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Abstract

Sarcasm is important to sentiment analysis on
social media. Sarcasm Target Identification
(STI) deserves further study to understand sar-
casm in depth. However, text lacking context
or missing sarcasm target makes target iden-
tification very difficult. In this paper, we in-
troduce multimodality to STI and present Mul-
timodal Sarcasm Target Identification (MSTI)
task. We propose a novel multi-scale cross-
modality model that can simultaneously per-
form textual target labeling and visual target
detection. In the model, we extract multi-scale
visual features to enrich spatial information
for different sized visual sarcasm targets. We
design a set of convolution networks to unify
multi-scale visual features with textual features
for cross-modal attention learning, and corre-
spondingly a set of transposed convolution net-
works to restore multi-scale visual information.
The results show that visual clues can improve
the performance of TSTI by a large margin, and
VSTI achieves good accuracy.

1 Introduction

Sarcasm is a type of sentiment in which people
express their negative feelings using positive or
intensified positive words. It has the power to dis-
guise the hostility of the speaker (Dews and Win-
ner, 1995), thereby enhancing the effect of mock-
ery or humor on the listener. Sarcasm is prevalent
on today’s social media platforms such as Twit-
ter, and automatic Sarcasm Target Identification
(STI) bears great significance in customer service,
opinion mining, and online harassment detection.
Previous works about STI have focused on text
modality and proposed some methods such as rule-
based, statistical classifier-based (Joshi et al., 2018),
and deep learning models with socio-linguistic fea-
tures (Patro et al., 2019).
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†Lin Sun is the corresponding author.

[ST This guy] definitely
deserves $15 an hour!

(a)

bombay dyeing just found an
accessory for their 6×6
bedsheets collection

(b)

Figure 1: Two examples of MSTI. (a) “This guy” and
the blue bounding box denote textual and visual STs,
respectively; (b) No textual ST and the blue bounding
box denotes visual ST.

However, detecting a sarcasm target with only
text modality is not sufficient and complete. For
example, in Figure 1(a), we are not sure whether
the context conveys positive or negative emotions
if we only see the text “This guy definitely deserves
$15 an hour!”. However, the negative information
comes from the image. When observing a lazy
guy in the picture lying on the chair, we can eas-
ily determine that the lazy guy is a sarcasm target
and label the text “This guy” as a sarcasm target
(ST). Moreover, the sarcasm target sometimes does
not appear explicitly in the text, which is marked
as ‘OUTSIDE’. In ALTA Shared Task (Molla and
Joshi, 2019), ‘OUTSIDE’ cases account for over
30% of the data. For example, in the tweet of Fig-
ure 1(b), the author teased that the skirt was too
long, similar to a bed sheet; therefore, the sarcasm
target should be the long skirt. However, no sar-
casm target appears in the text but we can label
the long skirt as an ST with a blue bounding box
in the picture. The above examples illustrate the
necessity of combining images for STI.

In this paper, we introduce a novel task called
Multimodal Sarcasm Target Identification (MSTI)
on social media data. The MSTI task is to extract
sarcasm targets (STs) from both texts and images
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in tweets. The textual ST is a word or a phrase, and
the visual ST is an object labeled by a bounding
box, as shown in Figure 1. The challenge of the
MSTI task is not only to extract both textual and
visual features but also to leverage cross-modality
interaction and semantic learning to improve the
performance of STI. The contributions of this paper
can be summarized as follows:

• To the best of our knowledge, this is the
first attempt to perform the MSTI task. We
build an MSTI dataset and propose a novel
cross-modality MSTI framework. Textual and
multi-scale visual features are fused in a cross-
modality encoder via convolution and trans-
posed convolution. Our model performs tex-
tual and visual tasks simultaneously in an end-
to-end manner, and it can leverage textual and
visual contexts to enhance textual and visual
representations for MSTI.

• We design a cross-modality attention visu-
alization method in terms of text-to-image
and image-to-text to illustrate the mutual ef-
fects between textual and visual modalities.
These results show the image regions and
words extracted through cross-modality atten-
tion are the keys to sarcasm and explain the
improved performance of TSTI and VSTI by
cross-modality learning.

• The comprehensive experimental results are
presented. The results indicate that the images
in tweets improve the performance of TSTI
by a large margin. Comparisons with textual,
object detection, and pretrained multimodal
baselines show the advanced performance of
our model.

2 Related Work

The existing research on sarcasm analysis mainly
focuses on sarcasm detection (SD) and sarcasm
target identification (STI). We begin the literature
review with textual sarcasm.

