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Abstract

The dominant paradigm for high-performance
models in novel NLP tasks today is direct
specialization for the task via training from
scratch or fine-tuning large pre-trained mod-
els. But does direct specialization capture how
humans approach novel language tasks? We
hypothesize that human performance is bet-
ter characterized by flexible inference through
composition of basic computational motifs
available to the human language user. To test
this hypothesis, we formulate a set of novel
fragmentary text completion tasks, and com-
pare the behavior of three direct-specialization
models against a new model we introduce,
GibbsComplete, which composes two basic
computational motifs central to contemporary
models: masked and autoregressive word pre-
diction. We conduct three types of evalua-
tion: human judgments of completion quality,
satisfaction of syntactic constraints imposed
by the input fragment, and similarity to hu-
man behavior in the structural statistics of the
completions. With no task-specific parame-
ter tuning, GibbsComplete performs compara-
bly to direct-specialization models in the first
two evaluations, and outperforms all direct-
specialization models in the third evaluation.
These results support our hypothesis that hu-
man behavior in novel language tasks and envi-
ronments may be better characterized by flexi-
ble composition of basic computational motifs
rather than by direct specialization.

1 Introduction

Representation learning has tremendously bene-
fited engineering for language comprehension and
generation systems. General frameworks such as
encoder-decoder or auto-regressive model can be
flexibly applied to a diverse range of problems.
With scaled models, enormous data, and well-
chosen training objective functions, generative pre-
training extracts useful and transferable informa-
tion from unlabeled text data (Howard and Ruder,

2018; Liu et al., 2019b). These generic representa-
tions can then be finetuned to quickly yield perfor-
mant models directly specialized for downstream
tasks (Howard and Ruder, 2018; Radford et al.,
2019; Devlin et al., 2019, inter alia). While the
broad idea of exploiting rich statistical informa-
tion in general-purpose representations has proven
practically effective for deep learning models since
a decade ago (Erhan et al., 2010; Collobert et al.,
2011), it remains an open question how well this
“direct specialization” approach yields models that
behave similarly to humans in flexible linguistic
behavior in novel situations.

Here we take this “direct specialization” ap-
proach as a scientific hypothesis regarding the na-
ture of linguistic knowledge and its flexible deploy-
ment in the human mind: that the human capacity
of processing linguistic information in novel tasks
arises from directly specializing and reshaping a
generic yet versatile representation. We contrast it
with an alternative hypothesis: that flexible knowl-
edge deployment reflects algorithmic composition
of a constrained repertoire of simple, reusable infer-
ence motifs. We depict these competing hypothe-
ses in Figure 1. In the “compositional inference”
hypothesis, the basic motifs arise from learning
processes and could potentially involve distinct in-
ternal representations, but can be recombined into
new inference routines guided by the principles of
approximate probabilistic inference. In this hypoth-
esis, the computational-level specifications (Marr,
1982) of motif functional forms play a crucial role.
As a theory of how the human mind approaches
new and potentially complex problems, the “di-
rect specialization” hypothesis entails generic start-
ing representations, task-specific supervision, and
specialization. The “compositional inference” hy-
pothesis, in contrast, entails novel combinations of
solutions to old problems.

Directly testing these two hypotheses would re-
quire a comprehensive set of experimental stud-
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(a) Direct specialization

Repertoire of computational motifs

The book after getting published won above average sales.

inRepeat(Sample(                  ))

_ _ _ _ published won _ _ _.

____ published won ____.

Guess # of missing tokens

The book they just published won a prestigious award.
The article was published won the prize.

Rerank(Score(                  ))Motif 2

_ _ _ published won _ _.
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Motif 1: Masked Language Model

Motif 1

The book they just published won a prestigious award.

Inference routines composed from motifs

…

The child went out

predict
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Motif 2: Forward language Model

(b) Compositional inference

Figure 1: Sketches of (a) “direct specialization” and (b) “compositional inference” paradigms. Blue arrows in the
left panel (a) represent the gradient flow of back-propagation.

ies of human behaviors involving various tasks,
which goes beyond the scope of this work. How-
ever, as an initial step, we consider these two hy-
potheses as computational paradigms that inform
and inspire the architecture of models that flexi-
bly perform novel language tasks, and ask which
paradigm gives rise to more human-like behaviors.
Here we ground the general question in a specific
setting: a novel set of fragmentary input comple-
tion challenges, inspired by the classic cloze task
(Ebbinghaus, 1897) and its contemporary variants.
Taking a reverse-engineering approach, we instan-
tiate the “direct specialization” and “compositional
inference” hypotheses as explicit computational
models and compared the models’ behaviors to
that of humans in a behavioral task of fragmentary
input completion. Our fragmentary input designs
highlight various aspects of abstract reasoning in-
volving subtle features of grammar and semantics.
We find that the model of the compositional infer-
ence approach generates high-quality completions
without direct training on the target task, achieves
comparable performance to the models from the
direct specialization approach in reasoning about
constrained syntactic contexts, and better matches
the fine-grained structural statistics of completions

written by human subjects.

2 The Fragment Completion Challenge

For purposes of this paper, we define a fragmentary
linguistic input, or simply a fragment, as a sequence
of word strings. Completing a fragment involves
adding a word string of any length between adja-
cent strings in the input to yield a single overall
well-formed sentence. The fragment completion
problem is formally equivalent to the text infilling
problem studied in a number of recent papers (Fe-
dus et al., 2018; Zhu et al., 2019; Liu et al., 2019a;
Donahue et al., 2020; Shen et al., 2020; Huang
et al., 2020), but here we study considerably more
open-ended completion problems from potentially
much briefer input than has been studied before.
For example, many native English speakers find
the simple fragmentary input

published won .

initially challenging yet solvable.1 We find that
carefully chosen simple fragmentary inputs can

1The input requires building a nested center-embedding
context such as “The most recent book she published won a
prize”.
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offer insight into the abilities of “direct specializa-
tion” and “compositional inference” models, and
the similarity of model and human behavior.

