for TOPv2 are in Ap-
pendix D.

the low-resource case. Label denoising seems the
most sensitive to utterance-label associations. Per-
formance drops decrease with increasing few-shot
split sizes. This suggests that our models do rely
on utterance-intent associations to achieve high
IC performance, and that these associations are
more important in lower-resource settings than
higher-resource settings.

6 Conclusions

We have proposed a pre-training approach for lever-
aging the semantic information inherent in labels.
Our method improves few-shot text classification
performance across domains while maintaining
high performance in full-resource settings. This
approach is fairly general and could potentially be
extended to more structured semantic parsing tasks
by annotating some of the pre-training examples,
or perhaps by simply including diverse labeled ex-
amples from a variety of tasks in the pre-training
step. Future work could investigate extending this
method to pre-training from scratch, as well as tun-
ing the utterance and label formats. One could also
use demonstrations to achieve better performance
with fewer gradient updates.
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Matthew Henderson, and Ivan Vulić. 2020. Efficient
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A Joint Intent Classification and Slot
Labeling

Intent classification (IC) and slot labeling (SL) are
often performed simultaneously. For sequence-to-
sequence models, this can be done by transduc-
ing from an unlabeled utterance to a labeled utter-
ance, as in Athiwaratkun et al. (2020). To evalu-
ate whether our model can be used as an effective
IC/SL system, we use the same approach, substi-
tuting our model for TANL. This tuning setup is
more distinct from our pre-training task than the IC
setup, so we hypothesize that performance gains
over TANL will be slightly smaller here on IC than
in the approach in the main paper. We also hy-
pothesize that we will see similar SL scores as for
TANL.

Our results (Table 8) indicate that in this setting,
our pre-training approach still results in increased
intent classification accuracy over TANL. As found
before, the performance improvements are most
noticeable in the few-shot setting. We also find
that slot labeling performance is mostly maintained
after pre-training, including in the 1-shot setting.
Future work could investigate ways to integrate slot
labeling supervision into pre-training for improving
performance on both IC and SL.

Intent Class. Slot Labeling

Model ATIS Snips ATIS Snips

Full

Joint BERT 98.6 97.5 97.0 96.1
ELMO+BiLSTM 99.3 97.4 93.9 95.6
TANL 99.0 97.0 96.9 96.1
LSAP (label denoising) 99.1 97.6 96.8 96.1

1-shot TANL 78.8 88.5 36.0 81.7
LSAP (label denoising) 82.3 89.3 35.8 80.8

Table 8: Intent classification accuracy and slot labeling
F1 on ATIS and Snips.

B Stability Across Random Samples of
the Few-shot Splits

In few-shot settings, the selection of fine-tuning ex-
amples can make a large difference in downstream
performance. Here, we present IC accuracy dis-
tributions across 5 random samples of the 1-shot
results (Figure 4) to understand whether the rela-
tive performance of each approach is stable given
different fine-tuning set samples. Specifically, we
present macroaverages across random fine-tuning
set samples after averaging performance across ran-
dom seeds; this is so that we average over more

Figure 4: Intent classification accuracy distribution
across 5 random samples of the 1-shot fine-tuning set
for Snips (top) and ATIS (bottom).

stable estimates of performance within each fine-
tuning set.

Performance on Snips across random 1-shot fine-
tuning samples is largely stable. All of our origi-
nal conclusions regarding which models are better
than others still hold: label denoising is best among
our label semantic aware methods, and each label
semantic aware approach (except IC pre-training)
beats the non-label semantic aware baselines. Per-
formance on ATIS is more variable across random
1-shot samples, but the relative performance of
models is still largely the same: IC pre-training
is more competitive on this evaluation set and ran-
dom span denoising does not beat the T5 (adapted)
baseline, but label denoising is still best.

8330



C Pre-training Method Comparison:
Full Results

Here, we present intent classification accuracies
for ATIS (Table 10) the low-resource domains
of TOPv2 (Tables 11,12) using each of our pre-
training approaches. Our results here indicate that
the relative performance of each method is stable
across evaluation sets: label denoising is consis-
tently the best approach in the lowest-resource
setting. Intent classification pre-training is often
second-best, while random span denoising is con-
sistently least effective among our pre-training for-
mats (but still improves performance over vanilla
T5 and the T5 (adapted) baseline for all evaluation
datasets).

