
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 8197 - 8213

May 22-27, 2022 c©2022 Association for Computational Linguistics

Revisiting Over-Smoothness in Text to Speech

Yi Ren
Zhejiang University

rayeren@zju.edu.cn

Xu Tan
Microsoft Research

xuta@microsoft.com

Tao Qin
Microsoft Research

taoqin@microsoft.com

Zhou Zhao∗

Zhejiang University
zhaozhou@zju.edu.cn

Tie-Yan Liu
Microsoft Research

tyliu@microsoft.com

Abstract

Non-autoregressive text to speech (NAR-TTS)
models have attracted much attention from both
academia and industry due to their fast gen-
eration speed. One limitation of NAR-TTS
models is that they ignore the correlation in
time and frequency domains while generating
speech mel-spectrograms, and thus cause blurry
and over-smoothed results. In this work, we re-
visit this over-smoothing problem from a novel
perspective: the degree of over-smoothness is
determined by the gap between the complexity
of data distributions and the capability of mod-
eling methods. Both simplifying data distri-
butions and improving modeling methods can
alleviate the problem. Accordingly, we first
study methods reducing the complexity of data
distributions. Then we conduct a comprehen-
sive study on NAR-TTS models that use some
advanced modeling methods. Based on these
studies, we find that 1) methods that provide ad-
ditional condition inputs reduce the complexity
of data distributions to model, thus alleviating
the over-smoothing problem and achieving bet-
ter voice quality. 2) Among advanced model-
ing methods, Laplacian mixture loss performs
well at modeling multimodal distributions and
enjoys its simplicity, while GAN and Glow
achieve the best voice quality while suffering
from increased training or model complexity.
3) The two categories of methods can be com-
bined to further alleviate the over-smoothness
and improve the voice quality. 4) Our experi-
ments on the multi-speaker dataset lead to sim-
ilar conclusions as above and providing more
variance information can reduce the difficulty
of modeling the target data distribution and al-
leviate the requirements for model capacity.

1 Introduction

Non-autoregressive text to speech (NAR-TTS)
models (Ren et al., 2019, 2020; Peng et al., 2020;
Vainer and Dušek, 2020; Łańcucki, 2020; Kim

∗ Corresponding author

et al., 2020; Miao et al., 2020) have shown much
faster inference speed than their autoregressive
counterparts (Wang et al., 2017; Shen et al., 2018;
Ping et al., 2018), while achieving comparable or
even better voice quality (Ren et al., 2019, 2020).
The text-to-speech mapping can be formulated as a
conditional distribution P (y|x) where x and y are
the text and speech sequences, respectively. Text-
to-speech mapping is a one-to-many mapping prob-
lem (Wang et al., 2017), since multiple possible
speech sequences correspond to a text sequence
due to speech variations such as pitch, duration and
prosody. Furthermore, speech mel-spectrograms
are strongly correlated in time and frequency di-
mensions (see Section 2.1 for detailed analyses).
Therefore, P (y|x) is actually a dependent and mul-
timodal distribution (Ling et al., 2013; Zen and
Senior, 2014)1.

Early non-autoregressive TTS models (Ren et al.,
2019; Peng et al., 2020) use mean absolute error
(MAE) or mean square error (MSE) as loss func-
tion to model speech mel-spectrograms, implic-
itly assuming that data points in mel-spectrograms
are independent to each other and follow a uni-
modal distribution2. Consequently, the mel-
spectrograms following dependent and multimodal
distributions cannot be well modeled by the
MAE or MSE loss, which presents great chal-
lenges in non-autoregressive TTS modeling and
causes over-smoothed (blurred) predictions in mel-
spectrograms (Vasquez and Lewis, 2019; Sheng
and Pavlovskiy, 2019).

In this work, we conduct a comprehensive study
on the over-smoothing problem in TTS. We find
that the over-smoothness is closely related to the
mismatch between the complexity of data distri-

1Here "dependent" means that the different dimensions
(in either temporal domain or frequency domain) of y are
dependent to each other.

2MAE can be derived from the Laplace distribution and
MSE from the Gaussian distribution, both of which are uni-
modal.
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butions (e.g., dependent and multimodal distribu-
tions are more complex than independent and uni-
modal distributions) and the power of modeling
methods (e.g., simple losses such as MAE and
MSE are less powerful than GAN or Glow-based
methods). Both simplifying data distributions and
enhancing modeling methods can alleviate the over-
smoothing problem. From this perspective, we cate-
gorize recent methods combating over-smoothness
into two classes: 1. Simplifying data distribu-
tions: The data distribution P (y|x) can be simpli-
fied by providing more conditional input informa-
tion. We review two main methods: 1) Providing
the previous mel-spectrogram frames y<t to pre-
dict current frame yt, i.e., factorizing the complex
dependent distribution P (y|x) into a simpler con-
ditional distribution

∏
t P (yt|y<t, x), as used in

autoregressive TTS models (Wang et al., 2017; Li
et al., 2019). 2) Providing more variance infor-
mation v3 such as pitch, duration, and energy to
predict mel-spectrogram in parallel, i.e., model-
ing P (y|x, v) rather than P (y|x), as done in some
non-autoregressive TTS models (Ren et al., 2020;
Łańcucki, 2020). 2. Enhancing modeling meth-
ods: Generally speaking, the modeling method
should be powerful enough to fit complex data dis-
tributions. We review methods based on different
distribution assumptions, including Laplacian mix-
ture loss, structural similarity index (SSIM) (Wang
et al., 2004) loss, generative adversarial network
(GAN) (Lee et al., 2020) and Glow (Kim et al.,
2020).

By studying those methods, we have the follow-
ing findings. We hope that our studies and findings
can inspire the community to design better models
for TTS.

• By either autoregressive factorization or provid-
ing more variance information as input, complex
distributions can be simplified to be less depen-
dent and multimodal, which clearly alleviates
the over-smoothing problem and improves the
generated voice quality. Among them, providing
more variance information such as FastSpeech 2
enjoys the advantages of fast generation due to
its non-autoregressive nature.

• Enhanced modeling methods outperform MAE
in synthesized voice quality. Laplacian mixture

3The term "variance information" is first mentioned in
FastSpeech 2 (Ren et al., 2020), which refers some speech-
related conditional information

loss significantly improves the quality of gener-
ated mel-spectrograms and enjoys the simplicity
of modeling. GAN and Glow achieve the best
quality under both subjective and objective eval-
uations (since they make no assumptions about
output distributions), but at the cost of increased
training or model complexity.