Textual Sarcasm Detection. Traditional sarcasm
detection is defined as a binary classification of
sarcastic or non-sarcastic sentiments in text (Guo
et al., 2021). Earlier approaches (Joshi et al., 2017)
were based on sarcastic pattern rules (Riloff et al.,
2013) or statistical models such as SVM (Joshi
et al., 2015) or logistic regression (Bamman and
Smith, 2015). Recently, deep learning techniques

have gained popularity. Word embeddings and
LSTM/CNN model were employed in Joshi et al.
(2016); Zhang et al. (2016). Furthermore, Peled
and Reichart (2017) presented a neural machine
translation framework and Tay et al. (2018) pro-
posed an attention-based neural model to interpret
and reason with sarcasm. Xiong et al. (2019) pro-
posed a self-matching network to capture incon-
gruity information by exploring word-to-word in-
teractions. Agrawal et al. (2020) formulated sar-
casm detection as a sequence classification prob-
lem by leveraging the natural shifts in various emo-
tions over the course of a piece of text. Babanejad
et al. (2020) extended the architecture of BERT
by incorporating both affective and contextual fea-
ture embeddings. Guo et al. (2021) proposed a
latent-optimized adversarial neural transfer model
for cross-domain sarcasm detection.

Textual Sarcasm Target Identification. To
deepen the field of sarcasm analysis, STI has
been well studied recently (Patro et al., 2019;
Parameswaran et al., 2021). The goal of STI is
to label the subject of mockery or ridicule within
sarcastic texts. Patro et al. (2019) showed that the
Exact Match (EM) accuracy on tweets is approxi-
mately 30%.

Joshi et al. (2018) introduced the STI problem
and summarized the 2019 ALTA shared task regard-
ing STI (Molla and Joshi, 2019). The evaluation
metrics such as EM accuracy and F1 score were pre-
sented. Patro et al. (2019) presented a deep learn-
ing framework augmented with socio-linguistic fea-
tures to detect sarcasm targets. Parameswaran et al.
(2019) employed an ensemble of classifiers such
as SVM, logistic and linear classifiers to classify
‘OUTSIDE’ and ‘NOT OUTSIDE’, then used a rule-
based approach to extract the target sarcasm words
from the ‘NOT OUTSIDE’ samples.

Multimodal Sarcasm Detection. Benefiting from
images, multimodal sarcasm detection (MSD) has
gained increasing research attention. Schifanella
et al. (2016) first tackled this task as a multimodal
classification problem. They concatenated the vi-
sual and textual features and employed SVM or a
neural network consisting of fully connected and
softmax layers, to detect sarcasm. Cai et al. (2019)
extended the input modalities to a triplet of text,
image, and image attributes, and they proposed a
hierarchical fusion model for sarcasm detection.
Castro et al. (2019) proposed a video-level multi-
modal sarcasm detection task. Features were ob-
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Figure 2: Our MSTI architecture overview.

tained from three modalities, i.e., text, speech, and
video, and an SVM classifier with RBF kernel was
employed. Sangwan et al. (2020) presented an
RNN-based model and gating mechanism, which
attempted to decide the weight of image modal-
ity regarding textual modality. Pan et al. (2020)
proposed a BERT-based model that concentrated
on both intra- and inter-modality incongruity for
multimodal sarcasm detection. Xu et al. (2020)
constructed the decomposition network to model
the discrepancy between image and text and the
relation network to model the semantic association
in cross-modality context.

3 The Proposed Approach

In this section, we introduce a novel neural archi-
tecture for MSTI, as shown in Figure 2.

3.1 Neural Architecture

Figure 2 illustrates the overall architecture of
our MSTI model. The model mainly consists
of five components: (1) Backbone to MCE con-
verter (B2M), (2) Multi-scale Cross-modality En-
coder (MCE), (3) MCE to Neck network converter
(M2N), (4) Textual Sarcasm Target Identification
(TSTI), and (5) Visual Sarcasm Target Identifica-

tion (VSTI). We first extract textual and visual fea-
tures separately. The multi-scale visual features
of the last three blocks of the pretrained backbone
network are unified to the same dimension by B2M
and input to the MCE together with textual features.
The MCE outputs cross-modality representations,
where the parts corresponding to textual features
are fed into BiLSTM-CRF to label the sequence
for TSTI and the parts corresponding to multi-scale
visual features restored by M2N are connected to
the neck and head networks to predict bounding
boxes for VSTI.