D The Importance of Meaningful Labels:
Full Results

Here, we present intent classification performance
with misleading label semantics (after the random
label remapping procedure described in §5.2) for
the low-resource domains of TOPv2 (Tables 13,14).
We present accuracy differences after remapping la-
bels in order to observe how performance changes
when using intent names that are not semantically
related to the utterances they classify.

We find that our results are mostly consis-
tent across evaluation sets: our best models rely
more on utterance-intent associations and are thus
more sensitive to label remapping, as evidenced
by higher performance drops after label remap-
ping. However, there appears to be variance across
datasets with respect to reliance on intent labels:
the performance drops for TOPv2 in both domains
are much larger than for ATIS and Snips, pro-
viding evidence that utterance-label associative
information is much more important for some
datasets than others. We also find larger perfor-
mance drops for our model pre-trained with the
IC pre-training format than for our best model pre-
trained with label denoising. Thus, the best model
is not necessarily the most reliant on utterance-
label associations.

The “random label semantics” baselines are sen-
sitive to misleading label semantics for TOPv2
(reminder) and ATIS, as indicated by consistently
large accuracy drops after label remapping. This is
not the case for TOPv2 (weather) nor Snips in low-
resource settings, where performance differences
tend to be positive or closer to 0. The performance
drop is much smaller for this baseline than for other

Figure 5: Confusion matrices displaying 1-shot results
on Snips using vanilla T5 (top) and LSAP with label de-
noising (bottom). The fine-tuning setups are identical.
“ε” refers to generated labels outside the set of labels in
Snips.

models (indicating lower associative sensitivity),
but it is still notable that the model was still able to
rely on associations between utterances and intents
after shuffling; perhaps this is due to the similarity
of each intent label in these highly domain-specific
datasets, though this would not explain the lack of
sensitivity to utterance-label associations in TOPv2
(weather) since this is also highly domain-specific.
Future work could more specifically investigate the
source of these label sensitivity differences across
datasets.

E Error Analysis

What kinds of errors does T5 make before and af-
ter pre-training? We present confusion matrices
before and after our best label semantic aware pre-
training approach (Figure 5). When using the same
fine-tuning setup and hyperparameters, vanilla T5
tends to generate more out-of-domain intent labels

8331



Snips: Examples per Label

Model 1 2 4 8 16 32 Full

XLNet 70.0 77.6 88.1 92.9 96.2 96.9 99.0
LM-BFF 75.3 (3.0) 82.2 (3.6) 88.3 (3.4) 94.0 (0.5) 96.5 (0.5) 97.6 (0.4) 98.9
SEQ2SEQ-PTR 75.8 (2.1) 84.2 (2.1) 89.5 (0.9) 93.5 (1.0) 96.2 (0.3) 97.1 (0.4) 99.0
T5 71.1 (2.2) 79.5 (2.8) 89.5 (1.1) 92.9 (1.7) 95.2 (0.7) 96.5 (0.6) 99.0
T5 (adapted) 74.9 (4.7) 81.3 (3.1) 91.2 (1.0) 94.4 (0.5) 96.2 (0.3) 96.9 (0.3) 98.9

LSAP
Span denoising 80.9 (2.0) 85.7 (1.6) 92.0 (1.3) 94.3 (1.2) 96.5 (0.2) 97.1 (0.7) 99.1
IC pre-training 67.1 (2.1) 83.2 (1.4) 90.9 (0.8) 94.5 (0.5) 96.5 (0.4) 97.4 (0.3) 99.0
Label denoising 88.7 (1.5) 90.5 (0.9) 93.5 (0.8) 94.8 (0.7) 96.7 (0.4) 97.3 (0.3) 99.0

Table 9: Pre-training method comparison. Mean intent classification accuracies across 5 seeds on Snips at various
few-shot split sizes. Smaller splits are subsets of larger splits. LSAP is consistently best in lower-resource settings
while maintaining comparable performance to other models in higher-resource settings.