• To further analyze the effectiveness of combining
the basic ideas of the above two categories, we
enhance FastSpeech 2 (considering its fast infer-
ence speed and good quality in the first category)
with Laplacian mixture loss, SSIM, GAN and
Glow, respectively. We find that the enhanced
FastSpeech 2 generates speech with even better
quality and the over-smoothing problem is fur-
ther alleviated, which shows that the methods in
the two categories are complementary to each
other.

• We also extend our experiments to multi-speaker
TTS task and obtain similar conclusions as above.
Besides, we find that Glow has poor modeling
ability in multi-speaker scenarios due to limited
model capacity and more complex target data
distributions compared with the single-speaker
scenario, while it can be greatly alleviated by
simplifying data distributions (introducing more
variance information).

2 Preliminary Study

Text-to-speech mapping is a one-to-many mapping
since multiple speech sequences can possibly cor-
respond to a text sequence with different pitch, du-
ration and prosody, making the mel-spectrograms
distribution P (y|x) multimodal. And due to the
continuous nature of the mel-spectrograms, adja-
cent data points are dependent to each other. In this
section, we first empirically characterize the dis-
tribution of P (y|x) in TTS4 through visualization
(Section 2.1), and then provide a novel perspec-
tive to study the over-smoothing problem in TTS
(Section 2.2).

2.1 Visualizations
We first visualize the distribution of P (y|x) to see
whether it is dependent and multimodal5. Denote

4In this work, we mainly focus on text (phoneme) to mel-
spectrogram mapping, and leave mel-spectrogram to wave-
form mapping and text to waveform mapping to future work.

5We approximate the mel-spectrogram distribution on
LJSpeech dataset. The detailed data processing procedure
is the same as that in Section 3.2.
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Figure 1: The marginal distributions P (y(t, f)|x = ph) for several different phonemes. We choose 4 different
phonemes (ph = AE2, IY 1, R, T ) and 4 frequency bins (f = 10, 20, 50, 70) in this case study. More marginal
distributions are added in Appendix D.1.
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Figure 2: Joint distributions of two data points in mel-spectrogram. (a) Along the frequency axis
P (y(t, f1), y(t, f2)|x = ph), where f1 = 10 and f2 = 11. (b) Along the time axis P (y(t1, f), y(t2, f)|x = ph).
We choose 2 phonemes (ph = AO2, AH2) in this visualization. More visualizations are included in Appendix D.1.

the data point in the t-th frame and the f -th fre-
quency bin in the ground-truth mel-spectrogram
as y(t, f), where t ∈ [1, T ], f ∈ [1, F ], and
T , F represent the total length and the num-
ber of frequency bins of mel-spectrograms re-
spectively. Since different phonemes have dif-
ferent mel-spectrograms, we analyze the distri-
bution of each phoneme separately. Specifically,
for all the mel-spectrogram frames corresponding
to each phoneme ph, we calculate three distribu-
tions: 1) marginal distribution P (y(t, f)|x = ph);
2) joint distribution between two different fre-
quency bins P (y(t, f1), y(t, f2)|x = ph); 3) joint
distribution between two different time frames
P (y(t1, f), y(t2, f)|x = ph)6. For each distribu-
tion, we first compute the histograms and smooth
into probability density functions with kernel den-
sity estimation (Dehnad, 1987) for better visualiza-
tion.

The marginal distributions P (y(t, f)|x = ph)
for several different phonemes are shown in Fig-
ure 1. It can be seen that the shape of the
marginal distribution of each data point y(t, f)
in mel-sepctrogram is multimodal, especially for
data points in high-frequency bins. The joint
distribution P (y(t, f1), y(t, f2)|x = ph) and
P (y(t1, f), y(t2, f)|x = ph) are shown in Figure
2a and Figure 2b, respectively. Obviously, those

6We denote one of the frame index among all mel-
spectrograms corresponding to the phoneme x as t1 and set
t2 = t1 + 1.

joint distributions are also multimodal and neigh-
boring points in mel-spectrograms are strongly cor-
related. From these observations, we can see that
the distribution P (y|x) of mel-sepctrograms is mul-
timodal and dependent across time and frequency.

2.2 A Novel Perspective

Table 1: The two categories of methods to combat over-
smoothness in TTS.

Categories Methods

Simplifying
data distributions

AR modeling (Li et al., 2019),
FastSpeech 2 (Ren et al., 2020),

FastPitch (Łańcucki, 2020)

Enhancing
modeling methods

SSIM (Wang et al., 2004),
Laplacian mixture,

GAN (Lee et al., 2020),
Glow (Kim et al., 2020)

The dependent and multimodal distribution of
P (y|x) increases the difficulty of TTS modeling
and causes over-smoothing problem if it is not cor-
rectly handled. We provide a novel perspective to
depict this problem: the degree of over-smoothness
is closely related to the gap between the complex-
ity of data distributions and the power of modeling
methods. A larger gap between the power of a mod-
eling method and the complexity of a data distri-
bution results in more severe over-smoothing prob-
lem. Consequently, simplifying data distributions
and enhancing modeling methods can alleviate the
over-smoothing problem. From this perspective,
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we list the methods to combat over-smoothness in
two categories in Table 1.

In the following sections, we first explore the
effectiveness of simplifying data distributions (Sec-
tion 3) and then that of enhancing modeling meth-
ods (Section 4). Finally, we combine the basic
ideas of these two categories to improve an exist-
ing model (Section 5.1) and conduct further explo-
ration on the multi-speaker dataset (Section 5.2).

3 Simplifying Data Distributions P (y|x)
Simplifying data distributions P (y|x) is usually
achieved by providing more conditional input in-
formation in the TTS literature (Wang et al., 2017;
Li et al., 2019; Ren et al., 2020)7. In this way,
more conditional information in input can allevi-
ate the one-to-many mapping issue, and thus the
distribution becomes less multimodal and the cor-
relation along time and frequency is reduced given
more condition. There are mainly two methods
to provide more conditional input information: 1)
autoregressive factorization along the time (Wang
et al., 2017; Li et al., 2019) or frequency axis;
2) providing more variance information to pre-
dict mel-spectrogram in parallel, as used in some
non-autoregressive TTS models (Ren et al., 2020;
Łańcucki, 2020). In this section, we first overview
these two kinds of methods in detail and conduct
the experiment analyses to measure their effective-
ness in solving the over-smoothing problem.

3.1 Methods

In this subsection, we overview the two kinds of
methods to simplify data distributions, including
autoregressive factorization and providing more
variance information as input.

Autoregressive Factorization The joint proba-
bility P (y|x) can be factorized according to the
chain rule in two ways along time and frequency
dimensions respectively:

• P (y|x) = ∏T
t=1 P (yt|y<t, x), where y<t is the

proceeding frames before the t-th frame and T is
the total frames.

