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Abstract

Existing Natural Language Inference (NLI)
datasets, while being instrumental in the ad-
vancement of Natural Language Understand-
ing (NLU) research, are not related to scien-
tific text. In this paper, we introduce SCINLI,
a large dataset for NLI that captures the for-
mality in scientific text and contains 107, 412
sentence pairs extracted from scholarly papers
on NLP and computational linguistics. Given
that the text used in scientific literature dif-
fers vastly from the text used in everyday lan-
guage both in terms of vocabulary and sen-
tence structure, our dataset is well suited to
serve as a benchmark for the evaluation of sci-
entific NLU models. Our experiments show
that SCINLI is harder to classify than the exist-
ing NLI datasets. Our best performing model
with XLNet achieves a Macro F1 score of only
78.18% and an accuracy of 78.23% showing
that there is substantial room for improvement.

1 Introduction

Natural Language Inference (NLI) or Textual En-
tailment (Bowman et al., 2015) aims at recogniz-
ing the semantic relationship between a pair of
sentences—whether the second sentence entails
the first sentence, contradicts it, or they are seman-
tically independent. NLI was introduced (Dagan,
Glickman, and Magnini, 2005) to facilitate the eval-
uation of Natural Language Understanding (NLU)
that significantly impacts the performance of many
NLP tasks such as text summarization, question
answering, and commonsense reasoning.

To date, several NLI datasets are made available
(Bowman et al., 2015; Williams, Nangia, and Bow-
man, 2018; Marelli et al., 2014; Dagan, Glickman,
and Magnini, 2005). These datasets have not only
been instrumental for developing and evaluating
NLI models but also have been useful in advanc-
ing many other NLP areas such as: representation
learning (Conneau et al., 2017), transfer learning

(Pruksachatkun et al., 2020) and multi-task learn-
ing (Liu et al., 2019a).

However, despite their usefulness, none of the
existing NLI datasets is related to scientific text
that is found in research articles. The vocabulary
as well as the structure and formality used in sen-
tences in scientific articles are very different from
the sentences used in the everyday language. More-
over, the scientific text captured in research papers
brings additional challenges and complexities not
only in terms of the language and its structure but
also the inferences that exist in it which are not
available in the existing NLI datasets. For example,
a sentence can present the reasoning behind the
conclusion made in the previous sentence, while
other sentences indicate a contrast or entailment
with the preceding sentence. These inferences are
crucial for understanding, analyzing, and reason-
ing over scientific work (Luukkonen, 1992; Kuhn,
2012; Hall, Jurafsky, and Manning, 2008). There-
fore, ideally, the scientific language inference mod-
els should be evaluated on datasets which capture
these inferences and the particularities seen only in
scientific text.

To this end, we seek to enable deep learning for
natural language inference over scientific text by
introducing SCINLI,1 a large dataset of 107, 412
sentence pairs extracted from scientific papers re-
lated to NLP and computational linguistics (CL)
and present a comprehensive investigation into the
inference types that occur frequently in scientific
text. To capture the inference relations which are
prevalent in scientific text but are unavailable in
the existing NLI datasets, we introduce two new
classes—CONTRASTING and REASONING. We
create SCINLI by harnessing cues in our data in
the form of linking phrases between contiguous
sentences, which are indicative of their semantic re-
lations and provide a way to build a labeled dataset
using distant supervision (Mintz et al., 2009). Dur-

1https://github.com/msadat3/SciNLI
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Class First Sentence Second Sentence Linking Phrase
CONTRASTING Essentially, that work examines how a

word gains new senses, and how some
senses of a word may become depre-
cated.

here we examine how different words
compete to represent the same meaning,
and how the degree of success of words
in that competition changes over time.

‘In contrast,’

REASONING The Lang-8 corpus has often only one
corrected sentence per learner sentence,
which is not enough for evaluation.

we ensured that our evaluation corpus
has multiple references.