ATIS: Examples per Label

Model 1 2 4 8 16 32 Full

XLNet 24.1 46.8 70.2 77.2 92.4 94.4 98.0
SEQ2SEQ-PTR 15.6 (5.7) 31.6 (4.0) 45.8 (7.1) 77.0 (5.2) 83.3 (2.1) 95.3 (0.7) 97.4
T5 45.8 (18.2) 78.7 (7.1) 83.9 (2.9) 90.3 (1.3) 92.3 (1.7) 94.5 (1.0) 97.4
T5 (adapted) 66.9 (4.4) 78.0 (6.1) 84.5 (2.6) 91.7 (1.0) 93.6 (1.6) 95.5 (0.8) 97.6

LSAP
Span denoising 67.0 (6.0) 77.6 (6.2) 85.4 (3.1) 91.4 (1.4) 94.6 (1.3) 95.5 (0.9) 97.8
IC pre-training 67.0 (3.0) 77.0 (1.1) 86.9 (2.1) 90.9 (1.0) 94.9 (0.8) 95.5 (0.8) 97.4
Label denoising 68.7 (14.3) 79.5 (8.1) 87.8 (2.5) 92.4 (7.9) 95.7 (0.7) 96.4 (0.8) 97.6

Table 10: Pre-training method comparison. Intent classification accuracy on ATIS at various few-shot split sizes.
Smaller splits are subsets of larger splits. Each score is averaged over 5 fine-tuning runs. Note that the high
standard deviation for T5 (label denoising) in the 1-shot setting is because the accuracies skew high; three seeds
yield accuracies over 80%, one at 76.9%, and one at 60%.

than our best model. These out-of-domain gener-
ations are typically mergers between two intents:
Snips contains PlayMusic and RateBook intents,
and vanilla T5 often generates RateMusic. After
pre-training, this is much less frequent.

Vanilla T5 also seems to assign higher prior
probabilities to specific intents, despite see-
ing class-balanced tuning data; for example,
SearchCreativeWork is generated for utterances
from a variety of intents, as indicated by the slight
vertical stripe in Figure 5. After pre-training, this
problem is almost non-existent.

F Label Denoising Fine-tuning

Here, we compare the performance of LSAP (label
denoising pre-training) when fine-tuned using the
traditional T5 format (task prefix, no masking) and

when using the label denoising format (concatenate
the document and its label in the source sequence,
mask the label sequence, and reconstruct the label
in the output sequence). See Tables 15 and 16.

In lower-resource settings, regular fine-tuning
significantly outperforms label denoising fine-
tuning across evaluation sets; an exception is
TOPv2 (weather) at 2 examples per label, but
the difference in performance is not large here.
In higher-resource settings, label denoising fine-
tuning begins to achieve comparable performance
to regular fine-tuning (and sometimes outperforms
regular fine-tuning). Nonetheless, accuracy differ-
ences in higher-resource settings are not large, and
regular fine-tuning performs significantly better on
average. We therefore opt to use regular fine-tuning
when comparing to baselines.
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TOPv2 (reminder): Examples per Label

Model 1 2 4 8 25SPIS

XLNet 33.5 39.8 51.9 76.0 89.0
T5 51.9 (5.3) 61.6 (6.3) 72.3 (2.5) 83.3 (3.0) 91.7
T5 (adapted) 58.5 (3.6) 66.6 (2.3) 73.4 (4.0) 85.2 (2.6) 90.8

LSAP
Span denoising 60.9 (5.0) 68.4 (4.0) 80.0 (1.6) 88.6 (1.6) 92.0
IC pre-training 68.2 (3.1) 67.8 (1.8) 77.4 (1.5) 86.2 (1.3) 87.1
Label denoising 69.0 (4.2) 71.3 (3.8) 80.6 (2.6) 87.7 (0.5) 91.4

Table 11: Pre-training method comparison. Intent classification accuracy on TOPv2 (reminder domain) at various
few-shot split sizes. Smaller splits are subsets of larger splits. Each score is averaged over 5 fine-tuning runs.

TOPv2 (weather): Examples per Label

Model 1 2 4 8 25SPIS

XLNet 44.9 54.4 68.7 79.7 87.8
T5 53.2 (6.1) 66.5 (11.8) 74.4 (5.8) 83.1 (0.5) 87.1
T5 (adapted) 61.2 (3.8) 72.0 (4.5) 77.4 (1.8) 84.9 (1.3) 83.7

LSAP
Span denoising 61.5 (8.1) 73.2 (3.0) 77.1 (3.3) 83.7 (0.7) 86.4
IC pre-training 70.5 (3.6) 77.4 (1.5) 80.1 (1.0) 83.8 (0.5) 87.1
Label denoising 72.7 (1.3) 77.4 (2.0) 81.4 (1.1) 83.4 (0.8) 89.1

Table 12: Pre-training method comparison. Intent classification accuracy on TOPv2 (weather domain) at various
few-shot split sizes. Smaller splits are subsets of larger splits. Each score is averaged over 5 fine-tuning runs.

