
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 8128 - 8140

May 22-27, 2022 c©2022 Association for Computational Linguistics

Program Transfer for Answering Complex Questions
over Knowledge Bases

Shulin Cao1,2, Jiaxin Shi1,3, Zijun Yao1,2, Xin Lv1,2, Jifan Yu1,2,
Lei Hou1,2∗ , Juanzi Li1,2, Zhiyuan Liu1,2, Jinghui Xiao4

1Department of Computer Science and Technology, BNRist
2KIRC, Institute for Artificial Intelligence, Tsinghua University, Beijing 100084, China

3Cloud BU, Huawei Technologies, 4Noah’s Ark Lab, Huawei Technologies
{caosl19, yaozj20, lv-x18}@mails.tsinghua.edu.cn
shijx12@gmail.com, {houlei,lijuanzi}tsinghua.edu.cn

Abstract

Program induction for answering complex
questions over knowledge bases (KBs) aims
to decompose a question into a multi-step pro-
gram, whose execution against the KB pro-
duces the final answer. Learning to induce
programs relies on a large number of paral-
lel question-program pairs for the given KB.
However, for most KBs, the gold program an-
notations are usually lacking, making learn-
ing difficult. In this paper, we propose the
approach of program transfer, which aims
to leverage the valuable program annotations
on the rich-resourced KBs as external super-
vision signals to aid program induction for
the low-resourced KBs that lack program an-
notations. For program transfer, we design a
novel two-stage parsing framework with an ef-
ficient ontology-guided pruning strategy. First,
a sketch parser translates the question into a
high-level program sketch, which is the com-
position of functions. Second, given the ques-
tion and sketch, an argument parser searches
the detailed arguments from the KB for func-
tions. During the searching, we incorporate
the KB ontology to prune the search space.
The experiments on ComplexWebQuestions
and WebQuestionSP show that our method out-
performs SOTA methods significantly, demon-
strating the effectiveness of program transfer
and our framework. Our codes and datasets can
be obtained from https://github.com/
THU-KEG/ProgramTransfer.

1 Introduction

Answering complex questions over knowledge
bases (Complex KBQA) is a challenging task re-
quiring logical, quantitative, and comparative rea-
soning over KBs (Hu et al., 2018; Lan et al., 2021).
Recently, the program induction (PI) paradigm,
which gains increasing study in various areas (Lake
et al., 2015; Neelakantan et al., 2017; Wong et al.,

∗ Corresponding Author

Program

Relate

Find

Relate

Filter
Concept

Filter
Concept

Find

Question What Barcelona facility where FC Barcelona plays can I visit?

Answer Camp Nou

What

And

Filter
Concept

tourist
attraction

Relate tourist
attractions

Find Barcelona Find FC
Barcelona

Relate arena
stadium

Filter
Concept

sports
facility

Figure 1: An example question, the corresponding pro-
gram, and the answer. The left side is the sketch, and the
right side is the complete program, with dotted boxes
denoting arguments for functions.

2021), emerges as a promising technique for Com-
plex KBQA (Liang et al., 2017; Saha et al., 2019a;
Ansari et al., 2019). Given a KB, PI for Com-
plex KBQA aims to decompose a complex ques-
tion into a multi-step program, whose execution
on the KB produces the answer. Fig. 1 presents a
complex question and its corresponding program
whose functions take KB elements (i.e., entities,
relations and concepts) as arguments. E.g., the re-
lation tourist attractions is the argument of
function Relate.

For most KBs, the parallel question-program
pairs are lacking because such annotation is both
expensive and labor-intensive. Thus, the PI mod-
els have to learn only from question-answer pairs.
Typically, they take the answers as weak supervi-
sion and search for gold programs with reinforce-
ment learning (RL) (Saha et al., 2019b; Liang et al.,
2017; Ansari et al., 2019). The combinatorial ex-
plosion in program space, along with extremely
sparse rewards, makes the learning challenging.
Abundant attempts have been made to improve the
stability of RL algorithms with pseudo-gold pro-
grams (Liang et al., 2017), noise-stabilizing wrap-
per (Ansari et al., 2019), or auxiliary rewards (Saha
et al., 2019b). Despite promising results, they re-

8128

https://github.com/THU-KEG/ProgramTransfer
https://github.com/THU-KEG/ProgramTransfer

quire significant human efforts to develop carefully-
designed heuristics or are constrained to relatively
simple questions.

Recently, for several KBs, there emerge question-
program annotation resources (Johnson et al., 2017;
Cao et al., 2022). Thanks to the supervision signals
(i.e., program annotation for each question), the PI
models on these rich-resourced KBs achieve im-
pressive performance for even extremely complex
questions, and are free from expert engineering.
Intuitively, leveraging these supervision signals
to aid program induction for low-resourced KBs
with only weak-supervision signals (i.e., question-
answer pairs) is a promising direction. In this paper,
we formalize it as Program Transfer.

In practice, program transfer is challenging due
to the following reasons: (a) Domain Heterogene-
ity. The questions and KBs across domains are
both heterogeneous due to language and knowledge
diversity (Lan et al., 2021). It is hard to decide what
to transfer for program induction. (b) Unseen KB
Elements. The coverage of source KB is limited,
e.g., KQA Pro in (Cao et al., 2022) covers only
3.9% relations and 0.24% concepts of Wikidata.
Thus, most elements in the massive scale target KB
are not covered in the source. (c) Huge Search
Space. The search space of function arguments
depends on the scale of target KB. For realistic
KBs containing millions of entities, concepts and
relations, the huge search space is unmanageable.