‘Thus,’

ENTAILMENT As a complementary area of investiga-
tion, a plausible direction would be to
shift the focus from the decomposition
of words into morphemes, to the organi-
zation of words as complete paradigms.

instead of relying on sub-word units,
identify sets of words organized into mor-
phological paradigms (Blevins, 2016).”

‘That is,’

NEUTRAL Literature on the topic of the current
study spans across many areas, includ-
ing verb classification, semiotics, sign
language and learning.

abstract words can be more challenging
to learn and memorise.

N/A

Table 1: Examples of sentence pairs from our dataset and the linking phrases used to extract them, corresponding
to all four classes considered. The second sentence of each pair is shown after removing the linking phrase.

ing training, we directly utilize these (potentially
noisy) sentence pairs, but to ensure a realistic eval-
uation of the NLI models over scientific text, we
manually annotate 6,000 sentence pairs. These
clean pairs are used in two splits, 2,000 pairs for
development and hyper-parameter tuning and 4,000
pairs for testing. Table 1 shows examples from our
dataset corresponding to all of our four classes.

We evaluate SCINLI by experimenting with tra-
ditional machine learning models using lexical
and syntactic features, neural network models—
BiLSTM, CBOW, CNN, and pre-trained language
models—BERT (Devlin et al., 2019), SciBERT
(Beltagy, Lo, and Cohan, 2019), RoBERTa (Liu
et al., 2019b), and XLNet (Yang et al., 2019). Our
findings suggest that: (1) SCINLI is harder to clas-
sify than other datasets for NLI; (2) Lexical fea-
tures are not enough for a model to achieve satisfac-
tory performance on SCINLI and deep semantic
understanding is necessary; (3) SCINLI is well
suited for evaluating scientific NLI models; and (4)
Our best performing model based on XLNet shows
78.18% Macro F1 and 78.23% accuracy illustrat-
ing that SCINLI is a challenging new benchmark.

2 Related Work

To date, several datasets exist for NLI of varying
size, number of labels, and degree of difficulty.
Dagan, Glickman, and Magnini (2006) introduced
the RTE (Recognizing Textual Entailment) dataset
of text-hypothesis pairs from the general news do-
main and considered two labels: entailment or no-
entailment (i.e., a hypothesis is true or false given
a text). The RTE dataset is paramount in develop-

ing and advancing the entailment task. The SICK
(Sentences Involving Compositional Knowledge)
dataset introduced by Marelli et al. (2014) was cre-
ated from two existing datasets of image captions
and video descriptions. SICK consists of sentence
pairs (premise-hypothesis) labeled as: entailment,
contradiction, or neutral. Despite being instrumen-
tal in the progress of NLI, both RTE and SICK
datasets are less suitable for deep learning models
due to their small size.

In recent years, SNLI (Bowman et al., 2015) and
MNLI (Williams, Nangia, and Bowman, 2018) are
the most popular datasets for training and evalu-
ating NLI models, in part due to their large size.
Similar to SICK, SNLI is derived from an im-
age caption dataset where the captions are used
as premises and hypotheses are created by crowd-
workers, with each sample being labeled as: en-
tailment, contradiction, or neutral. MNLI is cre-
ated in a similar fashion to SNLI except that the
premises are extracted from sources such as face-
to-face conversations, travel guides, and the 9/11
event, to make the task more challenging and suit-
able for domain adaptation. More recently, Nie
et al. (2020) released ANLI which was created in
an iterative adversarial manner where human anno-
tators were used as adversaries to provide sentence
pairs for which the state-of-the-art models make
incorrect predictions. Unlike the datasets specific
to classifying the relationships between two sen-
tences, Zellers et al. (2018) combined NLI with
commonsense reasoning to introduce a new task
of predicting the most likely next sentence from
a number of options along with their new dataset
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called SWAG which was also created with an ad-
versarial approach. However, different from ANLI,
the SWAG approach was automatic. All these
datasets have been widely used for evaluating NLU
models and many of them appear in different NLU
benchmarks such as GLUE (Wang et al., 2018)
and SUPERGLUE (Wang et al., 2019).