TOPv2 (reminder): Examples per Label

Model Shuffled pre-train labels? Remapped eval labels? 1 2 4 8

T5 N/A X -13.3 -16.1 -25.8 -21.6
T5 (adapted) N/A X -25.2 -26.8 -26.4 -17.2
LSAP 7 X -38.6 -34.7 -28.2 -16.9
LSAP X 7 -44.5 -29.9 -30.2 -20.0
LSAP X X -53.4 -40.3 -46.5 -23.2

Table 13: Absolute difference in intent classification accuracy relative to LSAP on TOPv2 (reminder domain) at
all few-shot split sizes after shuffling labels assigned to utterances in the pre-training set, remapping labels in the
evaluation set, or both.

TOPv2 (weather): Examples per Label

Model Shuffled pre-train labels? Remapped eval labels? 1 2 4 8

T5 N/A X -7.2 -20.9 -1.4 -10.1
T5 (adapted) N/A X -19.5 -28.7 -17.0 -13.6
LSAP 7 X -34.3 -37.3 -19.7 -8.7
LSAP X 7 -43.4 -37.1 -17.2 -17.0
LSAP X X -37.1 -34.7 -22.7 -18.4

Table 14: Absolute difference in intent classification accuracy relative to LSAP on TOPv2 (weather domain) at
all few-shot split sizes after shuffling labels assigned to utterances in the pre-training set, remapping labels in the
evaluation set, or both.
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Snips: Examples per Label

Model 1 2 4 8 16 32

LSAP
FT 88.7 90.5 93.5 94.8 96.7 97.3
LDFT 75.2 84.9 92.0 93.7 96.9 97.6

ATIS: Examples per Label

LSAP
FT 68.7 79.5 87.8 92.4 95.7 96.4
LDFT 59.7 76.3 85.7 93.0 95.1 95.8

Yahoo! Answers: Examples per Label

Model 1 2 4 8 16 32

LSAP
FT 49.2 58.8 60.7 63.3 64.7 66.4
LDGT 39.4 54.1 58.4 62.2 65.3 66.4

AG News: Examples per Label

Model 1 2 4 8 16 32

LSAP
FT 74.8 77.2 80.7 82.3 85.4 86.5
LDFT 68.1 72.0 76.0 81.1 84.0 86.0

Table 15: Mean intent classification accuracies for nor-
mal fine-tuning (FT; as in §4.1) and label denoising
fine-tuning (LDFT) across 5 seeds on Snips, ATIS, Ya-
hoo! Answers, and AGNews at various few-shot split
sizes. Smaller splits are subsets of larger splits.

G Hyperparameters

Our experiments are based on the huggingface im-
plementation (Wolf et al., 2020) of T5.

For secondary pre-training, we use initial learn-
ing rate 5× 10−4 and batch size 128. We tune over
the number of training epochs ∈ [1, 8], finding 3
epochs to generally be best.

During fine-tuning, we use init. LR 5 × 10−4

and batch size 1.13 We tune over the number of
fine-tuning epochs ∈ [1, 16] for the largest few-shot
split, typically finding 2 epochs to be best. Once we
have the best setting for the largest split, we double
the number of tuning epochs for each halving of
the split size such that the number of tuning steps is
similar for all split sizes. All other hyperparameters
are huggingface defaults.

13We use a small batch size due to the small size of the
1-shot splits. We do not observe significant performance dif-
ferences when using batch size 2 or 4.

TOPv2 (reminder): Ex. per Label

Model 1 2 4 8

LSAP
FT 69.0 71.3 80.6 87.7
LDFT 65.8 69.3 74.6 86.2

TOPv2 (weather): Ex. per Label

Model 1 2 4 8

LSAP
FT 72.7 77.4 81.4 83.4
LDFT 70.6 78.4 80.8 83.5

Table 16: Mean intent classification accuracies for nor-
mal fine-tuning (FT; as in §4.1) and label denoising
fine-tuning (LDFT) across 5 seeds on TOPv2 (reminder
and weather domains) at various few-shot split sizes.
Smaller splits are subsets of larger splits.
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