2.1 Computational Models

Formally, fragment completion involves generat-
ing, given input comprised of a sequence of k word
strings C = {C1, . . . , Ck}, a sequence of k − 1
word strings B = {B1, . . . , Bk−1}, such that the
resulting completion isC1◦B1◦· · ·◦Ck−1◦Bk−1◦
Ck.2 In general, exact inference over the full con-
ditional distribution P (B|C) will be intractable.
The “direct specialization” and “compositional in-
ference” paradigms offer differing model specifica-
tions and algorithmic options.

2.1.1 Direct Specialization
With direct specialization, we learn or fine-tune
representations under supervision for the task. We
take the learning objective to be maximizing the
likelihood p(B|C) for some sampled (B,C) pairs
generated from a training corpus (see Section 2.2):

p(B|C) =
|B|∏
i=1

p(Bi | B<i, C)

We ground this approach into two learning proce-
dures: (a) fine-tuning pretrained language model to
solve the target task, and (b) training on the target
task from scratch. The fine-tuning procedure takes
advantage of transferring knowledge from large
pretrained models, while the training from scratch
procedure allows us to further control the effect of
pretrained representation. For both learning pro-
cedures, we use three existing models trained or
fine-tuned for infilling: T5 (Raffel et al., 2019; In-
fillT5), BART (Lewis et al., 2020; InfillBART), and
GPT-2 (Radford et al., 2019) fine-tuned for text in-
filling, which was previously explored in Donahue
et al. (2020) and which we will follow them in call-
ing the Infilling Language Model (ILM) for short.
Implementation details can be found in Section 2.2.

2.1.2 Compositional Inference Approach
For the compositional inference approach, we pro-
pose GibbsComplete, a neurally-guided approxi-
mate inference algorithm that combines two canon-
ical computational motifs: masked word prediction
and autoregressive word prediction. Consider a

2We represent cases where material can be added at the
beginning or the end of the input as c1 or ck being the empty
string, ε.

Algorithm 1: GibbsComplete
Data: An incomplete sentence with blanks.
Result: M completions
initialize N ; // Number of candidates
initialize T ; // Number of iterations
completions←− [];
for n = 0; n < N ; n = n+ 1 do

propose a blank configuration;
for i = 0; i < T ; i = i+ 1 do

randomly choose a token in the blanks;
sample a replacement from MASKED

LANGUAGE MODEL;

add the final sample to completions;
rerank N completions to top-M based on average

word surprisal estimated by FORWARD LANGUAGE
MODEL;

candidate for the i-th completion string Bi to con-
sist of bi,<j ◦ bi,j ◦ bi,j<. GibbsComplete takes a
masked language modelling motif as a proposal dis-
tribution p(bi,j |B\i, bi,<j , bi,j<, C) and composes
it with a global scoring function φ(B,C) given
by a unidirectional language modelling motif, in
line with previous work on applying sampling-
based methods to generative neural sequence mod-
els (Berglund et al., 2015; Su et al., 2018; Miao
et al., 2019; Wang and Cho, 2019; He and Li,
2021). GibbsComplete can also be broadly viewed
as an example of unsupervised language generation,
among many other alternatives (Liu et al., 2019a;
Qin et al., 2020; West et al., 2021).

Our GibbsComplete algorithm first proposes a
random uniform guess on [1, 10] about the length
of each {Bi}, and initializes them as “[MASK]”
sequences of the guessed lengths. It then proposes
an edit to a randomly chosen position bi,j within
the blanks by sampling from the sorted list of likely
replacements according to the conditional proba-
bility p(bi,j |B\i, bi,<j , bi,j<, C) given by a masked
language model. We take 500 stochastic editing
steps: for the first 250 steps as a burn-in period,
the replacement is sampled from the top 50 likely
words; for the remaining iterations, the most likely
word is picked as the replacement, following the
common practice of annealing temperature for bet-
ter generation quality (Wang and Cho, 2019). The
final output of the editing process is a candidate
completion. We sample 1000 such candidates, and
then rerank them with an autoregressive forward
language model, using mean per-word conditional
log-probability as a scoring function to promote
fluency.

Note that neither the masked language model nor
the autoregressive language model is fine-tuned
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or retrained on the target infilling task: we take
them as basic computational motifs that are im-
mediately available to a language-using agent for
use in sampling-based probabilistic inference to
facilitate novel behaviors. Completing fragmentary
inputs of the type studied here is not a major form
of everyday language use, yet as our experiments
show, native speakers can perform even challeng-
ing fragment completions fairly well with little
practice.

Like the two learning settings considered in the
“direct specialization” approach, we implement in-
stances of GibbsComplete algorithm with (a) pre-
trained language models as the computational mo-
tifs, and (b) computational motifs of the same archi-
tecture as the pretrained counterparts but learned
from the same corpus as those trained-from-scratch
models from the “direct optimization” approach.

2.2 Model Implementations and Training
Datasets

We implement instances of the models under two
learning settings: (a) transferring knowledge from
pretrained models, and (b) training from scratch.
Implementations are based on the Huggingface
transformers package (Wolf et al., 2020).

In the case of knowledge transfer with pre-
trained models, no fine-tuning or learning is needed
for GibbsComplete. We simply use the small ver-
sion of pretrained GPT-2 (Radford et al., 2019) and
the base cased version of pretrained BERT (Devlin
et al., 2019) as the corresponding computational
motifs. For direct specialization models, we fine-
tune pretrained GPT-2 small, T5 base, and BART
large3 to get ILM, InfillT5 and InfillBART respec-
tively. The total number of parameters of these
model architectures is listed in Table 1. All mod-
els were fine-tuned on a 10 million token subset
of New York Times Corpus 2007 portion (Sand-
haus, 2008), with a batch size of 32 and learning
rate of 10−5. The supervision signal is generated
by randomly cropping some spans of words in a
sentence to get the fragmentary context C and a
plausible completion B (see Appendix C.2 for de-
tails). We stopped fine-tuning when the validation
loss increases for two epochs in a row. To generate

3Although the pretraining tasks of T5 and BART do in-
clude modified versions of the sentence infilling problem or
related text denoising tasks, our initial experimentation sug-
gested that pretrained T5 and BART could not fully support
the flexible generalization required in our studies, hence we
fine-tuned them as above.

completions from ILM, InfillT5, and InfillBART,
we apply ancestral sampling from a list of top 50
mostly likely tokens at each time step. In exper-
imenting with the fine-tuned models, we noticed
lower diversity in InfillBART samples compared
to the other models. Hence we set the sampling
temperature as 1 for other models but 1.8 for the
fine-tuned InfillBART to ensure that all models
generate a good variety of completions.