To address the above problems, we propose a
novel two-stage parsing framework with an effi-
cient ontology-guided pruning strategy. First, we
design a sketch parser to parse the question into
a program sketch (the left side in Fig. 1), which is
composed of functions without arguments. As Ba-
roni (2019) points out, the composition of functions
well captures the language compositionality. Trans-
lation from questions to sketches is thus relevant to
language compositional structure and independent
of KB structure. Therefore, our sketch parser can
transfer across KBs. Second, we design an argu-
ment parser to fill in the detailed arguments (typi-
cally KB elements) for functions in the sketch. It
retrieves relevant KB elements from the target KB
and ranks them according to the question. Specif-
ically, it identifies KB elements with their label
descriptions and relies on language understanding
to resolve unseen ones. We further propose an
ontology-guided pruning strategy, which intro-
duces high-level KB ontology to prune the candi-

date space for the argument parser, thus alleviating
the problem of huge search space.

Specifically, the sketch parser is implemented
with a Seq2Seq model with the attention mech-
anism. The argument parser identifies elements
through semantic matching and utilizes pre-trained
language models (Devlin et al., 2019) for language
understanding. The high-level ontology includes
the domain and range of relations and entity types.

In evaluation, we take the Wikidata-based KQA
Pro as the source, Freebase-based ComplexWe-
bQuestions and WebQuestionSP as the target do-
main datasets. Experimental results show that our
method improves the F1 score by 14.7% and 2.5%
respectively, compared with SOTA methods that
learn from question-answer pairs.

Our contributions include: (a) proposing the
approach of program transfer for Complex KBQA
for the first time; (b) proposing a novel two-
stage parsing framework with an efficient ontology-
guided pruning strategy for program transfer; (c)
demonstrating the effectiveness of program transfer
through extensive experiments and careful ablation
studies on two benchmark datasets.

2 Related Work

KBQA. KBQA aims to find answers for ques-
tions expressed in natural language from a KB,
such as Freebase (Bollacker et al., 2008), DBpe-
dia (Lehmann et al., 2015) and Wikidata (Vran-
decic and Krötzsch, 2014). Current methods for
KBQA can be categorized into two groups: 1) se-
mantic parsing based methods (Berant et al., 2013;
Yih et al., 2015; Cheng et al., 2017; Liang et al.,
2017; Ansari et al., 2019), which learn a seman-
tic parser that converts questions into intermedi-
ate logic forms which can be executed against a
KB; 2) information retrieval based methods (Bor-
des et al., 2014; Xu et al., 2016; Miller et al.,
2016; Zhang et al., 2018; Sun et al., 2018, 2019;
Shi et al., 2021), which retrieve candidate an-
swers from the topic-entity-centric subgraph and
then rank them according to the questions. Re-
cently, semantic parsing for KBQA has gained
increasing research attention because the meth-
ods are effective and more interpretable. Multiple
kinds of logical forms have been proposed and re-
searched, such as SPARQL (hommeaux, 2011), λ-
DCS (Liang, 2013), λ-calculus (Artzi et al., 2013),
query graph (Yih et al., 2015), program (Liang
et al., 2017). PI aims to convert questions into

8129

programs, and is in line with semantic parsing.
Cross-domain Semantic Parsing. Cross-domain
semantic parsing trains a semantic parser on some
source domains and adapts it to the target domain.
Some works (Herzig and Berant, 2017; Su and Yan,
2017; Fan et al., 2017) pool together examples from
multiple datasets in different domains and train a
single sequence-to-sequence model over all exam-
ples, sharing parameters across domains. How-
ever, these methods rely on annotated logic forms
in the target domain. To facilitate low-resource
target domains, (Chen et al., 2020) adapts to tar-
get domains with a very limited amount of anno-
tated data. Other works consider a zero-shot se-
mantic parsing task (Givoli and Reichart, 2019),
decoupling structures from lexicons for transfer.
However, they only learn from the source domain
without further learning from the target domain us-
ing the transferred prior knowledge. In addition,
existing works mainly focus on the domains in
OVERNIGHT (Wang et al., 2015), which are much
smaller than large scale KBs such as Wikidata and
Freebase. Considering the complex schema of
large scale KBs, transfer in ours setting is more
challenging.

3 Problem Formulation

In this section, we first give some necessary defini-
tions and then formulate our task.
Knowledge Bases. Knowledge base describes con-
cepts, entities, and the relations between them. It
can be formalized as KB = {C, E ,R, T }. C, E ,R
and T denote the sets of concepts, entities, rela-
tions and triples respectively. Relation set R can
be formalized as R = {re, rc} ∪ Rl, where re
is instanceOf, rc is subClassOf, and Rl is the
general relation set. T can be divided into three
disjoint subsets: (1) instanceOf triple set Te =
{(e, re, c)|e ∈ E , c ∈ C}; (2) subClassOf triple
set Tc = {(ci, rc, cj)|ci, cj ∈ C}; (3) relational
triple set Tl = {(ei, r, ej)|ei, ej ∈ E , r ∈ Rl}.
Program. Program is composed of symbolic func-
tions with arguments, and produces an answer
when executed against a KB. Each function defines
a basic operation on KB and takes a specific type of
argument. For example, the function Relate aims
to find entities that have a specific relation with
the given entity. Formally, a program y is denoted
as

〈
o1[arg1], · · · , ot[argt], · · · , o|y|[arg|y|]

〉
, ot ∈

O, argt ∈ E ∪ C ∪ R. Here, O is a pre-defined
function set, which covers basic reasoning opera-

Function Argument
Type Argument Description

Find entity FC Barcelona
Find the specific

KB entity

Relate relation arena stadium
Find the entities that

hold a specific relation
with the given entity

FilterConcept concept sports facility
Find the entities that
belong to a specific

concept

And - - Return the intersection
of two entity sets

Table 1: Function examples. - means empty.

tions over KBs (Cao et al., 2022). According to the
argument type, O can be devided into four disjoint
subsets: O = OE ∪ OC ∪ OR ∪ O∅, representing
the functions whose argument type is entity, con-
cept, relation and empty respectively. Table 1 gives
some examples of program functions.
Program Induction. Given a KB, and a complex
natural language question x =

〈
w1, w2, · · · , w|x|

〉
,

it aims to produce a program y that generates the
right answer z when executed against KB.
Program Transfer. In this task, we have ac-
cess to the source domain data S =

〈
KBS ,DS

〉
,

where DS contains pairs of question and pro-
gram {(xSi , ySi)}n

S

i=1; and target domain data T =〈
KBT ,DT

〉
, where DT contains pairs of question

and answer {(xTi , zTi)}n
T

i=1. We aim at learning a PI
model to translate a question x for KBT into pro-
gram y, which produces the correct answer when
executed on KBT .