3.2 Textual and Visual Representations

Textual Representation: We obtain contex-
tual word embeddings from pretrained language
models (LM) such as BERT (Devlin et al.,
2019) to extract linguistic features. Let S =
([CLS], t1, ..., tn, [SEP]) be the token sequence and
e = (e1, ..., en) be the contextual word embed-
dings generated by a pretrained LM, where ei ∈ Rd.
As shown in Figure 2, the contextual word em-
beddings e represent the textual input of the next
module MCE.

Visual Representation: We extract visual features
from an image with pretrained backbone networks
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such as ResNet (He et al., 2016), VGG (Simonyan
and Zisserman, 2014), and CSPDarkNet (Wang
et al., 2020). To improve the detection performance
of sarcasm targets with various sizes, our model
performs VSTI using multi-scale visual features.
The multi-scale outputs at the last three blocks of
the backbone are denoted as v1, v2, and v3, shown
in Figure 2, for the later use of the Neck network.
The dimensions of v1, v2, and v3 are ds1×ds1×d1,
ds2 × ds2 × d2, and ds3 × ds3 × d3, respectively,
where dsi × dsi represents image scale and di rep-
resents feature map, i = {1, 2, 3}.

3.3 B2M Converter

The B2M converter aims to unify the dimensions of
three visual features with the dimension d of textual
feature and lower the scales of three visual features
to reduce the computation of the MCE. The B2M
has three parts B1, B2, and B3 corresponding to the
visual features v1, v2, and v3. Each part consists of
convolutional layers followed by Rectified Linear
Unit (ReLU) and max pooling layer.

Table 1 shows the architecture of B2M. The
input dimensions of B1, B2, and B3 are 19 ×
19 × 1024, 38 × 38 × 512, and 76 × 76 × 256,
respectively, when the backbone is set to CSP-
DarkNet53 (Bochkovskiy et al., 2020). We de-
note the outputs of B1, B2, and B3 as vB1 , vB2 ,
and vB3 , respectively. According to the computa-
tion of the convolutional layer, the output scale is⌊
I+2P−K

S

⌋
+ 1, where I is the dimension of input

scale, P is padding, S is stride, and K is kernel.
The Conv generates feature maps of d, which is
the same as the dimension of the word embeddings.
Then, we can obtain all vB1 , vB2 , and vB3 with size
5×5×d. Finally, we flatten the shape size 5×5 to
25 visual tokens {vp,qBi

} (1 ≤ p, q ≤ 5) to generate
the visual inputs of the MCE.

3.4 Multi-scale Cross-modality Encoder

The MCE is based on the Transformer encoder
architecture presented in Vaswani et al. (2017) and
shown in the left of Figure 2. The Transformer
encoder has a multi-head self-attention sub-layer
and a fully connected feed-forward sub-layer. A
residual connection and layer normalization are
employed around two sub-layers. The Transformer
encoder adopts scaled dot-product attention, which
is defined as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (1)

B2M

B1
Conv [K = 3× 3, P = 1, S = 2]

MaxPooling [2× 2]

B2
Conv

[
K = 3× 3, P = 1, S = 2
K = 3× 3, P = 1, S = 2

]
MaxPooling [2× 2]

B3
Conv

[
K = 5× 5, P = 2, S = 4
K = 3× 3, P = 1, S = 2

]
MaxPooling [2× 2]

M2N

C1
UpSampling [2× 2]

ConvT [K = 3× 3, P = 1, S = 2]

C2

UpSampling [2× 2]

ConvT
[

K = 3× 3, P = 1, S = 2
K = 3× 3, P = 1, S = 2

]

C3

UpSampling [2× 2]

ConvT
[

K = 3× 3, P = 1, S = 2
K = 5× 5, P = 2, S = 4

]

Table 1: Architecture of B2M and M2N converters.

where matrices Q, K, and V consist of queries,
keys, and values, respectively, and dk is the dimen-
sion of keys. In our model, we concatenate the
textual and visual features into a sequence G,

G = (e1, ..., en︸ ︷︷ ︸
n

, v1,1B1
, . . . , v5,5B1︸ ︷︷ ︸
25=5×5

, v1,1B2
, ..., v5,5B2︸ ︷︷ ︸

25=5×5

, v1,1B3
, ..., v5,5B3︸ ︷︷ ︸

25=5×5

).

(2)

We feed G into the MCE, and therefore Q = K =
V = G>.

The outputs of the MCE are divided into two
parts: the corresponding textual part eC is used
for TSTI, and the corresponding multi-scale visual
parts vC1 , vC2 , and vC3 are used for VSTI.