• P (y|x) =
∏F

f=1 P (yf |y<f , x), where y<f is
the proceeding frequency bins before the f -th

7Ren et al. (2019) use knowledge distillation to simplify
the target mel-spectrogram itself, which also simplifies the
data distribution but affects data quality as analyzed in Ren
et al. (2020). Thus, we do not consider this method in our
study.

frequency bin and F is the total number of fre-
quency bins (e.g., 80).

More Variance Information Another way to
simplify data distributions P (y|x) is to provide
more variance information v such as pitch, duration,
and energy, to convert P (y|x) into P (y|x, v), as
used in previous works (Ren et al., 2020; Łańcucki,
2020). In this way, the distribution becomes less
multimodal and the correlation along time and fre-
quency is reduced.
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Variance
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Positional
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Duration LR

T1 T2 T3

Duration
Predictor

DurationLR

Figure 3: The overall architecture for our baseline
model.

3.2 Experiments and Analyses

Experimental Settings We conduct all experi-
ments8 on LJSpeech dataset (Ito, 2017). We use
ParallelWaveGAN (PWG) (Yamamoto et al., 2020)
as the vocoder to convert mel-spectrograms to
waveforms. To evaluate the voice quality of the
synthesized speech subjectively, we conduct the
MOS (Loizou, 2011) tests. To measure the de-
gree of over-smoothness of mel-spectrograms ob-
jectively, we calculate the variation of the Lapla-
cian (Pech-Pacheco et al., 2000) (VarL) on the gen-
erated mel-spectrograms and compare with that
on the ground-truth mel-spectrograms. We use
FastSpeech (Ren et al., 2019) trained with MAE
loss as the baseline model as shown in Figure 3.
For autoregressive modeling along time, we di-
rectly use TransformerTTS (Li et al., 2019). For

8The corresponding audio samples are available at https:
//revisittts.github.io/revisittts/.
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Figure 4: The architecture of mel-spectorgram decoder used in each mel-spectrogram modeling method. All these
methods use the same architectures of phoneme embedding, encoder and variance adaptor as the baseline model in
Figure 3. x denotes the output hidden of the encoder.

(a) GT (b) MAE (c) FreqAR (d) TimeAR (e) FastSpeech 2

Figure 5: Visualizations of the ground-truth and generated mel-spectrograms by different methods for simplifying
data distributions.

autoregressive modeling along frequency, we mod-
ify the vanilla mel-spectrogram decoder in base-
line model to support autoregressive generation
along frequency (which is called FreqAR decoder)
and feed y<f to the FreqAR decoder to model
P (yf |y<f ) as shown in Figure 4a. For the method
providing more variance information, we use Fast-
Speech 2 (Ren et al., 2020), which adds pitch, dura-
tion and energy information to the variance adaptor
of the baseline model. We put more detailed model
descriptions in Appendix A and experimental set-
tings in Appendix B.

Table 2: Results for different methods for simplifying
data distributions for TTS. The best scores are in bold.

Methods MOS VarL

GT 4.18±0.08 0.367
GT (PWG) 3.90±0.08 /

MAE 3.64±0.10 0.072

FreqAR 3.80±0.09 0.175
TimeAR 3.81±0.08 0.186
FastSpeech 2 3.83±0.09 0.184

Results and Analyses We conduct MOS evalu-
ation and compute VarL to compare methods in-
cluding the baseline model (denoted as MAE), au-
toregressive modeling along frequency (denoted
as FreqAR) and along time (denoted as TimeAR)
and FastSpeech 2. The results are shown in Table
2. We also visualize the mel-spectrograms gener-

ated by all modeling methods in Figure 5. From
the results, we have some observations: 1) Au-
toregressive modeling along frequency (FreqAR)
and time (TimeAR) dimensions both outperform
MAE in terms of MOS and VarL, which shows
that simplifying data distributions using frequency
or time dimension factorization can ease the over-
smoothing problem. However, the autoregressive
models suffer from slow inference. 2) FastSpeech
2 also greatly outperforms the baseline model, fur-
ther indicating that simplifying data distributions
by providing more variance information is another
way to alleviate the over-smoothing problem. In
conclusion, autoregressive modeling and provid-
ing more variance information can both simplify
the complex distribution to be less dependent and
multimodal and thus alleviate the over-smoothing
problem. Besides, methods that provide more vari-
ance information such as FastSpeech 2 also enjoy
the fast inference speed.

4 Enhancing Modeling Methods

Most previous non-autoregressive TTS mod-
els (Ren et al., 2019; Wang et al., 2019; Ren et al.,
2020) use mean absolute error (MAE) or mean
square error (MSE) as training loss. However, they
fail to capture dependent and multimodal distri-
butions. MAE loss is derived from the Laplace
distribution and MSE from the Gaussian distribu-
tion (Chai and Draxler, 2014), which means min-
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imizing MAE/MSE will maximize the data log-
likelihood under a Laplace/Gaussian distribution.
Both of these distributions are unimodal and thus
encourage the model to predict a single mode in
each data point. As a result, the model just learns an
average of all modes, which leads to over-smoothed
results. Another problem brought by MAE and
MSE is that they are independent across time and
frequency for mel-spectrogram output, which ig-
nores the correlation across time and frequency
axes in mel-spectrogram.

In this section, we first introduce several en-
hanced modeling methods to directly model the de-
pendent and multimodal distribution P (y|x) (Sec-
tion 4.1), and then conduct experiments to compare
and analyze these methods (Section 4.2).

4.1 Methods

We list the enhanced methods, including SSIM loss,
Laplacian mixture loss, GAN9 and Glow-based
method and their distribution assumptions in Table
3. We put the details of each method in Appendix
A.

Table 3: The distribution assumptions of different meth-
ods.

Assumptions Modeling Methods

Independent &
unimodal Mean absolute error

Independent &
multimodal Laplacian mixture

No assumption
SSIM (Wang et al., 2004),

GAN (Goodfellow et al., 2014),
Glow (Kingma and Dhariwal, 2018)

Structural Similarity Index (SSIM) Structural
Similarity Index (SSIM) (Wang et al., 2004) is one
of the state-of-the-art perceptual metrics to mea-
sure image quality, which can capture structural
information and texture. The value of SSIM is be-
tween 0 and 1, where 1 indicates perfect perceptual
quality relative to the ground truth. The model ar-
chitecture of SSIM loss follows the baseline model
in Figure 3 and we directly replace the MAE loss

9Although GAN is well-known to suffer from the mode
collapse issue, practically it performs very well in modeling
the multi-modal distribution through well-tuning (Mao et al.,
2017). GAN can avoid the average frame prediction in MAE
loss that has a strong unimodal assumption, and can generate
high-quality and reasonable results when the data distribution
is multimodal. Therefore, we regard GAN as "no distribution
assumption" method.

in the baseline model with SSIM loss as shown in
Figure 4b.