4 Framework

As mentioned in the introduction, to perform pro-
gram transfer for Complex KBQA, we need to ad-
dress three crucial problems: (1) What to transfer
when both questions and KBs are heterogeneous?
(2) How to deal with the KB elements unseen in
the external annotations? (3) How to prune the
search space of input arguments to alleviate the
huge search space problem? In this section, we
introduce our two-stage parsing framework with an
ontology-guided pruning strategy, which is shown
in Fig. 2.

(1) Sketch Parser: At the first stage, we design
a sketch parser fs to parse x into a program sketch
ys =

〈
o1, · · · , ot, · · · o|y|

〉
, which is a sequence of

functions without arguments. The sketch parsing
process can be formulated as

ys = fs(x). (1)

8130

Sketch
Parser

Argument
Parser

Fil.Con. WhatRelateFind Fil.Con.Relate

Ontology

instanceOf

subclassOf

place of birth

nationality

teams owned

teams owned
teams owned

loca
tion

head coach

head coach
player

Entity-level
triples

sports
team

owner

person

Steve
Bisciotti

𝒆𝒊 𝒆𝒋 𝒆𝒌

Sketch

hockey
team

sports
team

football
team

Baltimore
Ravens

football
coach

coach

John
Harbaugh

sports
team

Fil.Con.
Steve

Bisciotti

Find
team
owned

Relate
coach

Fil.Con.
head
coach

Relate What

...
...

...

...

instanceOf instanceOf

Question: Who is the coach of the team owned by Steve Bisciotti?

Program

Figure 2: We design a high-level sketch parser to generate the sketch, and a low-level argument parser to predict
arguments for the sketch. The arguments are retrieved from candidate pools which are illustrated by the color
blocks. The arguments for functions are mutually constrained by the ontology structure. For example, when the
second function Relate finds the argument teams owned, the candidate pool for the third function Fil.Con. (short
for FilterConcept) is reduced to the range of relation teams owned.

Translation from question to sketch is relevant to
language compositionality, and irrelevant to KB
structure. Therefore, the sketch parser can general-
ize across KBs.

(2) Argument Parser: At the second stage, we
design an argument parser fa to retrieve the ar-
gument argt from a candidate pool P for each
function ot, which can be formulated as

argt = fa(x, ot,P). (2)

Here, the candidate pool P contains the relevant
elements in KBT , including concepts, entities, and
relations. In a real KB, the candidate pool is usu-
ally huge, which makes searching and learning
from answers very hard. Therefore, we propose an
ontology-guided pruning strategy, which dynami-
cally updates the candidate pool and progressively
reduces its search space.

In the following we will introduce the implemen-
tation details of our sketch parser (Section 4.1),
argument parser (Section 4.2) and training strate-
gies (Section 4.3).

4.1 Sketch Parser

The sketch parser is based on encoder-decoder
model (Sutskever et al., 2014) with attention mecha-
nism (Dong and Lapata, 2016). We aim to estimate
p(ys|x), the conditional probability of sketch ys

given input x. It can be decomposed as:

p(ys|x) =
|ys|∏
t=1

p(ot|o<t, x), (3)

where o<t = o1, ..., ot−1.
Specifically, our sketch parser comprises a ques-

tion encoder that encodes the question into vectors
and a sketch decoder that autoregressively outputs
the sketch step-by-step. The details are as follows:
Question Encoder. We utilize BERT (Devlin et al.,
2019) as the encoder. Formally,

x̄, (x1, · · · ,xi, · · · ,x|x|) = BERT(x), (4)

where x̄ ∈ Rd̂ is the question embedding, and
xi ∈ Rd̂ is the hidden vector of word xi. d̂ is the
hidden dimension.
Sketch Decoder. We use Gated Recurrent Unit
(GRU) (Cho et al., 2014), a well-known variant
of RNNs, as our decoder of program sketch. The
decoding is conducted step by step. After we have
predicted ot−1, the hidden state of step t is com-
puted as:

ht = GRU(ht−1,ot−1), (5)

where ht−1 is the hidden state from last time
step, ot−1 = [W]ot−1 denotes the embedding

8131

corresponding to ot−1 in the embedding matrix
W ∈ R|O|×d. We use ht as the attention key to
compute scores for each word in the question based
on the hidden vector xi, and compute the attention
vector ct as:

αi =
exp(xT

i ht)∑|x|
j=1 exp(x

T
j ht)

,

ct =

|x|∑
i=1

αixi.

(6)

The information of ht and ct are fused to predict
the final probability of the next sketch token:

gt = ht + ct,

p(ot|o<t, x) = [Softmax(MLP(gt))]ot ,
(7)

where MLP (short for multi-layer perceptron)
projects d̂-dimensional feature to |O|-dimension,
which consists of two linear layers with ReLU acti-
vation.