When training from scratch, we train all com-
ponents to be learned in all models on two sepa-
rate 42-million-token datasets: (1) part of the 2006
year portion of New York Times Corpus (Sand-
haus, 2008; NYT), and (2) part of the BLLIP cor-
pus (Charniak et al., 2000) previously prepared by
Hu et al. (2020). For GibbsComplete, we train
an auto-regressive Transformer decoder language
model of the same size as pretrained GPT-2 small
and a masked language model of the same size as
pretrained base cased BERT. For ILM, InfillT5, and
InfillBART, we initialize the same architecture and
tokenizer as their fine-tuned counterparts and train
each model from scratch. We use a batch size of 16
for the masked language model in GibbsComplete
and 32 for all the other models. The learning rate is
set as 10−5 across all the models. Training is early
stopped if either the validation loss increases for
two epochs in a row or the total number of training
epochs exceeds 100.

2.3 Collecting Human Completions

We also collect human completions of our frag-
ments on Mechanical Turk, to evaluate perfor-
mance and for fine-grained comparison of human
and model behavior. The visual layout of these
experiments is shown in Appendix A. Participants
were instructed to use as many or little words as
they see appropriate to fill in the blanks in the frag-
mentary input, so that each completed sentence is
coherent, grammatical, and meaningful. The inter-
face required each blank to be filled in with at least
one word. We imposed no time constraints.

3 Experiments

To address the question of whether the “direct spe-
cialization” or “compositional inference” paradigm
gives rise to more humanlike behaviors, we focus
on designing a series of linguistically-motivated
experiments4.

4Code and stimuli available at https://github.
com/pqian11/fragment-completion
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Figure 2: Human evaluation of completion quality for human participants and models in Experiment I. Semi-
transparent hollow markers indicate the average rating for a particular item. Solid markers indicate the mean score,
with error bar representing asymptotic 95% confidence interval of the population mean score.

3.1 Evaluation I: Completion Quality Given
Bi-directional Context

Our first experiment qualitatively confirms that
each model respects basic bidirectional constraints,
and quantitatively evaluates the fluency of each
model’s completions using human judgments. We
design 30 two-fragment stimuli of the form

α β

by adapting sentences from the Brown Corpus
(Francis and Kucera, 1979) and British National
Corpus (2001), choosing spans to crop out such that
successful completion does not require outside-of-
sentence information or much factual world knowl-
edge, but does require non-trivial respect of gram-
matical constraints: we require that both α and β
are multi-word fragments that cross conventional
constituent boundaries.

Table 4 in Appendix G.1 lists one randomly-
generated completion from different models to a
subset of the stimuli. Qualitatively, all models gen-
erate high-quality completions that fit the context
and sound fluent, although coherence is sometimes
lacking. For quantitative evaluation, we recruit hu-
man raters on Prolific to evaluate the quality of the
completed sentences written by models as well as
human writers previously recruited on Mechani-
cal Turk. Human raters were presented with the
fragmentary input together with a completion and
asked to judge the grammaticality, coherence, in-
terestingness, and overall quality of the presented
completion. Ratings range from 1 to 100, with 1
the lowest score and 100 the highest. Each human
rater judged 150 completions in total, with 30 com-
pletions from a human writer or each of the models.
Raters did not know whether a completion comes

from a human or a model. The results of these
ratings are shown in Figure 2: GibbsComplete, In-
fillT5, and InfillBART achieve similar performance
on grammaticality judgment on this set of stim-
uli. The same human evaluation procedure is also
applied to the set of models trained from scratch
on the NYT and BLLIP data; results are given in
Figure 2. Overall performance is worse than with
the pre-trained models, but the relative patterns
from model to model are similar. Overall, the re-
sults of Evaluation 1 suggest that when extensive
bidirectional context is given, all models are able
to generate structurally well-formed completions.
This success motivates our next experiment, which
involves briefer input in syntactically constrained
configurations that more strongly challenge mod-
els’ grammatical abilities.

3.2 Evaluation II: Satisfying Syntactic
Constraints

To illustrate our syntactic constraint satisfaction
tests, consider this example:

The paintings that the artist gave to is .

The first fragment consists of a plural noun phrase
with an incomplete relative clause postmodifier;
the second fragment is a singular verb, “is”. The
plural noun in the first fragment cannot be the sub-
ject of “is” due to number agreement in English,
which forces a syntactically complex completion,
such as “The paintings that the artist gave to the
museum are gorgeous and one of them is absolutely
a masterpiece.”.

We design 26 novel fragment configurations to
test models’ syntactic behavior, ranging broadly
across subject-predicate agreement, clausal struc-
ture, coordination, and filler-gap dependencies. For
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Figure 3: Aggregated results on syntactic reasoning tests. Error bars represent 95% confidence intervals.

each configuration we construct a set of semanti-
cally diverse fragmentary inputs that share the criti-
cal high-level syntactic structure for inducing simi-
lar grammatical constraints. The semantic diversity
of the items facilitates more reliable estimation of
the models’ syntactic reasoning abilities. We pro-
vide descriptions and examples of each syntactic
reasoning test in Appendix E.