Laplacian Mixture (LM) Loss Laplacian mix-
ture loss10 can model samples independently with
multimodal distribution. As shown in Figure 4b,
the basic architecture of mel-spectrogram decoder
follows baseline model and we modify the output
layer of the baseline model to predict the multi-
modal distribution of each mel-spectrogram bin.

Generative Adversarial Network (GAN) We
introduce adversarial training to better model the
dependent and multimodal distribution. Inspired
by Wu and Luan (2020); Binkowski et al. (2020),
we adopt multiple random window discriminators.
We use the LSGAN (Mao et al., 2017) loss to train
the TTS model and multi-window discriminators.

Glow Glow (Kingma and Dhariwal, 2018) is a
kind of normalizing flow, which maps data into a
known and simple prior (e.g., spherical multivariate
Gaussian distribution). As shown in Figure 4d, our
Glow-based decoder models the distribution of mel-
spectrograms conditioned on the encoder output
hidden states x.

4.2 Experiments and Analyses

(a) GT (b) MAE

(c) SSIM (d) LM

(e) GAN (f) Glow

Figure 6: Visualizations of the ground-truth and gener-
ated mel-spectrograms by different modeling methods.

10We choose Laplace distribution as the mixture distribu-
tion since the distribution of the magnitude of spectrogram is
Laplacian (Tits et al., 2019; Usman et al., 2018; Gazor and
Zhang, 2003). We have also tried other mixture distributions
(e.g., mixture of logistic and mixture of Gaussian) and have
similar findings.
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The dataset, baseline model and evaluation met-
rics are the same as Section 3.2. We conduct
MOS evaluation and compute VarL to compare
different modeling methods including MAE (de-
noted as MAE), Laplacian mixture loss (denoted as
LM), structural similarity index (denoted as SSIM),
generative adversarial network (denoted as GAN),
Glow (denoted as Glow). The results are shown in
Table 4. We also visualize mel-spectrograms gen-
erated by all modeling methods in Figure 6. From
the results, we can find that:

Table 4: Results for different modeling methods for
TTS. The best scores are in bold.

Methods MOS VarL

GT 4.18±0.08 0.367
GT (PWG) 3.90±0.08 /

MAE 3.64±0.10 0.072

SSIM 3.68±0.10 0.201
LM 3.72±0.08 0.296
GAN 3.76±0.08 0.326
Glow 3.78±0.08 0.310

1) LM and SSIM outperform MAE in terms of
voice quality according to MOS evaluation and
the mel-spectrogram visualizations, which shows
that even simply replacing the loss function with
those without strong unimodal and independent
assumptions can significantly alleviate the over-
smoothing problem and improve the generated mel-
spectrograms. Among simple loss functions, LM
performs the best and generates sharper and clearer
mel-spectrograms since its VarL is closer to GT,
which demonstrates that Laplacian mixture loss
can model the multimodal distribution well.

2) GAN and Glow show more superior perfor-
mances compared with other modeling methods, in-
dicating that modeling mel-spectrogram with both
dependent and multimodal distribution can sig-
nificantly ease the over-smoothing problem and
improve the generated speech. From the visual-
izations, we can see that GAN and Glow gener-
ate formants with rich details in the middle/high-
frequency region. However, GAN-based and Glow-
based methods suffer from training complexity
and large model footprint respectively: GAN re-
lies on the discriminator to fit the distribution,
which causes unstable training and difficult hyper-
parameters tuning; Glow imposes strong architec-
tural constraints and requires a large model foot-
print (about 2x model parameters) to keep the bi-
jection between the simple independent latent dis-

tribution (e.g., spherical multivariate Gaussian dis-
tribution) and the complex and dependent data dis-
tribution.

5 Further Explorations and Extensions

In this section, we first explore the advantages
of combining methods from two categories and
then perform extensional analyses on multi-speaker
dataset.

5.1 Combining Methods from Two Categories

Table 5: Results of different models that combine the
basic ideas of two categories. The best scores are in
bold.

Methods MOS VarL

GT 4.27±0.10 0.367
GT (PWG) 4.00±0.10 /

FastSpeech 2 3.81±0.10 0.184

FastSpeech 2 + SSIM 3.84±0.09 0.205
FastSpeech 2 + LM 3.90±0.10 0.306
FastSpeech 2 + GAN 3.86±0.10 0.341
FastSpeech 2 + Glow 3.92±0.10 0.315

After studying the two categories to combat over-
smoothing problems, we have demonstrated that
both simplifying data distributions and enhancing
modeling methods can alleviate this problem and
improve the voice quality of TTS. A natural thought
is to combine the methods from two categories,
which may integrate the advantages of both aspects
to reduce the gap between the complexity of data
distribution and the power of the modeling method,
resulting in better voice quality and further alle-
viating the over-smoothing problem. To demon-
strate this idea, we choose the FastSpeech 2 as
the model from the first category since it achieves
better perceptual voice quality than autoregressive
modeling models according to Table 2 and impor-
tantly, it enjoys the fast and robust inference advan-
tages due to its non-autoregressive nature. Then
we combine two categories by applying enhanced
modeling methods to FastSpeech 2 and obtain the
following systems: 1) FastSpeech 2 + SSIM, which
replaces MAE loss with SSIM loss; 2) FastSpeech
2 + LM, which predicts the k-component mixture of
Laplace distribution and uses LM loss for training;
3) FastSpeech 2 + GAN, which adds the adversarial
loss to FastSpeech 2; and 4) FastSpeech 2 + Glow,
which replaces the mel-spectrogram decoder with
Glow. We conduct subjective and objective eval-
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Table 6: Results for of different multi-speaker TTS
models on multi-speaker dataset. The best scores are in
bold.

Methods MOS VarL

GT 3.97±0.13 0.338
GT (PWG) 3.67±0.10 /

FastSpeech 2.96±0.10 0.050
FastSpeech + GAN 3.14±0.15 0.251
FastSpeech + Glow 2.94±0.10 0.232
FastSpeech 2 3.18±0.16 0.132
FastSpeech 2 + GAN 3.35±0.13 0.257
FastSpeech 2 + Glow 3.30±0.12 0.264

uations to compare these combined systems with
FastSpeech 2.