4.2 Argument Parser
In the above section, the sketch is obtained with
a sketch parser. In this section, we will introduce
our argument parser, which aims to retrieve the
argument argt from the target KB for each func-
tion ot in the sketch. To reduce the search space,
it retrieves arguments from a restricted candidate
pool P , which is constructed with our ontology-
guided pruning strategy. In the following, we will
introduce the argument retrieval process and the
candidate pool construction process.
Argument Retrieval. Specifically, we take gt in
Equation 7 as the context representation of ot, learn
vector representation Pi ∈ Rd̂ for each candidate
Pi, and calculate the probability for Pi based on gt
and Pi. Candidate Pi is encoded with the BERT
encoder in Equation 4, which can be formulated as:

Pi = BERT(Pi). (8)

Pi is the ith row of P. The probability of candidate
argt is calculated as:

p(argt|x, ot,P) = [Softmax(Pgt)]argt . (9)

Candidate Pool Construction. In the following,
we will introduce the KB ontology first. Then, we
will describe the rationale of our ontology-guided
pruning strategy and its implementation details.

In KB, The domain and range of rela-
tions, and the type of entities form the KB

ontology. Specifically, a relation r comes
with a domain dom(r) ⊆ C and a range
ran(r) ⊆ C. An entity e comes with a
type type(e) = {c|(e, instanceOf, c) ∈
T }. For example, as shown in Fig. 2,
sports team owner ∈ dom(teams owned),
sports team ∈ ran(teams owned), and
sports team ∈ type(Baltimore Ravens).

The rationale of our pruning is that the argu-
ments for program functions are mutually con-
strained according to the KB ontology. There-
fore, when the argument argt for ot is determined,
the possible candidates for {oi}|ys|i=t+1 will be ad-
justed. For example, in Fig. 2, when Relate takes
teams owned as the argument, the candidate pool
for the next FilterConcept is constrained to the
range of relation teams owned, thus other concepts
(e.g., time zone) will be excluded from the candi-
date pool.

In practice, we propose a set of ontology-
oriented operators to adjust the candidate pool
P step-by-step. Specifically, we define three
ontology-oriented operators C(e), R(r), D−(c),
which aim to find the type of entity e, the range of
relation r, and the relations whose domain contains
c. Furthermore, we use the operators to maintain an
entity pool PE , a relation pool PR and a concept
pool PC . When argt of ot is determined, we will
update PE , PR, and PC using C(e), R(r), D−(c).
We take one of the three pools as P according to
the argument type of ot. The detailed algorithm is
shown in Appendix.

4.3 Training

We train our model using the popular pretrain-
finetune paradigm. Specifically, we pretrain
the parsers on the source domain data DS ={(

xSi , y
S
i

)}nS

i=1
in a supervised way. After that,

we conduct finetuning on the target domain data

DT =
{(

xTi , z
T
i

)}nT

i=1
in a weakly supervised way.

Pretraining in Source Domain. Since the source
domain data provides complete annotations, we can
directly maximize the log-likelihood of the golden
sketch and golden arguments:

Lpretrain = −
∑

(xS ,yS)∈DS

(
log p(ySs |xS)

+

|ys|∑
t=1

log p(argSt |xS , oSt ,P)
)
.

(10)

8132

Finetuning in Target Domain. At this training
phase, questions are labeled with answers while
programs remain unknown. The basic idea is to
search for potentially correct programs and opti-
mize their corresponding probabilities. Specifically,
we propose two training strategies:

• Hard-EM Approach. At each training step, hard-
EM generates a set of possible programs with
beam search based on current model parameters,
and then executes them to find the one whose an-
swers have the highest F1 score compared with
the gold. Let ŷT denote the best program, we
directly maximize p(ŷT |xT) like Equation 10.

• Reinforcement learning (RL). It formulates the
program generation as a decision making pro-
cedure and computes the rewards for sampled
programs based on their execution results. We
take the F1 score between the executed answers
and golden answers as the reward value, and
use REINFORCE (Williams, 1992) algorithm
to optimize the parsers.

5 Experimental Settings

5.1 Datasets

Source Domain. KQA Pro (Cao et al., 2022) pro-
vides 117,970 question-program pairs based on a
Wikidata (Vrandecic and Krötzsch, 2014) subset.
Target Domain. We use WebQuestionSP (We-
bQSP) (Yih et al., 2016) and ComplexWebQues-
tions (CWQ) (Talmor and Berant, 2018) as the
target domain datasets for two reasons: (1) They
are two widely used benchmark datasets in Com-
plex KBQA; (2) They are based on a large-scale
KB Freebase (Bollacker et al., 2008), which makes
program transfer challenging. Specifically, We-
bQSP contains 4,737 questions and is divided into
2,998 train, 100 dev and 1,639 test cases. CWQ
is an extended version of WebQSP which is more
challenging, with four types of questions: compo-
sition (44.7%), conjunction (43.6%), comparative
(6.2%), and superlative (5.4%). CWQ is divided
into 27,639 train, 3,519 dev and 3,531 test cases.

We use the Freebase dump on 2015-08-091, from
which we extract the type of entities, domain and
range of relations to construct the ontology. The av-
erage domain, range, type size is 1.43 per relation,
1.17 per relation, 8.89 per entity respectively.

1http://commondatastorage.googleapis.com/freebase-
public/rdf/freebase-rdf-latest.gz

Table 2 shows the statistics of the source and
target domain KB. The target domain KB contains
much more KB elements, and most of them are
uncovered by the source domain.

Domain # Entities # Relations # Concepts

Source 16,960 363 794
Target 30,943,204 15,015 2,519

Table 2: The statistics for source and target domain KB.

5.2 Baselines

In our experiments, we select representative models
that learn from question-answer pairs as our base-
lines. They can be categorized into three groups:
program induction methods, query graph genera-
tion methods and information retrieval methods.

Existing program induction methods search for
gold programs with RL. They usually require hu-
man efforts or are constrained to simple questions.
NSM (Liang et al., 2017) uses the provided entity,
relation and type annotations to ease the search, and
can solve relatively simple questions. NPI (Ansari
et al., 2019) designs heuristic rules such as dis-
allowing repeating or useless actions for efficient
search.