3.5 M2N Converter

The M2N converter is an inverse procedure of the
B2M converter. The dimensions of the output vNi

of the M2N converter are the same as those of the
input vi of the B2M converter, where i = {1, 2, 3}.
The M2N converter has three parts C1, C2, and
C3, corresponding to B1, B2, and B3 of the B2M
converter, respectively. The architecture of M2N
is shown in Table 1. Each part consists of trans-
posed convolution (ConvT) (Dumoulin and Visin,
2016) followed by ReLU and upsampling layer.
The ConvT is considered as the reverse operation
of convolution. If the ConvT’s kernel size, padding
size, and stride are the same as those carried out
on the Conv layer, then the ConvT generates the
same spatial dimension as that of the Conv’s input.
Upsampling reverses the pooling operation by the
nearest-neighbor interpolation algorithm.

3.6 Textual Sarcasm Target Identification

We use the BIO (short for Beginning, Inside, and
Outside) schema (Ramshaw and Marcus, 1995)
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to label textual sarcasm targets. The ‘B-ST’ tag
indicates the beginning of an ST and the ‘I-ST’ tag
indicates the inside of an ST. The ‘O’ tag indicates
that a token does not belong to any ST.

We employ a classical sequence tagging model,
i.e., BiLSTM-CRF (Huang et al., 2015), to label the
textual STs. The bidirectional LSTM (BiLSTM)
first processes each sentence token-by-token and
produces forward and backward hidden vectors for
each token. Then the concatenation of the two
hidden vectors is input to a Conditional Random
Fields (CRFs) layer (Lafferty et al., 2001). For a
sequence of tags y = {y1, . . . , yn}, the probability
of the label sequence y is defined as follows:

p(y|x) = es(x,y)∑
y′∈Y es(x,y′)

, (3)

where Y is all possible tag sequences for the sen-
tence x and s(x, y) are feature functions modeling
transitions and emissions. The computation de-
tails can be found in Lample et al. (2016). The
objective of labeling ST is to minimize the neg-
ative log-likelihood over the training data Dt =
{(x(i), y(i))}Mi=1:

LTSTI = −
M∑
i=1

log(p(y(i)|x(i))). (4)

3.7 Visual Sarcasm Target Identification
There are two kinds of object detectors, one-stage
and two-stage. One-stage object detector such as
YOLO (Redmon et al., 2016) is faster and sim-
pler. In this paper, we adopt YOLOv4’s Neck and
Head networks (Bochkovskiy et al., 2020) to per-
form VSTI. The multi-scale cross-modality fea-
tures vN1 , vN2 , and vN3 are connected to the Neck
network, which consists of Spatial Pyramid Pool-
ing (SPP) (He et al., 2015) and Path Aggregation
Network (PANet) (Liu et al., 2018). The Neck net-
work is to increase the receptive field and preserve
spatial information. The Head network is used
for predicting bounding boxes at 3 different scales.
The output tensor of the Head network of YOLOv4
is dsi × dsi × [3 ∗ (4 + 1 + C)] at each scale,
predicting 3 boxes per grid cell where each box
has 4 bounding offsets (tx, ty, tw, th), 1 objectness
score, and C class scores. The detailed computa-
tion of bounding offsets can be found in Redmon
and Farhadi (2018). Each grid cell predicts the ob-
ject probability and C class probabilities. In our
model, since there is 1 sarcasm object class, we
ablate C class scores.

[ST innovation] for
future

(a)

hot and muggy . perfect
football [ST weather] ...

(b)

this is the your <user> well done usa.

(c)

Figure 3: Examples of the MSTI dataset. (a) STs are
both in text and image, (b) ST is only in text, and (c) ST
is only in image. The green bounding box indicates a
visual ST.

The objective function of VSTI consists of
bounding box regression loss Lb and objectness
score loss Lo:

LV STI = Lb + Lo. (5)

As in YOLO, Lb is based on the bounding box pri-
ors that are assigned to ground truth objects and
computed by mean squared error (MSE).Lo is com-
puted by binary cross-entropy (BCE) for classify-
ing the bounding box priors as object or non-object.