The results are shown in Table 5. We can see
that combining FastSpeech 2 with more powerful
modeling methods can further alleviate the over-
smoothing problem in terms of VarL and improve
the generated speech quality in terms of MOS,
which demonstrate our idea that simplifying data
distributions and enhancing modeling methods can
be used together and it is complementary to each
other to further improve TTS performance. Among
these methods, GAN performs best in alleviating
the over-smoothing problem and Glow achieves
the best perceptual voice quality, while they suf-
fer from the cost of increased training or model
complexity as we described in Section 4.2; com-
pared with GAN and Glow, LM can generate mel-
spectrograms with comparable clearness and qual-
ity while enjoying its simplicity.

5.2 Analyses on Multi-Speaker Dataset

To demonstrate the generalization of our findings
and provide more insights, we conduct experiments
on a multi-speaker LibriTTS (Zen et al., 2019)
dataset. We modify our models to support mul-
tiple speakers by adding speaker embeddings to the
encoder outputs to indicate the speaker identity. We
put more details of our multi-speaker TTS models
and the dataset in Appendix C. We compare the
following systems: 1) FastSpeech; 2) FastSpeech
+ GAN; 3) FastSpeech + Glow; 4) FastSpeech 2;
5) FastSpeech 2 + GAN; and 6) FastSpeech 2 +
Glow. The results are shown in Table 6. We can see
that 1) simplifying data distributions by providing
more variance information and enhancing model-
ing method can alleviate the over-smoothing prob-
lem and improve the generated mel-spectrogram,
and combining them together can achieve further
better audio quality, which are consistent with the

findings on single-speaker dataset. 2) FastSpeech +
Glow leads to inferior performance compared with
the baseline model (FastSpeech), because the multi-
speaker dataset has more complex target data distri-
butions and Glow requires a large model footprint
to capture them as described in Section 4.2. When
providing more variance information, FastSpeech 2
+ Glow achieves much better performance, which
can reduce the difficulty of modeling the target data
distribution and thus alleviate the requirements for
model capacity.

6 Related Works

Non-autoregressive Text to Speech Previous
TTS systems such as Tacotron (Wang et al., 2017),
Tacotron 2 (Shen et al., 2018), Deep Voice 3 (Ping
et al., 2018) and TransformerTTS (Li et al., 2019)
synthesize speech sequentially, which suffer from
slow inference speed. To solve these shortcomings,
various non-autoregressive TTS models are pro-
posed to synthesize spectrogram frames in parallel.
FastSpeech (Ren et al., 2019) and ParaNet (Peng
et al., 2020) are early non-autoregressive TTS
model which both adopt a fully parallel model ar-
chitecture and rely on an autoregressive teacher
model to provide the alignment between phonemes
and mel-spectrograms. FastSpeech introduces
knowledge distillation for mel-spectrograms to
simplify data distributions. FastSpeech 2 (Ren
et al., 2020) and FastPitch (Łańcucki, 2020) in-
troduce more variance information as input to fur-
ther reduce the output uncertainty and ease the
one-to-many mapping problem. However, they
are trained with MAE loss, which fits independent
and unimodal Laplace distribution and results in
blurry and over-smoothed mel-spectrograms in in-
ference. SpeedySpeech (Vainer and Dušek, 2020)
use the combination of MAE and structural sim-
ilarity index (SSIM) losses to avoid blurry mel-
spectrograms. Glow-TTS (Kim et al., 2020) and
Flow-TTS (Miao et al., 2020) both use flow-based
decoder to apply some invertible transforms be-
tween mel-spectrograms and noise data sampled
from simple distribution. Sheng and Pavlovskiy
(2019) employ a cascaded Tacotron 2 and GAN
pipeline to reduce the over-smoothness of synthe-
sized speech. Multi-SpectroGAN (Lee et al., 2020)
introduces generative adversarial network (GAN)
and a multi-scale discriminator and is trained with
only the adversarial feedback by conditioning hid-
den states with variance information (e.g., duration,
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pitch and energy) to a discriminator. GAN and
Flow-based methods can model dependent and mul-
timodal distribution well, while they suffer from
training or model complexity. In this work, we
conduct systematic studies on several modeling
methods in both NAR-TTS and AR-TTS from a
novel perspective.

Handling Dependent and Multimodal Distribu-
tions Dependent and multimodal distributions in-
crease the uncertainty for model training and lead
to blurry results, which is observed in many gen-
eration tasks (Gu et al., 2018; Isola et al., 2017;
Mathieu et al., 2016). There are some common
ways to handle dependent and multimodal distribu-
tions: 1) using loss functions or modeling methods
that can well fit the distributions; and 2) introducing
some input variables or transforming the target data
to simplify data distributions. In neural machine
translation, Gu et al. (2018) tackle this problem by
introducing knowledge distillation to simplify tar-
get data distributions and using fertilities extracted
by an external aligner to directly model the non-
determinism in the translation process. In image
translation task, Isola et al. (2017) compare the gen-
erated images by their proposed adversarial gener-
ative method with those generated by using MAE
and MSE losses and conclude that adversarial loss
can help avoid blurry results. In video prediction
task, Mathieu et al. (2016) propose a multi-scale
architecture, an adversarial training method, and an
image gradient difference loss function to deal with
the inherently blurry predictions obtained from the
MSE loss function. However, there is no systematic
analysis on multimodal and dependent distributions
in TTS task as far as we know. In this paper, we
conduct comprehensive analyses and studies on
handling dependent and multimodal distributions
in TTS from a novel perspective.

7 Conclusion

In this paper, we revisited the over-smoothing prob-
lem in TTS with a novel perspective: the degree
of over-smoothness is determined by the gap be-
tween the complexity of data distribution and the
capability of the modeling method. Under this
perspective, we classified existing methods com-
bating over-smoothness into two categories: sim-
plifying data distributions and enhancing model-
ing methods, and conducted comprehensive anal-
yses and studies on these methods. For simpli-
fying data distributions, we found that both AR

factorization and providing more variance infor-
mation as input (e.g., FastSpeech 2) can alleviate
the over-smoothing problem, and FastSpeech 2 en-
joys the advantage of fast generation over AR fac-
torization. For enhancing modeling methods, we
found that Laplacian mixture loss can improve the
generation quality and enjoy its simplicity, while
GAN and Glow can further achieve better quality at
the cost of increased training or model complexity.
Based on the above findings, we further combined
these two categories of methods and found that the
over-smoothing problem is further alleviated, and
the generated speech quality is further improved,
which shows that these two categories are com-
plementary to each other. When performing our
analyses on the multi-speaker dataset, we drew
similar conclusions and found that providing more
variance information can reduce the difficulty of
modeling the target data distribution and alleviate
the requirements for model capacity.

We hope that our studies can inspire the commu-
nity and industry to develop more powerful TTS
models. Besides, since we are the first to discuss
the over-smoothing problem systematically in the
speech domain. We hope our analysis methodol-
ogy as well as the findings can be extended to other
tasks and inspire other domains.
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Jan Vainer and Ondřej Dušek. 2020. Speedyspeech:
Efficient neural speech synthesis. arXiv preprint
arXiv:2008.03802.