Existing query graph generation methods gener-
ate query graphs whose execution on KBs produces
the answer. They use entity-level triples as search
guidance, ignoring the useful ontology. TEX-
TRAY (Bhutani et al., 2019) uses a decompose-
execute-join approach. QGG (Lan and Jiang, 2020)
incorporates constraints into query graphs in the
early stage. TeacherNet (He et al., 2021) utilizes
bidirectional searching.

Existing information retrieval methods directly
construct a question-specific sub-KB and then rank
the entities in the sub-KB to get the answer. Graft-
Net (Sun et al., 2018) uses heuristics to create the
subgraph and uses a variant of graph convolutional
networks to rank the entities. PullNet (Sun et al.,
2019) improves GraftNet by iteratively construct-
ing the subgraph instead of using heuristics.

Besides, we compare our full model Ours with
Ours-f, Ours-p, Ours-pa, Ours-o, which denotes
our model without finetuning, without pretraining,
without pretraining of argument parser, and without
our ontology-guided pruning strategy respectively.

8133

5.3 Evaluation Metrics
Following prior works (Berant et al., 2013; Sun
et al., 2018; He et al., 2021), we use F1 score and
Hit@1 as the evaluation metrics. Since questions
in the datasets have multiple answers, F1 score
reflects the coverage of predicted answers better.

5.4 Implementations
We used the bert-base-cased model of Hugging-
Face2 as our BERT encoder with the hidden dimen-
sion d̂ 768. The hidden dimension of the sketch
decoder d was 1024. We used AdamW (Loshchilov
and Hutter, 2019) as our optimizer. We searched
the learning rate for BERT paramters in {1e-4, 3e-
5, 1e-5}, the learning rate for other parameters in
{1e-3, 1e-4, 1e-5}, and the weight decay in {1e-4,
1e-5, 1e-6}. According to the performance on dev
set, we finally used learning rate 3e-5 for BERT
parameters, 1e-3 for other parameters, and weight
decay 1e-5.

6 Experimental Results

Models WebQSP CWQ

F1 Hit@1 F1 Hit@1

NSM - 69.0 - -
NPI - 72.6 - -

TEXTRAY 60.3 72.2 33.9 40.8
QGG 74.0 - 40.4 44.1

TeacherNet 67.4 74.3 44.0 48.8
GraftNet 62.3 68.7 - 32.8*
PullNet - 68.1 - 47.2*

Ours-f 53.8 53.0 45.9 45.2
Ours-p 3.2 3.1 2.3 2.1
Ours-pa 70.8 68.9 54.5 54.3
Ours-o 72.0 71.3 55.8 54.7
Ours 76.5 74.6 58.7 58.1

Table 3: Performance comparison of different methods
(F1 score and Hits@1 in percent). We highlight the best
results in bold and second with an underline. *: reported
by PullNet on the dev set.

6.1 Overall Results
As shown in Table 3, our model achieves the best
performance on both WebQSP and CWQ. Espe-
cially on CWQ, we have an absolute gain of 14.7%
in F1 and 9.3% in Hit@1, beating previous meth-
ods by a large margin. Note that CWQ is much
more challenging than WebQSP because it includes
more compositional and conjunctional questions.
Previous works mainly suffer from the huge search

2https://github.com/huggingface/transformers

space and sparse training signals. We alleviate
these issues by transferring the prior knowledge
from external annotations and incorporating the on-
tology guidance. Both of them reduce the search
space substantially. On WebQSP, we achieve an
absolute gain of 2.5% and 0.3% in F1 and Hit@1,
respectively, demonstrating that our model can also
handle simple questions well, and can adapt to dif-
ferent complexities of questions.

Note that our F1 scores are higher than the corre-
sponding Hit@1. This is because we just randomly
sampled one answer from the returned answer set
as the top 1 without ranking them.

Models WebQSP CWQ

Top-1 76.5 58.7
Top-2 81.1 61.2
Top-5 85.4 63.3
Top-10 86.9 65.0

Table 4: The highest F1 score in the top-k programs.

We utilize beam search to generate multiple pos-
sible programs and evaluate their performance. Ta-
ble 4 shows the highest F1 score in the top-k gen-
erated programs, where top-1 is the same as Ta-
ble 3. We can see that the best F1 in the top-10
programs is much higher than the F1 of the top-1
(e.g., with an absolute gain 10.4% for WebQSP
and 6.3% for CWQ). This indicates that a good
re-ranking method can further improve the overall
performance of our model. We leave this as our
future work.

6.2 Ablation study
Pretraining: As shown in Table 3, when compar-
ing Ours-pa with Ours, the F1 and Hit@1 on CWQ
drop by 4.2% and 3.8% respectively, which indi-
cates that the pretraining for the argument parser
is necessary. Ours-p denotes the model without
pretraining for neither sketch parser nor argument
parser. We can see that its results are very poor,
achieving just about 3% and 2% on WebQSP and
CWQ, indicating that the pretraining is essential,
especially for the sketch parser.
Finetuning: Without finetuning on the target data,
i.e., in Ours-f, performance drops a lot compared
with the complete model. For example, F1 and
Hit@1 on CWQ drop by 12.8% and 12.9% respec-
tively. It indicates that finetuning is necessary for
the model’s performance. As shown in Table 2,
most of the relations and concepts in the target do-
main are uncovered by the source domain. Due to

8134

the semantic gap between source and target data,
the prior knowledge must be properly transferred
to the target domain to bring into full play.
Ontology: We implemented Ours-o by remov-
ing ontology from KB and removing FilterConcept
from the program. Comparing Ours-o with Ours,
the F1 and Hit@1 on CWQ drops by 2.9% and
3.4% respectively, which demonstrates the impor-
tance of ontology-guided pruning strategy. We
calculated the search space size for each compo-
sitional and conjunctive question in the dev set of
CWQ, and report the average size in Table 5. The
statistics shows that, the average search space size
of Ours is only 0.26% and 3.2% of that in Ours-o
for the two kinds of questions. By incorporating
the ontology guidance, Ours substantially reduces
the search space.