Finally, combining the TSTI and VSTI tasks, the
objective function for MSTI is as follows:

LMSTI = LTSTI + LV STI . (6)

4 Experiments

4.1 Dataset
In this paper, we build an MSTI dataset for pub-
lic research1. We label textual and visual STs on
the dataset collected by Cai et al. (2019) for mul-
timodal sarcasm detection. Each sample is man-
ually annotated by three persons based on their
common sense. The agreement between the anno-
tators is measured using a percentage of overlap-
ping choices between the annotators, i.e., above
one word overlapping for text phrases and above
50% intersection-over-union (IoU) overlapping for
image regions. We ensure the quality of ground
truth by keeping the consistency of all annotator’s

1https://github.com/wjq-learning/MSTI
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#Tweet #Textual ST #Visual ST

Train 3,546 2,501 2,172
Dev 727 542 543
Test 742 573 524

Table 2: Statistics of the MSTI dataset.

Both in text and image Only in text Only in image

26.4% 41.9% 31.7%

Table 3: Proportion of multimodal sarcasm target types.

Small Medium Large

939 (29.0%) 1,024 (31.6%) 1,276 (39.4%)

Table 4: Number (percentage) of different sized visual
STs.

opinions. The samples with annotations that the
three annotators agree on are put into the dataset
otherwise removed, making the annotations valid.
Figure 3 shows three examples.

The statistics of the MSTI dataset are shown
in Table 2. The MSTI dataset is split into
3,546/727/742 as Train/Dev/Test in experiments.
The number of textual and visual sarcasm targets
are also listed. Table 3 shows the proportion of
multimodal sarcasm target types, i.e., STs appear
both in the text and image, ST only appears in the
text, and ST only appears in the image. Table 4
shows the number and percentage of different sized
visual STs. We categorize the size of ST as small
(area occupation<1.5%), medium (1.5%<area oc-
cupation<10%), and large (area occupation>10%).

4.2 Settings

We use CSPDarkNet53 as backbone and BERT-
Base (d=768) or BERT-Large (d=1024) as LM.
All images are shaped to a size of 608 × 608. In
the VSTI, we use the default settings of YOLOv4,
e.g., IoU threshold and object confidence thresh-
old. The weights of neural network are randomly
initialized except the pretrained BERT, backbone
and Neck networks. We train the model using the
Adam (Kingma and Ba, 2014) optimizer with de-
fault settings and the learning rate is set to 1e-4.
All pretrained models are finetuned with a learning
rate of 1e-5. The mini-batch size is set to 8 and
dropout rate is 0.5. We use two-layer BiLSTM with
768 hidden states and Transformer encoder with 12
heads.

We use Exact Match (EM) accuracy (Joshi et al.,

2018) and F1 score (Molla and Joshi, 2019) as
evaluation metrics for TSTI. The EM accuracy is
computed as the number of samples that strictly
match the boundaries of gold annotations divided
by the total number of samples. The F1 score
= 2/(1/P+1/R) is calculated from precision P =
TP/(TP+FP) and recall R = TP/(TP+FN), where
TP is correctly predicted target word, FP is incor-
rectly predicted target word, and FN is target word
but not predicted. Average Precision (AP) is widely
used to evaluate object detection (Lin et al., 2014).
The COCO-style AP, AP50, and AP75 are evalu-
ated for VSTI. The COCO-style AP averages AP
at IoU=[0.5:0.05:0.95]. AP50 corresponds to AP at
IoU=0.5 and AP75 corresponds to AP at IoU=0.75.
IoU measures the amount of overlap between two
bounding boxes and here is used as a criterion that
determines if a prediction matches ground truth.

We train the model on one machine with an
NVIDIA RTX 3090 (GPU) and Intel Core i9
10900K (CPU). Our model takes approximately
10 hours for 60 epochs in training.

4.3 Baselines

Our model is compared with text baselines such as
rule-based & statistical extractors, socio-linguistic
features, and BERT, object detection baselines such
as Mask R-CNN (He et al., 2020) and YOLOv4,
and pretrained multimodal baselines such as VL-
BERT (Su et al., 2019) and Unicoder-VL (Li et al.,
2020).

Rule-based & Statistical Extractors. Joshi et al.
(2018) introduced STI and proposed a method
based on rules and statistical classification extrac-
tors. The sarcasm target was determined based on
the results of two extractors. The configuration of
R2 and ‘Hybrid AND’ performs the best on the
MSTI dataset. We test the source code2 as a base-
line of TSTI.

Socio-linguistic Features. Patro et al. (2019) pre-
sented a deep learning framework augmented with
socio-linguistic features to detect textual ST. Socio-
linguistic features include the distribution of loca-
tion (LOC) and organization (ORG) named entities,
the distribution of POS tags, and the distribution
of LIWC and Empath (Fast et al., 2016) categories.
We test the source code3 as a baseline of TSTI.