With each model we generated 35 completions
for each stimulus in each of the 26 tests. To col-
lect human judgments for every single completion
would be laborious and difficult to scale, in par-
ticular because evaluating whether the syntactic
constraint is satisfied often requires some linguistic
expertise. Instead, we represent the key syntactic
constraints imposed by the fragments as tree pat-
terns to be expected in the constituency parse of a
completed stimulus. For example, given a stimulus
“ published won .” from the test (6) as
shown in Appendix E, the linguistic intuition is
that “published” should be part of a Verb Phrase
embedded in a relative clause that modifies the sub-
ject of the predicate “won”, despite other possible
structural variations. We express these tree patterns
using the Tregex tool (Levy and Andrew, 2006),
compute the average rate of hitting the desired syn-
tactic patterns out of the 35 completions which are
annotated with syntactic parses by an off-the-shelf
neural constituency parser benepar (Kitaev and
Klein, 2018), and average across all the stimuli in
a test as the final accuracy score for that test.5

Figure 3 shows the performance of humans and
each model; Figure 8 in Appendix G.2 breaks down
accuracy scores by each test separately. Human per-
formance6 is as good as or superior to all models

5We also conducted manual evaluation of a sample of
the pattern-matching results, which confirmed high accuracy
of this automated evaluation procedure; see Appendix F for
details.

6We collected human completions from Mechanical Turk
for two stimulus items of each test, with 5–6 responses for

(p < 0.05 for all models except fine-tuned InfillT5
and InfillBART, two-sided paired t-test). For the
pretrained models, ILM performs the worst; the
other three models’ performance is comparable.
When training from scratch, GibbsComplete out-
performs all other models except on BLLIP, where
its performance is matched by InfillBART. To ad-
dress a potential concern about the ensembling ef-
fect of the reranking process in GibbsComplete,
we also examine the performance obtained when
composing the outputs of the directly-specialized
models with the reranking process of GibbsCom-
plete, generating 1000 candidate completions per
fragment and selecting the top-ranked 35 comple-
tions using the same reranker as in GibbsComplete.
Figure 10 in Appendix G.2 shows the results: In-
fillT5 and InfillBART now perform the best and
even match human performance, further underscor-
ing the value of a compositional approach even
when dedicated training for direct specialization is
available.

3.3 Evaluation III: Structural Similarity to
Human Behavior

Evaluation II showed that models can perform very
well even on more grammatically challenging frag-
ment completion tasks, in some cases matching hu-
man performance. But do these models complete
fragments in a similar way as humans do? Eval-
uation III turns to this question, using still more
open-ended fragments and fine-grained analysis
of the structural similarity of human and model
completions.

To evaluate fine-grained similarity of human and
model behavior, we define summary statistics of
features of completions and assess the similarity of
the summary statistics seen in human and model
completions. We designed 120 stimuli in the form

each item. Human completions were evaluated with the same
tree pattern-based method as model-generated completions.
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of “ w1 w2 .”, where w1 and w2

are single-word fragments, allowing for a diverse
range of plausible syntactic choices of the global
context. For example,

museum city .

may be completed using a variety of different struc-
tural configurations, as shown in Figure 4. We
parse each completion with benepar (Kitaev and
Klein, 2018) and use the syntactic category of the
lowest common ancestor (LCA) of w1 and w2 in
the parse tree as a feature of the completion. We
choose 40 Noun-Noun, 40 Adjective-Adjective,
and 40 Adjective-Noun combination as w1 and
w2 respectively, once again with diverse seman-
tic content. We recruited human subjects from
Mechanical Turk, with 18 subjects for Noun-Noun
condition, 18 subjects for Adjective-Adjective, and
18 subjects for Adjective-Noun. Each subject wrote
one completion for every item in the assigned con-
dition. For an item, the completions from the sub-
jects provide the human data from which we esti-
mate the summary statistics of interest. We esti-
mate the LCA frequency distribution across five
syntactic category types: S, NP, VP, ADJP, and
Other (everything else). For models, we sample
and parse 35 completions for each stimulus to esti-
mate the LCA frequency distribution.

We evaluate the performance of a model by its
mean squared error (MSE) against human relative

frequencies of the five syntactic category types for
each item. Statistical significance of difference
between model performances is tested with two-
sided paired t-test. Figure 5 shows quantitative
results for each model+training condition. Over-
all, GibbsComplete is the best-performing model.
With pretrained models, GibbsComplete has signif-
icantly lower aggregated MSE than fine-tuned In-
fillT5 (p = 0.012) and fine-tuned ILM (p = 0.010),
and is numerically lower than that of fine-tuned
InfillBART (p = 0.108). When training from
scratch, GibbsComplete is not significantly better.
The MSE of GibbsComplete with motifs trained
from scratch is not significantly better than other
models trained from scratch on NYT, but when
training on BLLIP it significantly outperforms In-
fillT5 (p = 0.017) and InfillBART (p = 0.048)
trained from scratch on BLLIP. Looking at spe-
cific LCA categories, we find that GibbsComplete
outperforms all the other models (p < 0.005) in
matching the frequency of NP in human comple-
tions. Except when comparing ILM trained on
NYT to GibbsComplete on VP (p = 0.041), no
other directly-specialized models significantly per-
forms better than GibbsComplete for category S,
VP, and ADJP. Overall, these results suggest that
the statistics of LCA categories in the parsed com-
pletions by GibbsComplete with pretrained models
better match those of humans than those fine-tuned
models, and that the advantage of GibbsComplete
may also extend to low-resource setting.

4 Discussion

In this paper we have considered the direct-
specialization approach to novel tasks dominant
in contemporary NLP today as a cognitive hy-
pothesis: that the knowledge structures and pro-
cesses humans deploy for novel language tasks are
best captured by the end result of fine-tuning or
from-scratch training on the novel task itself. We
have contrasted this with a competing hypothesis,
namely that human behavior in novel tasks is better
captured by inferences resulting from flexibly com-
posing existing basic computational motifs, which
relates to the idea explored in compositional use of
neural modules (Andreas et al., 2016). To compare
these hypotheses, we have developed and tested
new, more challenging, and more open-ended ver-
sions of the text infilling task, which we term frag-
mentary input completion, and evaluated the per-
formance of different models instantiating the two
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Figure 5: Comparing structural statistics in model’s completions with that of the human-written completions. Error
bars represent asymptotic 95% confidence intervals.

hypotheses against subjective human judgments,
fixed success criteria, and fine-grained comparisons
with human task performance. In the future this
approach could be extended further for more com-
prehensive evaluation of conditioned language gen-
eration systems.