Model Composition Conjunction

Ours-o 4,248,824.5 33,152.1
Ours 11,200.7 1,066.5

Table 5: The average search space size for composition
and conjunction questions in CWQ set for Ours and
Ours-o.

Hard-EM v.s. RL: For both WebQSP and CWQ,
training with Hard-EM achieves better perfor-
mance. For RL, we simply employed the REIN-
FORCE algorithm and did not implement any aux-
iliary reward strategy since this is not the focus
of our work. The sparse, delayed reward causes
high variance, instability, and local minima issues,
making the training hard (Saha et al., 2019b). We
leave exploring more complex training strategies
as our future work.

Models WebQSP CWQ

F1 Hit@1 F1 Hit@1

Hard-EM 76.5 74.6 58.7 58.1
RL 71.4 72.0 46.1 45.4

Table 6: Results of different training strategies.

6.3 Case Study
Fig. 3 gives a case, where our model parses an
question into multiple programs along with their
probablility scores and F1 scores of executed an-
swers. Given the question “The person whose edu-
cation institution is Robert G. Cole Junior-Senior
High School played for what basketball teams?”,
we show the programs with the largest, 2-nd largest

Find
R.G.C.
High

School

Relate
[inv]

education
institution

Fil.Con.

person

Relate

team

Fil.Con.

basketball
team

What

R.G.C.
High

School
student person

R.G.C.
High

School
athlete pro

athlete

WhatAnd

Program prob F1

0.87

0.65

0.01

1.00

1.00

0.00

Question: The person whose education institution is Robert G. Cole Junior-
Senior High School played for what basketball teams?

Answer set: LSU Tigers men’s basketball, Boston Celtics, Miami Heat,
Orlando Magic, Cleveland Cavaliers, Los Angeles Lakers, Phoenix Suns

Find Relate Fil.Con.

person

Relate

team

Fil.Con. What
R.G.C.
High

School
student basketball

team

Find Relate Fil.Con.

Find Relate Fil.Con.

Figure 3: An example from CWQ dev set. Our model
translates the question into multiple programs with the
corresponding probability and F1 score. We show the
best, 2-nd best and 10-th best programs. Both the best
and 2-nd best programs are correct.

and 10-th largest possibility score. Both of the
top-2 programs get the correct answer set and are
semantically equivelant with the question, while
the 10-th best program is wrong.
Error Analysis We randomly sampled 100 error
cases whose F1 score is lower than 0.1 for manual
inspection. The errors can be summarized into the
following categories: (1) Wrong relation (53%):
wrongly predicted relation makes the program
wrong, e.g., for question “ What language do peo-
ple in the Central Western Time Zone speak?”, our
model predicts the relation main country, while
the ground truth is countries spoken in; (2)
Wrong concept (38%): wrongly predicted concept
makes the program wrong, e.g., for the question
“What continent does the leader Ovadia Yosel live
in?”, our model predicted the concept location,
whereas the ground truth is continent. (3) Model
limitation (9%): Handling attribute constraint was
not considered in our model, e.g., for the question
“Who held his governmental position from before
April 4, 1861 and influenced Whitman’s poetry?”,
the time constraint April 4, 1861 cannot be handled.

7 Conclusion

In this parper, we propose program transfer for
Complex KBQA for the first time. We propose
a novel two-stage parsing framework with an ef-
ficient ontology-guided pruning strategy. First, a
sketch parser translates a question into the program,
and then an argument parser fills in the detailed

8135

arguments for functions, whose search space is re-
stricted by an ontology-guided pruning strategy.
The experimental results demonstrate that our pro-
gram transfer approach outperforms the previous
methods significantly. The ablation studies show
that our two-stage parsing paradigm and ontology-
guided pruning are both effective.

8 Acknowledgments

This work is founded by the National Key
Research and Development Program of China
(2020AAA0106501), the Institute for Guo Qiang,
Tsinghua University (2019GQB0003), Huawei
Noah’s Ark Lab and Beijing Academy of Artifi-
cial Intelligence.

References
Ghulam Ahmed Ansari, Amrita Saha, Vishwajeet Ku-

mar, Mohan Bhambhani, Karthik Sankaranarayanan,
and Soumen Chakrabarti. 2019. Neural program in-
duction for KBQA without gold programs or query
annotations. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 4890–4896. ijcai.org.

Yoav Artzi, Nicholas FitzGerald, and Luke Zettlemoyer.
2013. Semantic parsing with Combinatory Catego-
rial Grammars. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Tutorials), page 2, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Marco Baroni. 2019. Linguistic generalization and
compositionality in modern artificial neural networks.
Philosophical Transactions of the Royal Society B,
375.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Nikita Bhutani, Xinyi Zheng, and H. V. Jagadish. 2019.
Learning to answer complex questions over knowl-
edge bases with query composition. In Proceedings
of the 28th ACM International Conference on Infor-
mation and Knowledge Management, CIKM 2019,
Beijing, China, November 3-7, 2019, pages 739–748.
ACM.

K. Bollacker, Colin Evans, Praveen K. Paritosh, Tim
Sturge, and J. Taylor. 2008. Freebase: a collabora-
tively created graph database for structuring human
knowledge. In SIGMOD’08.

Antoine Bordes, Sumit Chopra, and Jason Weston. 2014.
Question answering with subgraph embeddings. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 615–620, Doha, Qatar. Association for Com-
putational Linguistics.