2https://github.com/Pranav-Goel/
Sarcasm_Target_Identification

3https://github.com/Srijanb97/Sarcasm_
Target_Detection-EMNLP-
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Dev Test

EM F1 AP AP50 AP75 EM F1 AP AP50 AP75

Rule-based & statistical extractors 12.5 19.1 - - - 13.6 19.3 - - -
Socio-linguistic features 18.9 23.6 - - - 18.1 22.3 - - -
BERT-Base 29.0 40.2 - - - 28.6 39.4 - - -
BERT-Large 33.8 42.5 - - - 33.5 42.4 - - -

Mask R-CNN (backbone=ResNeXt101+FPN) - - 27.2 43.5 28.6 - - 26.8 43.3 28.1
YOLOv4 (backbone=CSPDarkNet53) - - 26.9 42.8 27.6 - - 27.1 43.9 28.0

VL-BERT 30.8 41.2 24.7 40.2 26.2 30.9 42.0 25.7 40.5 26.7
Unicoder-VL 30.5 41.1 25.0 41.0 26.4 30.5 41.7 25.5 40.8 26.9
UNITER 29.8 40.4 24.9 40.8 26.5 30.0 40.5 25.9 41.1 26.8

Our model
- backbone=ResNet152, LM=BERT-Base 34.0 45.2 30.4 48.8 31.5 34.4 44.9 29.9 49.6 32.1
- backbone=VGG19, LM=BERT-Base 33.6 44.4 29.6 48.4 30.9 34.5 45.1 28.6 47.7 30.5
- backbone=CSPDarkNet53, LM=BERT-Base 34.2 44.9 32.1 52.3 34.2 35.0 45.8 32.3 51.8 34.0
- backbone=CSPDarkNet53, LM=BERT-Large 36.9 47.3 32.3 52.6 34.6 37.2 47.9 32.6 51.9 34.6

Table 5: Results of our model compared with text, object detection, and pretrained multimodal baselines.

BERT. We follow the sequence tagging task of
Devlin et al. (2019) as a baseline to perform TSTI.
The BERT-based model followed by linear and
softmax layers is tested to tag textual ST.

Object Detection Models. We treat VSTI as a sin-
gle object detection problem and test two state-of-
the-art models, i.e., Mask R-CNN4 and YOLOv45.
We train the models on the MSTI dataset with the
default values of parameters in the repository.

Pretrained Multimodal Models. Recently, pre-
trained multimodal models such as VL-BERT,
Unicoder-VL, and UNITER (Chen et al., 2020),
have been proposed. These models use regions-of-
interest (RoIs) produced by object detectors such as
Faster R-CNN (Ren et al., 2016) as visual tokens.
The inputs of pretrained multimodal models are
RoI features and token embeddings; In this paper,
we design an MSTI baseline approach based on
pretrained multimodal models as follows: Labeling
of the textual STs is based on the outputs of token
embeddings, the same as in our TSTI method; The
VSTI is performed by a binary classification on the
outputs of RoI features followed by linear+softmax
layers, and it is trained by the RoIs, which are
considered as visual STs when the IoU with gold
ST is larger than an optimal value of 0.7, other-
wise they are considered as non-STs. We finetune
the IoU threshold for non-maximum suppression
(NMS) to ignore overlapping RoIs and find that
IoUNMS = 0.2 is optimal.

4https://github.com/matterport/Mask_
RCNN

5https://github.com/AlexeyAB/darknet

Dev Test

APS APM APL APS APM APL

Our model 28.7 33.1 34.2 28.3 33.4 34.9

Table 6: Performance on the different sized visual STs.

4.4 Results

Table 5 shows the performance of our model com-
pared with text, object detection, and pretrained
multimodal baselines on the Dev and Test sets.
The results show that the BERT-based sequence
tagging models are better than the previous works
of STI (Joshi et al., 2018; Patro et al., 2019). Fusing
visual clues, our model outperforms BERT-based
textual models on average 5.3% in F1 score and
4.4% in EM accuracy. The object detection base-
lines such as Mask R-CNN and YOLOv4 which
are directly trained by sarcastic objects are better
than the pretrained multimodal baselines with RoIs
detected by a traditional object detector, obtaining
an increase of approximately 2% in AP metrics.