Our results are generally favorable for the com-
positional inference hypothesis as exemplified by
our novel GibbsComplete algorithm, which com-
poses the two fundamental language modelling mo-
tifs central to today’s language models, masked
word prediction and autoregressive modeling. The
motifs themselves need to be learned in the first
place, but there is a strong case that these mo-
tifs reflect tasks fundamental to everyday language
use: identifying an uncertain word using bidirec-
tional context (Connine et al., 1991; Dilley and
Pitt, 2010; Levy, 2008b) and predicting upcom-
ing input (Hale, 2001; Levy, 2008a; Kutas et al.,
2011; Kuperberg and Jaeger, 2016). The idea we
advance here, that these fundamental motifs are
pre-existing and flexibly deployed for novel tasks,
echoes a long-standing perspective in cognitive sci-
ence well-summarized by Bruner et al. (1986), that
“Thinking is not the acquisition of knowledge, but
the use of knowledge in the interest of solving prob-
lems”.

Of course, we do not interpret these results as
suggesting that the human mind is literally a Gibbs
sampler. But there are broader arguments that

sampling-based approaches may capture important
general features of human inferential patterns (Vul
et al., 2014). Furthermore, the compositional in-
ference approach to modelling flexible language
generation by no means diminishes the value of
learning or fine-tuning—indeed, fine-tuned mod-
els can themselves be composed (see also our ex-
ploratory work in Appendix G.2). Rather, we hope
that this work may help widen the perspective on
the relationship between learning and inference in
novel language tasks and contexts.

5 Conclusion

Scaled learning and quick adaptation of linguistic
representation have enabled huge progress in the
engineering of high-performance NLP systems, but
our results suggest that flexible redeployment of
basic computational motifs may have advantages
for capturing how humans flexibly use language
in novel circumstances where they do not have
extensive experience. Our studies offer system-
atic model comparisons with materials designed to
highlight subtle features of grammatical knowledge
and featural statistics of human completion prefer-
ences, and point to the need for longer-term efforts
in understanding and modeling human cognitive
flexibility in computational terms. As an initial
step, we explored the “compositional inference”
hypothesis by sketching out an inference algorithm
based on the principles of approximate Bayesian
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inference. The results suggest certain advantages
of an inference-oriented view of human language
generation, and an alternative path towards build-
ing models that process linguistic information as
flexibly as humans do.
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A Behavioral Experiment

Figure 6 shows the screenshot of one trial in the
behavioral experiment, through which we collected
human-written completions to the fragmentary lin-
guistic stimuli. In our implementation, we depict
the blanks in the fragmentary input as a short un-
derline placeholder. As soon as one starts typing
words in the text input box, the typed content will
be rendered immediately as replacement of the cor-
responding blank.

Figure 6: Screenshot of an experimental trial of the
fragment completion task for human participants.

B Human Evaluation of Completion
Quality

We collected human rating of completion quality
for Evaluation I. Figure 7 shows the screenshot of
one trial in the completion quality judgment task
for human raters.

C Model Implementation

C.1 Model Size
Table 1 lists the number of parameters in each
model. Notice that the count of total parameters
for GibbsComplete includes the autoregressive lan-
guage modeling motif (124M) and the masked lan-
guage modeling motif (109M), both of which has
12 layers.

# of layers # of parameters

GibbsComplete 12 233M
InfillT5 12 223M
InfillBART 24 406M
ILM 12 124M

Table 1: Model size comparison.

C.2 Sampling Infilling Pairs for Model
Training

To train InfillT5, InfillBART, and ILM directly
on the text infilling task, we employ a data gen-
eration process to randomly sample training data

and prepare validation data. Given a sentence,
we randomly replace spans of the sentence with
[BLANK] symbol and append the original contents
of the blanks in order separated by [FILLER]
symbol. The total number of spans is uniformly
sampled between 2 and 9. For a sentence, the max-
imal number of spans to be sampled is capped at
the sentence length if the total number of words in
the sentence is less than 9. This process gives us
a fragmentary context C and one of its plausible
completionB. The pairedC andB sampled from a
corpus are used to provide task supervision signal.

For example, given the original sentence in the
corpus: “The camera had been operating on its
backup electrical system since last summer, how-
ever, when electrical problems in its main system
caused it to shut down for a while.”, a training in-
stance after randomly cropping the sentence may
consist of C as “The camera had been [BLANK]
backup electrical [BLANK] electrical problems
in its main system caused it to shut [BLANK]
while.” and B as “operating on its [FILLER] sys-
tem since last summer, however, when [FILLER]
down for a [FILLER]”, where the cropped spans
of words to be filled in are simply concatenated
with [FILLER] marking the end of each span.

Notice that pretrained T5 uses a numbered list of
tokens (e.g. <extra_id_0>, <extra_id_1>,
etc) as delimiters of the spans to be filled into the
blanks. Hence we follow the same convention
when generating infilling pair data for fine-tuning
pretrained T5 or training InfillT5 from scratch.

D Test Items in Evaluation I

Here we list the 30 items of the form “α β”
used in Evaluation I:

(1) He is one of jazz on a violin.
(2) It is unclear will have on the elections.
(3) The prices - even the special offers - thought rea-

sonable.
(4) Giving up the violin had predicted would have a

promising career on the concert stage.
(5) A difference of opinion arose between the vote is

handled.
(6) He was quiet, polite, he met.
(7) The local authority applied refused to provide the

necessary grant.
(8) They argued proposed implies a competitive out-

come.
(9) Vineyards were found scattered throughout the region

visited grew any grapes.
(10) She knew the rents find any good, affordable

space in town.
(11) Due to the fact that building codes what they are.
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Figure 7: Screenshot of a trial of the completion quality evaluation task for human raters.