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie,
Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and Han-
wang Zhang. 2022. KQA Pro: A large diagnostic
dataset for complex question answering over knowl-
edge base. In ACL’22.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5090–5100, Online. As-
sociation for Computational Linguistics.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2017. Learning structured natural
language representations for semantic parsing. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 44–55, Vancouver, Canada. As-
sociation for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statistical
Translation, pages 103–111, Doha, Qatar. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Xing Fan, Emilio Monti, Lambert Mathias, and Markus
Dreyer. 2017. Transfer learning for neural seman-
tic parsing. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 48–56,
Vancouver, Canada. Association for Computational
Linguistics.

Ofer Givoli and Roi Reichart. 2019. Zero-shot seman-
tic parsing for instructions. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4454–4464, Florence, Italy.
Association for Computational Linguistics.

8136

https://doi.org/10.24963/ijcai.2019/679
https://doi.org/10.24963/ijcai.2019/679
https://doi.org/10.24963/ijcai.2019/679
https://aclanthology.org/P13-5002
https://aclanthology.org/P13-5002
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://doi.org/10.1145/3357384.3358033
https://doi.org/10.1145/3357384.3358033
https://doi.org/10.3115/v1/D14-1067
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/P17-1005
https://doi.org/10.18653/v1/P17-1005
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/W17-2607
https://doi.org/10.18653/v1/W17-2607
https://doi.org/10.18653/v1/P19-1438
https://doi.org/10.18653/v1/P19-1438

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals.

Jonathan Herzig and Jonathan Berant. 2017. Neural
semantic parsing over multiple knowledge-bases. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 623–628, Vancouver, Canada.
Association for Computational Linguistics.

E. P. hommeaux. 2011. SPARQL query language for
RDF.

Sen Hu, Lei Zou, and Xinbo Zhang. 2018. A state-
transition framework to answer complex questions
over knowledge base. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2098–2108, Brussels, Bel-
gium. Association for Computational Linguistics.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross B.
Girshick. 2017. CLEVR: A diagnostic dataset for
compositional language and elementary visual rea-
soning. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2017, Honolulu,
HI, USA, July 21-26, 2017, pages 1988–1997. IEEE
Computer Society.

B. Lake, R. Salakhutdinov, and J. Tenenbaum. 2015.
Human-level concept learning through probabilistic
program induction. Science, 350:1332 – 1338.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. A sur-
vey on complex knowledge base question answering:
Methods, challenges and solutions. In IJCAI.

Yunshi Lan and Jing Jiang. 2020. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 969–974, Online. Association for
Computational Linguistics.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
D. Kontokostas, Pablo N. Mendes, Sebastian Hell-
mann, M. Morsey, Patrick van Kleef, S. Auer, and
C. Bizer. 2015. Dbpedia - a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic
Web.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. For-
bus, and Ni Lao. 2017. Neural symbolic machines:
Learning semantic parsers on Freebase with weak
supervision. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 23–33, Vancouver,
Canada. Association for Computational Linguistics.

P. Liang. 2013. Lambda dependency-based composi-
tional semantics. CoRR, abs/1309.4408.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1400–1409, Austin, Texas. Associ-
ation for Computational Linguistics.

Arvind Neelakantan, Quoc V. Le, Martín Abadi, An-
drew McCallum, and Dario Amodei. 2017. Learning
a natural language interface with neural program-
mer. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Amrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha,
Karthik Sankaranarayanan, and Soumen Chakrabarti.
2019a. Complex program induction for querying
knowledge bases in the absence of gold programs.
Transactions of the Association for Computational
Linguistics, 7:185–200.

Amrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha,
Karthik Sankaranarayanan, and Soumen Chakrabarti.
2019b. Complex program induction for querying
knowledge bases in the absence of gold programs.
Transactions of the Association for Computational
Linguistics, 7:185–200.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Han-
wang Zhang. 2021. TransferNet: An effective and
transparent framework for multi-hop question an-
swering over relation graph. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4149–4158, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yu Su and Xifeng Yan. 2017. Cross-domain semantic
parsing via paraphrasing. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1235–1246, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. PullNet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2380–
2390, Hong Kong, China. Association for Computa-
tional Linguistics.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early

8137

https://doi.org/10.18653/v1/P17-2098
https://doi.org/10.18653/v1/P17-2098
https://doi.org/10.18653/v1/D18-1234
https://doi.org/10.18653/v1/D18-1234
https://doi.org/10.18653/v1/D18-1234
https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D16-1147
https://openreview.net/forum?id=ry2YOrcge
https://openreview.net/forum?id=ry2YOrcge
https://openreview.net/forum?id=ry2YOrcge
https://doi.org/10.1162/tacl_a_00262
https://doi.org/10.1162/tacl_a_00262
https://doi.org/10.1162/tacl_a_00262
https://doi.org/10.1162/tacl_a_00262
https://doi.org/10.18653/v1/2021.emnlp-main.341
https://doi.org/10.18653/v1/2021.emnlp-main.341
https://doi.org/10.18653/v1/2021.emnlp-main.341
https://doi.org/10.18653/v1/D17-1127
https://doi.org/10.18653/v1/D17-1127
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D18-1455

fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4231–4242,
Brussels, Belgium. Association for Computational
Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pages 3104–3112.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641–651, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Denny Vrandecic and M. Krötzsch. 2014. Wikidata: a
free collaborative knowledgebase. Communications
of the ACM.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332–1342, Beijing,
China. Association for Computational Linguistics.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning.

Catherine Wong, Kevin Ellis, Joshua B. Tenenbaum,
and Jacob Andreas. 2021. Leveraging language to
learn program abstractions and search heuristics. In
Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 11193–11204. PMLR.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016. Question answering on
Freebase via relation extraction and textual evidence.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2326–2336, Berlin, Germany.
Association for Computational Linguistics.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1321–1331, Beijing, China. Association for
Computational Linguistics.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206, Berlin,
Germany. Association for Computational Linguis-
tics.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J. Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
6069–6076. AAAI Press.