We test state-of-the-art backbones such as
ResNet151 and VGG19, in which scale dimensions
of the last three blocks are 19× 19, 38× 38, and
76 × 76, respectively, the same as in CSPDark-
Net53. Therefore, the B2M in Table 1 can be di-
rectly used for ResNet151 and VGG19, and the
M2N works if the dimensions of the output feature
maps of {C1, C2 , C3} are set to {2048, 1024, 512}
for ResNet151 and {512, 512, 256} for VGG19,
respectively. The results show that CSPDarkNet53
achieves the best performance. In addition, Table 6
reports APs (namely, APS , APM , and APL) by
our best model based on small, medium, and large
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EM F1 AP AP50 AP75

Our model 37.2 47.9 32.6 51.9 34.6
- w/o text - - 27.4(-5.2) 44.6(-7.3) 28.1(-6.5)
- w/o image 33.1(-4.1) 42.8(-5.1) - - -
- w/ text and w/o TSTI loss - - 29.7(-2.9) 49.1(-2.8) 31.6(-3.0)
- w/ image and w/o VSTI loss 34.6(-2.6) 43.9(-4.0) - - -

Table 7: Ablation results of our model on the Test set.

sarcasm targets, respectively.

4.5 Ablation Study

We ablate text (w/o text) or image (w/o image) from
our multimodal model. Table 7 shows the results of
our model (backbone=CSPDarkNet53, LM=BERT-
Large). The performance drops by 5.1% in F1 score
and 4.1% in EM accuracy when ablating images,
indicating that visual clues are very useful for STI.

In addition, we ablate TSTI training (w/ text and
w/o TSTI loss) or VSTI training (w/ image and w/o
VSTI loss). We observe that by only adding text but
not training the textual task, our model can greatly
improve the VSTI performance, i.e., from 44.6%
to 49.1% in AP50. However, by only adding image
but not training the image task, our model obtains a
small increase of 1.5% EM accuracy and 1.1% F1
score for TSTI. These results indicate that texts has
more explicit sarcasm information than images and
sarcastic message likely comes more from texts,
which are consistent with common sense.

4.6 Cross-modality Attention Visualization

We visualize the attentions of the MCE in terms
of image-to-text and text-to-image in order to il-
lustrate the sarcasm information added from an-
ther modality. The input of the MCE is com-
posed of textual and multi-scale visual embed-
dings. We abbreviate G, previously defined in
Eq. (2), as G = (e, vB) where e = (e1, ..., en) and
vB = (v1,1B1

, . . . , v5,5B1
, v1,1B2

, ..., v5,5B2
, v1,1B3

, ..., v5,5B3
).

The attention weight matrix of the h-th head can be
divided to four submatrics and denoted as follows:

Ah =

(
Ah(e, e) Ah(e, vB)
Ah(vB , e) Ah(vB , vB)

)
. (7)

Thus, the scaled dot-product attention of Eq. (1)
also can be written as AhG>. We define the compu-
tation of image-to-text and text-to-image attentions
as follows:

Text-to-image Attentions. The goal of text-to-
image attention is to quantify the effect of text
on each image block. We compute the average

(a)

(b)

(c)

Figure 4: Examples of cross-modality attention visual-
ization. The left, middle, and right columns are images,
text-to-image attentions, and image-to-text attentions,
respectively. The figures are best viewed in color.

sum of Ah(vB, e) across all words, H heads, and
3 scales, then obtain the text-to-image attention
weights on the image block with the coordinate
(p, q) as follows:

wvp,q =
1

3H

3∑
i=1

H∑
h=1

n∑
k=1

Ah(vp,qBi
, ek). (8)

Image-to-text Attentions. The text-to-image at-
tention aims to quantify the effect of image on each
word. We compute the average sum of Ah(e, vB)
across 25 image blocks with 3 scales and H heads,
then obtain the image-to-text attention weights as
follows:

wek =
1

3H

3∑
i=1

H∑
h=1

5∑
p=1

5∑
q=1

Ah(ek, v
p,q
Bi

), (9)

where k = 1, . . . , n.
Figure 4 shows the examples of text-to-image

attentions in Eq. (8) and image-to-text attentions in
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Eq. (9). The attention maps show some meaningful
cues discovered by the MCE regarding sarcasm.
The red color denotes the highest weights. We scale
up the text-to-image attention map to image size
using interpolation. As expected, the text-to-image
attentions in the middle columns of Figure 4 focus
on the regions that are highly relevant to sarcasm
targets, such as door in (a), chicken nuggets in (b),
and orange peel in (c). Surprisingly, the image-
to-text attentions in the right columns of Figure 4
point out the key words to well understand sarcasm.
Using these red colored words, the tweet authors
express their opinions: (a) Can the door ‘through’?
(b) Are the chicken nuggets ‘healthy’? (c) Is the
train ‘clean’ or is train home ‘pleasant’?