(12) The fact that but no less important in the long run.
(13) It is ever existed outside the imaginations of his-

torians.
(14) He any of the Beatles songs.
(15) Even say the findings should be taken with cau-

tion.
(16) The manager put table.
(17) Each of the children invited to marked with a red,

white and blue ribbon.
(18) A sports club located to keep up with the rent.
(19) A man believed involved yesterday.
(20) The famous writer a publisher to write two more

books.
(21) If these services are revenues to make them possi-

ble.
(22) It does indeed through no fault of their own shoul-

der the cost.
(23) Although they emphasizes that the opportunities

them worth considering.
(24) This building has been consistently and busi-

nesses for ten years.
(25) The team admitted it a tough year.
(26) The performance marked most promising young

conductor.
(27) Previous experience the best equipment possible.
(28) There appears to be enough the interest deficiency

for eight more years.
(29) They do not not open to debate.
(30) The government not addressing the poverty.

E Syntactic Reasoning Tests

Here we briefly introduce the 26 sets of tests, using
one stimulus from each test to illustrate the syn-
tactic constraints imposed by the fragments. Tests
(1–5) target SUBJECT–PREDICATE AGREEMENT in

English. These tests target the number mismatch of
a noun phrase and a predicate, with the noun phrase
embedded in various local syntactic structures, in-
cluding (1) a bare noun phrase, (2) a noun phrase
with a relative clause, (3) a noun phrase in com-
plement clause, (4) a noun phrase in a coordinate
structure, and (5) a noun phrase with a partially
complete prepositional-phrase modifier.

(1) The reporter are .
(2) The paintings that the artist gave to is .
(3) insist that the jury have .
(4) The bike and has .
(5) The museums in is .

Tests (6–15) target a variety of CLAUSAL STRUC-
TURE. Tests (6–11) require that the completion
place the first verb inside an embedded clause that
ends where the second verb’s VP begins. Tests
(12–13) feature a sentence-final verbal phrase with
a missing obligatory object, requiring a comple-
tion in which that object has been extracted. Tests
(14–15) target resultative structure.

(6) published won .
(7) introduced into the classroom has .
(8) visited during the trip to the beautiful valley grew

.
(9) owned the trademark began .

(10) brought out the plan for protecting the habitat of
the endangered birds argued .

(11) Giving up the violin predicted would .
(12) relied on.
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(13) the founder of the research institute has never
dreamed of.

(14) growth steady.
(15) decision of selling the old car unwise.

Tests (16–22) target COORDINATION of differ-
ent phrasal categories, including (16) coordinated
clauses, (17) coordinated VPs, (18) coordinated
NPs in an embedded clause, (19) coordinated VPs
in an embedded clause, and (22) coordinated sub-
jects in a complement clause. Tests (20) and (21)
feature collocations “either ... or ...” and “neither ...
nor ... ”. The intuition behind (20–21) is that the
“either” or “neither”, if used as conjunction words,
requires an “or” or “nor” to follow respectively.

(16) problem but no one took .
(17) standards and improved the .
(18) the symbols and the patterns carved on the sur-

face of the clay bowl stood for.
(19) studied the formation of galaxies and explored

the mystery of the universe was .
(20) either book a ticket from the official website of

.
(21) neither give up too quickly simply because of the

failures encountered at the initial .
(22) what the senator and those who supported

steps moving forward.

Tests (23–26) target FILLER-GAP DEPENDEN-
CIES. The basic idea is that the wh-word requires a
gap to appear at an appropriate position.

(23) how the has ever thought about.
(24) what the the sculpture.
(25) who bake different kinds of bread.
(26) why benefited from.

F Comparing Automated Tree-Search
Evaluation with Human Judgment

Precision Recall Accuracy

Human 0.938 0.894 0.865
GibbsComplete 0.974 0.841 0.846
InfillT5 0.978 0.889 0.875
InfillBART 0.966 0.934 0.913
ILM 0.928 0.842 0.837

Table 2: Performance of tree search pattern-based eval-
uation by model types.

To show the effectiveness of Tregex-based au-
tomatic evaluation with hand-designed tree search
pattern, we conduct a small-scale comparison of
human evaluation of the targeted structure in a com-
pletion to an item of the syntactic reasoning test.
We select a subset of completions generated by
humans and models. For each model along with

humans, we randomly choose two items out of each
test and randomly select two completions to each
of the item. There are 520 completions in total for
us to annotate human judgment.

For each of the 520 completions, we evaluate
whether it resolves the challenge associated with
the particular test and annotate human judgment as
binary outcome, with 1 indicating success and 0
indicating failure. During the annotation process,
the human annotator was blind to the judgment of
Tregex-based evaluation as well as which model
the completion came from. Completions were also
shuffled before the annotation. Table 2 shows that
the tree search pattern-based evaluation generally
aligns with human judgment with high accuracy for
all models. Table 3 shows that tree search pattern-
based automated evaluation result aligns with that
of human judgments for most tests.

G Additional Results

G.1 Evaluation I
Table 4, 5, and 6 list one sampled completion for
four selected items from the 30 stimuli used in Eval-
uation I. Completions in Table 4 are generated by
pretrained/fine-tuned models. Completions in Ta-
ble 5 are generated by models trained from scratch
on NYT. Completionns in Table 6 are generated by
models trained from scratch on BLLIP.

G.2 Evaluation II
Figure 8 shows model performance on each syn-
tactic reasoning test. Figure 9 and Figure 10 show
accuracies on each syntactic reasoning test and the
aggregated performance respectively, based on re-
sults where the outputs of the directly-specialized
models are composed with the reranking process
of GibbsComplete with the same reranker.