8138

https://doi.org/10.18653/v1/D18-1455
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.3115/v1/P15-1129
http://proceedings.mlr.press/v139/wong21a.html
http://proceedings.mlr.press/v139/wong21a.html
https://doi.org/10.18653/v1/P16-1220
https://doi.org/10.18653/v1/P16-1220
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983

A Ontology-guided Pruning

Algorithm 1 Ontology-guided Pruning
Input: natural language question x, program
sketch ys, knowledge base KB = {C, E ,R, T }
Output: {argt}|ys|t=1

PE ← E ,PR ← R,PC ← C,P ← ∅
for all ot in ys do

if ot ∈ OE then
P ← PE

argt = fa(x, ot,P)
PC ← C(argt)
PR ←

⋃
c∈PC

D−(c)

else if ot ∈ OR then
P ← PR

argt = fa(x, ot,P)
PC ← R(argt)

else if ot ∈ OC then
P ← PC

argt = fa(x, ot,P)
PR ← D−(argt)

end if
end for

B Freebase Details

We extracted a subset of Freebase which con-
tains all facts that are within 4-hops of entities
mentioned in the questions of CWQ and We-
bQSP. We extracted the domain constraint for
relations according to “ /type/property/schema”,
range constraint for relations according to
“/type/property/expected_type”, type constraint for
entities according to “/type/type/instance”. CVT
nodes in the Freebase were dealed with concatena-
tion of neiborhood relations.

C Program

We list the functions of KQA Pro in Table 7. The
arguments in our paper are the textual inputs. To
reduce the burden of the argument parser, for the
functions that take multiple textual inputs, we con-
catenate them to a single input.

8139

Function Functional Inputs × Textual Inputs
→ Outputs

Description Example (only show textual inputs)

FindAll () × () → (Entities) Return all entities in KB -
Find () × (Name) → (Entities) Return all entities with the given name Find(Kobe Bryant)
FilterConcept (Entities) × (Name) → (Entities) Find those belonging to the given

concept
FilterConcept(athlete)

FilterStr (Entities) × (Key, Value) → (Entities,
Facts)

Filter entities with an attribute condition
of string type, return entities and

corresponding facts

FilterStr(gender, male)

FilterNum (Entities) × (Key, Value, Op) →
(Entities, Facts)

Similar to FilterStr, except that the
attribute type is number

FilterNum(height, 200 centimetres, >)

FilterYear (Entities) × (Key, Value, Op) →
(Entities, Facts)

Similar to FilterStr, except that the
attribute type is year

FilterYear(birthday, 1980, =)

FilterDate (Entities) × (Key, Value, Op) →
(Entities, Facts)

Similar to FilterStr, except that the
attribute type is date

FilterDate(birthday, 1980-06-01, <)

QFilterStr (Entities, Facts) × (QKey, QValue) →
(Entities, Facts)

Filter entities and corresponding facts
with a qualifier condition of string type

QFilterStr(language, English)

QFilterNum (Entities, Facts) × (QKey, QValue, Op)
→ (Entities, Facts)

Similar to QFilterStr, except that the
qualifier type is number

QFilterNum(bonus, 20000 dollars, >)

QFilterYear (Entities, Facts) × (QKey, QValue, Op)
→ (Entities, Facts)

Similar to QFilterStr, except that the
qualifier type is year

QFilterYear(start time, 1980, =)

QFilterDate (Entities, Facts) × (QKey, QValue, Op)
→ (Entities, Facts)

Similar to QFilterStr, except that the
qualifier type is date

QFilterDate(start time, 1980-06-01, <)

Relate (Entity) × (Pred, Dir) → (Entities,
Facts)

Find entities that have a specific relation
with the given entity

Relate(capital, forward)

And (Entities, Entities) × () → (Entities) Return the intersection of two entity sets -
Or (Entities, Entities) × () → (Entities) Return the union of two entity sets -
QueryName (Entity) × () → (string) Return the entity name -
Count (Entities) × () → (number) Return the number of entities -
QueryAttr (Entity) × (Key) → (Value) Return the attribute value of the entity QueryAttr(height)
QueryAttrUnderCondition (Entity) × (Key, QKey, QValue) →

(Value)
Return the attribute value, whose

corresponding fact should satisfy the
qualifier condition

QueryAttrUnderCondition(population,
point in time, 2016)

QueryRelation (Entity, Entity) × () → (Pred) Return the predicate between two
entities

QueryRelation(Kobe Bryant, America)

SelectBetween (Entity, Entity) × (Key, Op) → (string) From the two entities, find the one
whose attribute value is greater or less

and return its name

SelectBetween(height, greater)

SelectAmong (Entities) × (Key, Op) → (string) From the entity set, find the one whose
attribute value is the largest or smallest

SelectAmong(height, largest)

VerifyStr (Value) × (Value) → (boolean) Return whether the output of QueryAttr
or QueryAttrUnderCondition and the

given value are equal as string

VerifyStr(male)

VerifyNum (Value) × (Value, Op) → (boolean) Return whether the two numbers satisfy
the condition

VerifyNum(20000 dollars, >)

VerifyYear (Value) × (Value, Op) → (boolean) Return whether the two years satisfy the
condition

VerifyYear(1980, >)

VerifyDate (Value) × (Value, Op) → (boolean) Return whether the two dates satisfy the
condition

VerifyDate(1980-06-01, >)

QueryAttrQualifier (Entity) × (Key, Value, QKey) →
(QValue)

Return the qualifier value of the fact
(Entity, Key, Value)

QueryAttrQualifier(population,
23,390,000, point in time)

QueryRelationQualifier (Entity, Entity) × (Pred, QKey) →
(QValue)

Return the qualifier value of the fact
(Entity, Pred, Entity)

QueryRelationQualifier(spouse, start
time)

Table 7: Details of 27 functions in KQA Pro. Each function has 2 kinds of inputs: the functional inputs come from
the output of previous functions, while the textual inputs come from the question.

8140