5 Conclusions

In this paper, we introduce a new task for identify-
ing both textual and visual sarcasm targets. This
work provides a good attempt to detect sarcasm
targets on images. Our model integrates multiple
components such as sequence labeling, multi-scale
cross-modality learning, and object detection. The
experimental results not only illustrate that visual
clues can improve the performance of TSTI by a
large margin, approximately 5% in F1 score, but
also prove that it is feasible to detect sarcasm tar-
gets in images, obtaining a good accuracy of 51.9%
in AP50.
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A Appendix

A.1 Case Study
Table 8 shows the examples of ground truth, BERT-
large, VL-BERT, and our model in the MSTI
dataset. The textual ST results are incorrect in
all examples for the BERT baseline, but they are

correct for our model with visual clues. The de-
tected visual STs are correct for our model; how-
ever, there are a few noisy RoIs, such as a child in
Example 2, Theresa Mary and tie in Example 3, for
the VL-BERT baseline. Examples 3 and 4 show
differences between sarcasm targets and traditional
object classes, such as strings “Donald Trump” and
a scene of a person carrying bags. These cases
also show that our model can detect visual STs
with various sizes. The small size strings ‘door’ in
Example 1 and “Donald Trump” in the middle of
Example 3, the medium size string “Donald Trump”
at the upper left corner and person “Donald Trump”
in Example 3, and the large size objects in Exam-
ples 2 and 4, illustrate that the multi-scale features
enrich spatial information for visual ST detection.

Table 9 shows the failure cases by our model.
Our model fails in detecting the textual ST “chicken
nuggets” in Example 1, probably because the lin-
guistic representations do not perform well al-
though the cross-modality attention contributes the
sarcastic word ‘healthy’ shown in Figure 4(c). The
visual STs such as the innovation object in Exam-
ple 2 and string “SUNDAY FUNDAY” in Example
4 are not detected. In Examples 3 and 5, our model
detects the highly related negative visual clues in
images, i.e., crowded train and orange peel trash,
although it fails in detecting textual STs.
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1 2 3 4 5

Image

Textual
ground
truth

who can easily pass
through this [ST
door]

[ST parents] ruin
more young athletic
careers than bad
grades .

this is the your <user>
well done usa .

“ me : i have no
money . i ’m so poor
right now . also me :”

...... that ’s true for
[ST bachelors] .

BERT [ST who] can easily
pass through this door

parents ruin more
young athletic careers
than bad grades .

this is the your <user>
well done [ST usa] .

“ me : i have no [ST
money] . i ’m so poor
right now . also me :”

...... [ST that] ’s true
for bachelors .

VL-
BERT

who can easily pass
through this door

[ST parents] ruin
more young athletic
careers than bad
grades .

this is the your <user>
well done usa .

“ me : i have no [ST
money] . i ’m so poor
right now . also me :”

...... that ’s true for
bachelors .

Our
model

who can easily pass
through this [ST
door]

[ST parents] ruin
more young athletic
careers than bad
grades .

this is the your <user>
well done usa .

“ me : i have no
money . i ’m so poor
right now . also me :”

...... that ’s true for
[ST bachelors] .

Table 8: Examples of ground truth, BERT baseline, VL-BERT baseline, and our model. Green, red, and yellow
rectangles indicate ground truth, VL-BERT baseline, and our model, respectively. It is better to enlarge images
when observing visual ST.

1 2 3 4 5

Image

Textual
ground
truth

nothing says healthy
like [ST chicken
nuggets] covered in
hot sauce ! !

[ST innovation] for
future

another wonderful
<user> [ST commute
home] on <user>
here at the wall street
station ( 2/3 station ) !
thanks <user> <user>
!

when it ’s # [ST
bankholidayweek-
end] & you have to
work an extra shift .

lovely , clean , pleas-
ant <user> [ST train
home] # stinkstohigh-
heaven

Our
model

nothing says healthy
like chicken nuggets
covered in hot sauce !
!

[ST innovation] for
future

another wonderful
<user> commute
home on <user> here
at the wall street
station ( 2/3 station ) !
thanks <user> <user>
!

when it ’s # [ST
bankholidayweek-
end] & you have to
work an extra shift .

lovely , clean , pleas-
ant [ST <user>] train
home # stinkstohigh-
heaven

Table 9: Failure cases by our model. Green and yellow rectangles indicate ground truth and our model, respectively.
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