G.3 Evaluation III
Figure 11 shows the comparison among GibbsCom-
plete and other models with similar reranking pro-
cess applied. The qualitative pattern is similar to
those reported in Section 3.3. Figure 12, 13, and
14 plot the relative frequency of specific LCA cat-
egory in human-written completions against that
of model-generated completions, which are esti-
mated from pretrained/fine-tuned models, models
trained from scratch on NYT, and models trained
from scratch on BLLIP respectively.
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Test Index Test Name Precision Recall Accuracy

(1) Number Agreement 0.875 0.875 0.800
(2) Number Agreement (Long Subject) 0.938 0.882 0.850
(3) Number Agreement (Embedded Clause) 1.000 0.900 0.900
(4) Number Agreement (Coordination) 1.000 0.727 0.850
(5) Number Agreement (with PP) 0.938 1.000 0.950
(6) Clausal Structure 1.000 0.882 0.900
(7) Clausal Structure (PP Adjunct) 0.950 1.000 0.950
(8) Clausal Structure (Long Adjunct) 0.938 0.833 0.800
(9) Clausal Structure (Complement) 1.000 0.944 0.950
(10) Clausal Structure (Long Complement) 1.000 0.944 0.950
(11) Gerund 0.846 0.733 0.700
(12) Phrasal Verb 0.938 0.789 0.750
(13) Phrasal Verb (with NP) 1.000 0.875 0.900
(14) Resultative 1.000 0.938 0.950
(15) Resultative (Long NP) 1.000 0.867 0.900
(16) S Coordiation 1.000 0.789 0.800
(17) VP Coordination 1.000 1.000 1.000
(18) Embedded NP Coordination 1.000 0.500 0.700
(19) Embedded VP Coordination 0.947 1.000 0.950
(20) Coordination (either) 1.000 0.833 0.850
(21) Coordination (neither) 0.727 0.667 0.650
(22) Coordination in wh-clause 1.000 0.842 0.850
(23) Filler-Gap (Adjunct) 0.941 0.889 0.850
(24) Filler-Gap (Object) 1.000 1.000 1.000
(25) Filler-Gap (Subject) 0.947 0.947 0.900
(26) Filler-Gap (Phrasal Verb) 0.882 1.000 0.900

Table 3: Performance of tree search pattern-based evaluation by individual test.

He is one of jazz on a violin.
GibbsComplete He is one of the few jazz musicians to have played jazz on a violin.

InfillT5 He is one of the first to play jazz on a violin.
InfillBART He is one of the few people in the country with a master of jazz on a violin.

ILM He is one of only three players to have taught jazz on a violin.

Vineyards were found scattered throughout the region visited grew any grapes.
GibbsComplete Vineyards were found scattered throughout the region, but none of the vineyards she had visited

grew any grapes.
InfillT5 Vineyards were found scattered throughout the region but no one ever visited grew any grapes.

InfillBART Vineyards were found scattered throughout the region, but none of the farms I visited grew any
grapes.

ILM Vineyards were found scattered throughout the region, and once they had visited grew any grapes.

The famous writer a publisher to write two more books.
GibbsComplete The famous writer, however, moved on and finally found a publisher to write two more books.

InfillT5 The famous writer, he said he is considering a bid from a publisher to write two more books.
InfillBART The famous writer Ivanov has just been hired by a publisher to write two more books.

ILM The famous writer Samuel Beckett became a publisher to write two more books.

Giving up the violin had predicted would have a promising career on the concert stage.
GibbsComplete Giving up the violin, she asked her brother, Francis, who she had predicted would have a promising

career on the concert stage.
InfillT5 Giving up the violin to pursue a more eminent musical career, he made Mr. Orbach a friend and

friend who he had predicted would have a promising career on the concert stage.
InfillBART Giving up the violin, she gave up her training to concentrate on her son’s music studies, which she

had predicted would have a promising career on the concert stage.
ILM Giving up the violin he had predicted would have a promising career on the concert stage.

Table 4: Completions generated by pretrained/fine-tuned models for selected stimuli in Evaluation I.
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He is one of jazz on a violin.
GibbsComplete He is one of some of the most popular musicians in the history of jazz on a violin.

InfillT5 He is one of the best and brightest young singers, though the music is a bit of a sardonic evocation
of jazz on a violin.

InfillBART He is one of several young singers nominated for the prize, whether with a soloist or with the jazz
on a violin.

ILM He is one of four music students competing with jazz on a violin.

Vineyards were found scattered throughout the region visited grew any grapes.
GibbsComplete Vineyards were found scattered throughout the region by people who pointed out that no one they

visited grew any grapes.
InfillT5 Vineyards were found scattered throughout the region, and none of the pigs he visited grew any

grapes.
InfillBART Vineyards were found scattered throughout the region, and no one in the group of counties we visited

grew any grapes.
ILM Vineyards were found scattered throughout the region and not in as far north as the New Hampshire

border, but the discovery of more vines than anyone else hasd visited grew any grapes.

The famous writer a publisher to write two more books.
GibbsComplete The famous writer then told us that it would be a mistake for a publisher to write two more books.

InfillT5 The famous writer in the novel–"Fountains and Mysteries"–really was looking for a publisher to
write two more books.

InfillBART The famous writer who helped write "Municipal Bondage," she also said she had a intention of
waiting for a publisher to write two more books.

ILM The famous writer for The Times has a publisher to write two more books.

Giving up the violin had predicted would have a promising career on the concert stage.
GibbsComplete Giving up the violin was a good example of what some critics had predicted would have a promising

career on the concert stage.
InfillT5 Giving up the violin in his youth, he wore a long jacket and tie and was a fixture of a young man

that he had predicted would have a promising career on the concert stage.
InfillBART Giving up the violin part of the album, Mr. Carter, 61, earned a reputation as a musician who he had

predicted would have a promising career on the concert stage.
ILM Giving up the violin is the only kind of performance Mr. Levine had predicted would have a

promising career on the concert stage.

Table 5: Completions generated by models trained from scratch on NYT for selected stimuli in Evaluation I.

He is one of jazz on a violin.
GibbsComplete He is one of the few who think the big players are playing jazz on a violin.

InfillT5 He is one of the leading characters of jazz on a violin.
InfillBART He is one of the few players to play jazz on a violin.

ILM He is one of the most popular jazz on a violin.