Aäron Van Den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W Senior, and Koray
Kavukcuoglu. 2016. Wavenet: A generative model
for raw audio. SSW, 125.

Sean Vasquez and Mike Lewis. 2019. Melnet: A gener-
ative model for audio in the frequency domain. arXiv
preprint arXiv:1906.01083.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019. Non-autoregressive
machine translation with auxiliary regularization. In
AAAI.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui
Wu, Ron J Weiss, Navdeep Jaitly, Zongheng Yang,
Ying Xiao, Zhifeng Chen, Samy Bengio, et al.
2017. Tacotron: Towards end-to-end speech syn-
thesis. arXiv preprint arXiv:1703.10135.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. 2004. Image quality assessment: from
error visibility to structural similarity. IEEE transac-
tions on image processing, 13(4):600–612.

Jie Wu and Jian Luan. 2020. Adversarially trained
multi-singer sequence-to-sequence singing synthe-
sizer. arXiv preprint arXiv:2006.10317.

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim.
2020. Parallel wavegan: A fast waveform generation
model based on generative adversarial networks with
multi-resolution spectrogram. In 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, ICASSP 2020, Barcelona, Spain, May
4-8, 2020, pages 6199–6203. IEEE.

Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J
Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu. 2019.
Libritts: A corpus derived from librispeech for text-
to-speech. arXiv preprint arXiv:1904.02882.

Heiga Zen and Andrew Senior. 2014. Deep mixture
density networks for acoustic modeling in statistical
parametric speech synthesis. In 2014 IEEE interna-
tional conference on acoustics, speech and signal
processing (ICASSP), pages 3844–3848. IEEE.
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A.1 Baseline Model
Our baseline model is based on FastSpeech (Ren
et al., 2019). The dimension of phoneme embed-
dings and the hidden size of the self-attention are
set to 256; the number of attention heads is set to 2
and the kernel sizes of the 1D-convolution in the 2-
layer convolutional network after the self-attention
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256/1024 for the first layer and 1024/256 in the
second layer; the output linear layer converts the
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mel-spectrograms. The size of the phoneme vocab-
ulary is 76, including punctuations. In the duration
predictor, the kernel sizes of the 1D-convolution
are set to 3, with input/output sizes of 256/256 for
both layers and the dropout rate is set to 0.5.
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A.2 Autoregressive Modeling along
Frequency

Autoregressive modeling along frequency
(denoted as FreqAR) factorizes P (y|x) to∏F

f=1 P (yf |y<f , x), where y<f is the proceeding
frequency bins before the f -th frequency bin and
F is the total number of frequency bins (e.g.,
80). We implement FreqAR by adding an extra
small LSTM to the top of the four feedforward
Transformer blocks11 as shown in Figure 7. For
timestep f = 1, we set the input hidden h0 of
LSTM to the output hidden of the mel-spectrogram
decoder q, which has a size of T ×H , where T is
the total number of the frames, and H is the hidden
size of the LSTM. For 1 < f < F , we concatenate
the previous output frequency bins yf−1 with the
size of T × 1 and q with the size of T ×H along
the channel axis and project the channel to H with
a linear layer as the input hidden hf of LSTM.
The output hidden of LSTM is projected to of
using another linear layer. Finally, we concatenate
y1, y2, ..., y80 along the channel axis and obtain
the output mel-spectrogram. We train the FreqAR
model with teacher forcing. In this work, we set H
to 32.

𝑥

𝑦!"#

𝑦!

MAE Loss

FFT Blocks

concat

LSTM

Linear

LSTM

Figure 7: The architecture of the decoder for autoregres-
sive modeling along frequency. “FFT blocks" denotes
the feedforward Transformer Blocks (Ren et al., 2019).

A.3 Structural Similarity Index (SSIM)
Structural Similarity Index (SSIM) (Wang et al.,
2004) is one of the state-of-the-art perceptual met-
rics to measure image quality, which can capture

11Since the time axis of mel-spectrogram has a variable
length, we cannot model the autoregressive along frequency by
regarding the time axis as the channel dimension and directly
feeding the transposed mel-spectrogram into a causal decoder
similar to that in TransformerTTS.

structural information and texture. The value of
SSIM is between 0 and 1, where 1 indicates per-
fect perceptual quality relative to the ground truth.
For each data point in predicted and ground-truth
mel-spectrograms (ŝ = ŷ(t, f) and s = y(t, f)),
the SSIM value is computed as: SSIM(s, ŝ) =
2µsµŝ+C1

µ2
s+µ2

ŝ+C1
· 2σsŝ+C2

σ2
s+σ2

ŝ+C2
, where µs and µŝ denote the

means for two regions, which are centered in s
and ŝ within a 2D-window with size (W,W ) re-
spectively, and we set W to 11; σs and σŝ are
standard deviation for regions s and ŝ; σsŝ is the
covariance of regions s and ŝ and C1 = 0.0001
and C2 = 0.0009 are constant values for stabi-
lizing the denominator. The SSIM loss for all
mel-spectrogram data points y(t, f) and ŷ(t, f)
is expressed as: LSSIM = 1

TF

∑T
t=1

∑F
f=1(1 −

SSIM(y(t, f), ŷ(t, f))). The model architecture
of SSIM loss follows the baseline model and we
directly replace the MAE loss in the baseline model
with SSIM loss as shown in Figure 4b.

A.4 Laplacian Mixture (LM) Loss

Laplacian mixture loss12 can model samples in-
dependently with multimodal distribution. Let
La(y;µ, β) denotes the probability distribution
function for a Laplace random variable y, where
µ and β are the mean and average absolute de-
viation (MAD) of the Laplace distribution. The
k-component mixture of Laplace distribution is de-
fined as follows:

P (y(t, f)) =

K∑
k=1

πk(t, f)×

La(y(t, f);µk(t, f), βk(t, f)),

where µk(t, f) and βk(t, f) are the mean and MAD
of the distribution of the k-th Laplacian component.
The log-likelihood loss under mixture of Laplace
distribution is:

LLM = − 1

TF

T∑
t=1

F∑
f=1

log

{
K∑

k=1

πk La(y(t, f);µk, βk)

}
.