Vineyards were found scattered throughout the region visited grew any grapes.
GibbsComplete Vineyards were found scattered throughout the region and almost a third of the homes he had visited

grew any grapes.
InfillT5 Vineyards were found scattered throughout the region, but the food I visited grew any grapes.

InfillBART Vineyards were found scattered throughout the region, but neither those they visited grew any grapes.
ILM Vineyards were found scattered throughout the region as soon as the trees visited grew any grapes.

The famous writer a publisher to write two more books.
GibbsComplete The famous writer lives in Beverly Hills and is trying to persuade a publisher to write two more

books.
InfillT5 The famous writer wants a publisher to write two more books.

InfillBART The famous writer is a woman who has to get a book to get a publisher to write two more books.
ILM The famous writer, a former writer for the New York Times, recently asked a publisher to write two

more books.

Giving up the violin had predicted would have a promising career on the concert stage.
GibbsComplete Giving up the violin was part of a major art collection that I had predicted would have a promising

career on the concert stage.
InfillT5 Giving up the violin, which was not at all a good ad, was the key factor behind a successful series

on MGM, which Mr. Ross had predicted would have a promising career on the concert stage.
InfillBART Giving up the violin to the piano for a complete play was tough, since he was the conductor, a man

you had predicted would have a promising career on the concert stage.
ILM Giving up the violin, he was a bit uncomfortable and had predicted would have a promising career

on the concert stage.

Table 6: Completions generated by models trained from scratch on BLLIP for selected stimuli in Evaluation I.
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Figure 8: Model performances by each syntactic reasoning test, corresponding to example stimuli in Appendix E.
Error bars represent 95% confidence intervals. The results are based on pretrained model or models fine-tuned on
pretrained representation.

0.00
0.25
0.50
0.75
1.00

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

0.00
0.25
0.50
0.75
1.00

Test 7 Test 8 Test 9 Test 10 Test 11 Test 12

0.00
0.25
0.50
0.75
1.00

Test 13 Test 14 Test 15 Test 16 Test 17 Test 18

0.00
0.25
0.50
0.75
1.00

Test 19 Test 20 Test 21 Test 22 Test 23 Test 24

0.00
0.25
0.50
0.75
1.00

Test 25 Test 26
Human
GibbsComplete
InfillT5

InfillBART
ILM

Te
st

 A
cc

ur
ac

y 
S

co
re

(1) Number Agreement
(2) Number Agreement (Long Subject)
(3) Number Agreement (Embedded Clause)
(4) Number Agreement (Coordination)
(5) Number Agreement (with PP)
(6) Clausal Structure
(7) Clausal Structure (PP Adjunct)
(8) Clausal Structure (Long Adjunct)
(9) Clausal Structure (Complement)
(10) Clausal Structure (Long Complement)
(11) Gerund
(12) Phrasal Verb
(13) Phrasal Verb (with NP)
(14) Resultative
(15) Resultative (Long NP)
(16) S Coordiation
(17) VP Coordination
(18) Embedded NP Coordination
(19) Embedded VP Coordination
(20) Coordination (either)
(21) Coordination (neither)
(22) Coordination in wh-clause
(23) Filler-Gap (Adjunct)
(24) Filler-Gap (Object)
(25) Filler-Gap (Subject)
(26) Filler-Gap (Phrasal Verb)

Figure 9: Model performances by each syntactic reasoning test, corresponding to example stimuli in Appendix E.
Error bars represent 95% confidence intervals. The results are based on pretrained model or models fine-tuned on
pretrained representation. Reranking is applied to InfillT5, InfillBART, and ILM.
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Figure 10: Aggregated performance on syntactic reasoning tests. Error bars represent asymptotic 95% confidence
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Figure 11: Comparing structural statistics in model’s completions with that of the human-written completions.
Error bars represent asymptotic 95% confidence intervals. Reranking is applied to InfillT5, InfillBART, and ILM.

8193



0.00

0.25

0.50

0.75

1.00

H
um

an
  P

(S
)

= 0.636

GibbsComplete

LCA Category
S
NP

VP
ADJP

other
Condition

Noun Noun Adj Adj Adj Noun
Condition

Noun Noun Adj Adj Adj Noun

0.00

0.25

0.50

0.75

1.00

H
um

an
  P

(N
P

)

= 0.616

0.00

0.25

0.50

0.75

1.00

H
um

an
  P

(V
P

)

= 0.427

0.00

0.25

0.50

0.75

1.00

H
um

an
  P

(A
D

JP
)

= 0.754

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

H
um

an
  P

(o
th

er
)

= 0.111

= 0.681

InfillT5

= 0.623

= 0.592

= 0.799

0.0 0.5 1.0

= 0.091

= 0.709

InfillBART

= 0.656

= 0.564

= 0.764

0.0 0.5 1.0

= 0.014

= 0.663

ILM

= 0.59

= 0.593

= 0.749

0.0 0.5 1.0

= 0.238

Model  P(LCA Category | ___ w1 ___ w2 ___)

Figure 12: Scatter plots of structural statistics in human-written completions and that of model-generated com-
pletions. Error bars represent 95% confidence intervals. Spearman’s ρ between the frequency of specific LCA
category estimated from model and human completions across all the items is annotated in each subplot. Models
plotted here are pretrained/fine-tuned, where GibbsComplete is composed of pretrained models without additional
parameter tuning while InfillT5, InfillBART, and ILM are fine-tuned on a subset of New York Times corpus.
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Figure 13: Scatter plots of structural statistics in human-written completions and that of model-generated com-
pletions. Error bars represent 95% confidence intervals. Spearman’s ρ between the frequency of specific LCA
category estimated from model and human completions across all the items is annotated in each subplot. Models
plotted here are trained from scratch on NYT.
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Figure 14: Scatter plots of structural statistics in human-written completions and that of model-generated com-
pletions. Error bars represent 95% confidence intervals. Spearman’s ρ between the frequency of specific LCA
category estimated from model and human completions across all the items is annotated in each subplot. Models
plotted here are trained from scratch on BLLIP.
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