As shown in Figure 4b, the basic architecture of
mel-spectrogram decoder follows baseline model
and we modify the output layer of the baseline

12We choose Laplace distribution as the mixture distribu-
tion since the distribution of the magnitude of spectrogram is
Laplacian (Tits et al., 2019; Usman et al., 2018; Gazor and
Zhang, 2003). We have also tried other mixture distributions
(e.g., mixture of logistic and mixture of Gaussian) and have
similar findings.
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model to predict µk(t, k), σk(t, k) and πk(t, k)
for each component k in each mel-spectrogram
bin located in (t, k). Then the model is op-
timized with LLM loss only and we set k =
5. In inference, for each data point in the mel-
spectrogram, we first choice the Laplacian com-
ponent k according to the probability π1, ..., πK
and then sample it from the Laplacian distribution
La(y(t, f);µk(t, f), βk(t, f)).

A.5 Generative Adversarial Network (GAN)
We introduce adversarial training to better model
the dependent and multimodal distribution. In-
spired by Wu and Luan (2020); Binkowski et al.
(2020), we adopt multiple random window dis-
criminators where the input mel-spectrogram is
randomly clipped into 3 clips with different win-
dow lengths, and each clip is fed into one dis-
criminator. The discriminator consists of a 3-layer
2D-convolutional network13 with LeakyReLU ac-
tivation, each followed by the batch normaliza-
tion and dropout layer, and finally, an extra lin-
ear layer is added to project the hidden states to
a probability to measure whether the input is a
real mel-spectrogram sample. We use the LS-
GAN (Mao et al., 2017) loss to train the TTS
model G and multi-window discriminators D1,
D2 and D3: LadvD =

∑3
i=1 Ey(Di(y) − 1)2 +

EŷDi(ŷ)
2, LadvG = 1

3

∑3
i=1 Eŷ(Di(ŷ) − 1)2,

where ŷ and y are the generated and ground-truth
mel-spectrograms.

We use multiple random window discriminators
to implement the generative adversarial network.
The architecture of multiple random window dis-
criminators is shown in Figure 8.

A.6 Glow
Glow (Kingma and Dhariwal, 2018) is a kind of
normalizing flow, which maps data into a known
and simple prior (e.g., spherical multivariate Gaus-
sian distribution). Glow is optimized with the ex-
act log-likelihood of the data and as a generative
model, it is very good at modeling all dependencies
within very high-dimensional input data, which is
usually specified in the form of a dependent and
multimodal probability distribution. To make a fair
comparison with other modeling methods, we only
take the output hidden states of the encoder as the
condition to each step of flows and use spherical

13Through experiments, we find that the 2D-CNN-based
network performs better than 1D-CNN in discriminator, espe-
cially for the reconstruction of high-frequency details.
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Figure 8: The architecture of multiple random window
discriminators. ŷ and y denote the predicted and the
ground-truth mel-spectrogram respectively.

Gaussian as the prior distribution like in the vanilla
Glow (Kingma and Dhariwal, 2018). As shown in
Figure 4d, our Glow-based decoder models the dis-
tribution of mel-spectrograms conditioned on the
encoder output hidden states x. The Glow-based
decoder is composed of k flow steps f1, ...,fk,
each of which consists of an affine coupling layer,
an invertible 1x1 convolution, and an activation
normalization layer. Glow-based decoder maps
the spherical Gaussian random variables z to the
mel-spectrograms as

z ∼ N (z; 0, I), y = f0 ◦ f1 ◦ . . .fk(z, x).
(1)

In training (dotted line in Figure 4d), we directly
minimize the negative log-likelihood of the data,
which can be calculated using a change of vari-
ables:

z =f−1
k ◦ f−1

k−1 ◦ . . .f−1
0 (y), (2)

log pθ(y|x) = log pθ(z)+

k∑
i=1

log |det(J(f−1
i (y, x)))|, (3)

where the first term in Eq. (3) is the log-likelihood
of the spherical Gaussian, J is the Jacobian and θ is
the parameters of the Glow-based mel-spectrogram
decoder. In inference (solid line in Figure 4d), we
sample z from the spherical multivariate Gaussian
distribution and generate mel-spectrogram using
Eq. (1).
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The architecture of Glow-based modeling
method is shown in Figure 9. We choose non-
causal WaveNet (Van Den Oord et al., 2016) as
the network in the affine coupling layers following
Kim et al. (2020). We set the number of flow steps
K to 24 and the layers of WaveNet to 414. We
also set the dilation of WaveNet to 1 since we do
not need very large receptive fields as that used in
vocoder.

𝑥 Affine Coupling Layer 
(Non-Casual WaveNet)

Actnorm

Invertible 1x1 Conv1d x K

Unsqueeze

Squeeze

𝑧~𝑁(0,1)

𝑦

Figure 9: The architecture for Glow-based modeling
method. The training and inference directions are repre-
sented with dotted and solid lines respectively.

B Experimental Settings

In this section, we describe detailed experimental
settings including datasets, training and inference
details and evaluation criterion.

Datasets We conduct all experiments on
LJSpeech dataset (Ito, 2017), which contains
13,100 English audio clips (about 24 hours) of a
single speaker and corresponding text transcripts.
We split the dataset into three sets: 12,228 samples
for training, 349 samples (with document title
LJ003) for validation and 523 samples (with
document title LJ001 and LJ002) for testing
following Ren et al. (2020). We convert the text
sequence into the phoneme sequence (Arik et al.,
2017; Wang et al., 2017; Shen et al., 2018) with
an open-source grapheme-to-phoneme tool15 to
alleviate the mispronunciation problem. The raw
waveform is transformed into mel-spectrograms
following Shen et al. (2018) and we set frame size

14The total number of parameters of Glow-based method
(43M) is about twice that of other modeling methods (26M)
and we find that the performance degrades when using the
smaller model, indicating that the Glow-based modeling
method requires a large model footprint to keep the bijection.

15https://github.com/Kyubyong/g2p

and hop size to 1024 and 256 with respect to the
sample rate 22050.

Training and Inference We train the model on
1 NVIDIA 2080Ti GPU, with batch size of 48
sentences. We use the Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.5, β2 = 0.998 and
ε = 10−9 which can stabilize the adversarial train-
ing. We follow the same learning rate schedule in
Vaswani et al. (2017). It takes 160k steps for train-
ing until convergence, except Glow-based model,
which needs 480k steps. In the inference pro-
cess, the output mel-spectrograms are transformed
into audio samples using pre-trained Parallel Wave-
GAN (Yamamoto et al., 2020)16.

Subjective Evaluation To evaluate the per-
ceptual quality, we conduct the MOS and
CMOS (Loizou, 2011) tests. We randomly choose
30 samples from the test set for subjective evalu-
ation. Twenty native English speakers are asked
to make quality judgments about the synthesized
speech samples. The text content keeps consistent
among different systems so that all testers only ex-
amine the audio quality without other interference
factors. For MOS, each evaluator is asked to mark
the subjective naturalness of a sentence on a 1-5
Likert scale. For CMOS, listeners are asked to com-
pare pairs of audio generated by systems A and B
and indicate which of the two audio they prefer and
choose one of the following scores: 0 indicating
no difference, 1 indicating small difference, 2 in-
dicating a large difference and 3 indicating a very
large difference. The estimated hourly wage paid
to participants is about $10 and we totally spent
about $900 on participant compensation.

Objective Evaluation Pech-Pacheco et al.
(2000) propose the variation of the Laplacian as a
“blurriness metric" for images since the Laplacian
filter can define edges well and blurry images
barely have any edges while a well-focused (clear)
image is expected to have a high variation of the
Laplacian in grey levels. Inspired by their work,
we introduce the variation of the Laplacian to
mel-spectrograms and analyze its correlation with
the smoothness. Specifically, the variation of the
Laplacian VarL is given by:

VarL(ȳ) =
T∑
t

F∑
f

(
|L(t, f)| − 1

NM

M∑
m

N∑
n

|L(m,n)|

)2

16https://github.com/kan-bayashi/
ParallelWaveGAN
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Figure 10: More marginal distributions mel-spectrogram P (y(t, f)|x = ph) for several different phonemes ph.
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Figure 11: More joint distributions P (y(t, f1), y(t, f2)|x) of two data points in mel-spectrogram along the frequency
axis (f1 = 10 and f2 = 11).
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Figure 12: More joint distributions P (y(t, f1), y(t, f2)|x) of two data points in mel-spectrogram along the frequency
axis (f1 = 10 and f2 = 50).

-3.0 -2.0 -1.0 0.0

-2.0

0.0

ph = AY 1

-4.0 -3.0 -2.0 -1.0 0.0
-4.0

-2.0

0.0

ph = D

-2.0 -1.0 0.0

-2.0

-1.0

0.0

ph = EH2

-3.0 -2.0 -1.0 0.0

-2.0

0.0

ph = EY 0

-3.0 -2.0 -1.0 0.0

-2.0

0.0

ph = G

-3.0 -2.0 -1.0 0.0

-3.0

-2.0

-1.0

0.0

ph = IH2

-3.0 -2.0 -1.0 0.0

-2.0

0.0

ph = JH

-3.0 -2.0 -1.0 0.0

-3.0

-2.0

-1.0

0.0

ph = N

Figure 13: More joint distributions P (y(t, f), y(t+ 1, f)|x) of two data points in mel-spectrogram along the time
axis.

where L(t, f) is the convolution of the (predicted
or ground-truth) mel-spectrogram ȳ(t, f) with the

Laplacian operation mask L defined as:

L =
1

6

 0 −1 0
−1 4 −1
0 −1 0
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The variation of the Laplacian increases with de-
creased smoothness of mel-spectrograms. We cal-
culate the variation of the Laplacian VarL of the
predicted mel-spectrogram and that of the ground-
truth mel-spectrogram to see how close they are.
We use an open-source tool17 to compute VarL.

C Experimental Settings for
Multi-Speaker TTS

In this section, we describe the experimental set-
tings for multi-speaker TTS (Section 5.2). We first
introduce the dataset, and then describe the model
details.

Dataset We conduct our experiments on the train-
clean-100 subset in LibriTTS (Zen et al., 2019),
which contains about 54 hours speech audio sam-
ples and their corresponding text transcriptions. We
choose the train-clean-100 subset since the data in
this subset is clean and the total time of speech
audio in this subset is comparable with that in
LJSpeech, which help us analyze the influence of
multi-speaker setting while excluding the influence
of training data size and noisy audio. These audio
samples are recorded by 123 female speakers and
124 male speakers. We randomly choose 200 audio
samples as the validation set, 200 of them as the
test set and the rest of them as the training set.

Model Details Based on the single-speaker base-
line model described in Section 3.2, to introduce
the speaker identity information into our model, we
add an extra speaker embedding module. We look
up the speaker embedding from this module and
add it to the encoder outputs. The hidden size of
the speaker embedding module is the same as the
encoder hidden size.

D More Analyses on Mel-Spectrogram
Distributions

D.1 More Visualizations
We plot more marginal and joint distributions
(along time and frequency) of mel-spectrogram in
Figure 10, 11, 12 and 13.

D.2 Multimodality Evaluation on the
Marginal Distributions

To further demonstrate that combination of the
methods from two categories (FastSpeech 2 and

17https://github.com/petronav/Blur_
Detection/blob/master/Variance_of_
Laplacian/blur_check_vol.py

other enhanced modeling methods) can alleviate
the over-smoothing problem, we conduct Harti-
gan’s dip test (Hartigan et al., 1985) on the marginal
distributions P (y(t, f)|x = ph) given f and ph
to measure the degree of multimodality of each
method. Specifically, we denote the dip test value
given the distribution P as D(P ) and a lower value
means more multimodal. we calculate the D(P)
under the marginal distributions P (ȳ(t, f)|x = ph)
and average D(P) under different ph and f to ob-
tain the averaged dip test value D̄. We compute
D̄ on the following systems: 1) GT, the ground-
truth mel-spectrogram; 2) MAE, which is the base-
line model as described in Section 3.2; 3) Fast-
Speech 2 as described in Section 3.1; 4) FastSpeech
2 + SSIM, which replaces MAE loss with SSIM
loss; 5) FastSpeech 2 + LM, which predicts the
k-component mixture of Laplace distribution and
is trained with LM loss; 6) FastSpeech 2 + GAN,
which adds the adversarial loss to FastSpeech 2;
and 7) FastSpeech 2 + Glow, which replaces the
mel-spectrogram decoder with Glow.

Table 7: Results of different models combining the basic
ideas of two categories. The best scores are in bold.

Methods D̄

GT 0.049
MAE 0.064

FastSpeech 2 0.060
FastSpeech 2 + SSIM 0.058
FastSpeech 2 + LM 0.060
FastSpeech 2 + GAN 0.054
FastSpeech 2 + Glow 0.056

The results are shown in Table 7. We can see
that all of these combined methods can increase
the degree of multimodality of the marginal distri-
butions P (y(t, f)|x = ph) and GAN achieves the
best D̄ among these methods, which is consistent
with our findings in Section 5 that all the combined
methods can alleviate the over-smoothing problem
and GAN performs the best.

E Potential Negative Societal Impacts and
Limitations

Although our analyses can inspire the community
and industry to develop more powerful TTS models,
it may result in unemployment for people with
related occupations such as broadcaster and radio
host. Besides, powerful TTS systems may be used
in non-consensual voice cloning and fake media
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generation, which might be harmful to society. As
for the limitation, we combine existing methods to
build a better TTS system rather than proposing a
brand new text-to-speech model.
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