Heretofore, Khot, Sabharwal, and Clark (2018)
created the only NLI dataset related to science.
Their dataset, SCITAIL was derived from a school
level science question-answer corpus. As a result,
the text used in SCITAIL is very different from the
type of text used in scientific papers. Furthermore,
the sentence pairs in SCITAIL are classified into
one of two classes: entailment or no-entailment.
Thus, SCITAIL does not cover all the inference re-
lationships necessary to understand scientific text.

In other lines of research, discourse cues, e.g.,
linking phrases have been previously used to ex-
tract inter-sentence and/or inter-clause semantic re-
lations in discourse parsing (Hobbs, 1978; Webber
et al., 1999; Prasad et al., 2008; Jernite, Bowman,
and Sontag, 2017; Nie, Bennett, and Goodman,
2019), causal inference (Do, Chan, and Roth, 2011;
Radinsky, Davidovich, and Markovitch, 2012; Li
et al., 2020; Dunietz, Levin, and Carbonell, 2017)
and why-QA (Oh et al., 2013). However, none of
the aforementioned bodies of research investigates
these relations in scientific text, nor do they exploit
the discourse cues to create NLI datasets. Further-
more, discourse parsing studies a broader range of
semantic relations, many of which are unrelated to
the task of NLI while causal inference and why-
QA are limited to only cause-effect relations. In
contrast to these tasks, we focus on the semantic
relations which are either relevant to the task of
NLI or highly frequent in scientific text and lever-
age linking phrases to create the first ever scientific
NLI dataset, which we call SCINLI.

3 SCINLI: A New Corpus for NLI

In order to better understand the inter-sentence rela-
tionships that exist in scientific text, we started the
process of creating our dataset by perusing through
scientific literature with the intent of finding clues
that are revealing of those relationships. We found
that to have a coherent structure, authors often use
different linking phrases in the beginning of sen-
tences, which is indicative of the relationship with
the preceding sentence. For example, to elaborate
or make something specific, authors use linking

phrases such as “In other words” or “In particular,”
which indicate that the sentence supports or entails
the previous sentence. We also found that some
linking phrases are used to indicate additional rela-
tionships that are prevalent in scientific text but are
not captured in the existing NLI datasets. For in-
stance, when a sentence starts with “Therefore” or
“Thus,” it indicates that the sentence is presenting
a conclusion to the reasoning in the previous sen-
tence. Similarly, the phrase “In contrast” is used to
indicate that the sentence is contrasting what was
said in the previous sentence.

Therefore, inspired by the framework of dis-
course coherence theory (Hobbs, 1978; Webber
et al., 1999; Prasad et al., 2008) that character-
izes the inferences between discourse units, we
extend the NLI relations commonly used in prior
NLI work—entailment, contradiction, and seman-
tic independence—to a set of inference relations
that manifest in scientific text—contrasting, reason-
ing, entailment, and semantic independence (§3.1).
In order to create a large training set with mini-
mal manual effort, we employ a distant supervi-
sion method based on linking phrases that are com-
monly used in scientific writing and are indicative
of the semantic relationship between adjacent sen-
tences (§3.2). We avoid the noise incurred by the
distant supervision method in our development and
test sets by manually annotating these sets (§3.3).

3.1 Inference Classes

We define the inference classes used to create our
dataset in this section.

3.1.1 CONTRASTING

Our CONTRASTING class is an extension of
the CONTRADICTION class in the existing NLI
datasets. With this class, in addition to contradict-
ing relations between sentences in a pair, we aim
to capture inferences that occur when one sentence
mentions a comparison, criticism, juxtaposition, or
a limitation of something said in the other sentence.
We can see an example of a sentence pair from our
CONTRASTING class in Table 1. Here, the authors
discuss how their work differs from the other work
mentioned in the first sentence thereby making a
comparison between the two works.

3.1.2 REASONING

The examples where the first sentence presents the
reason, cause, or condition for the result or con-
clusion made in the second sentence are placed in
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Label Linking Phrases

CONTRASTING ‘However’, ‘On the other hand’, ‘In
contrast’, ‘On the contrary’

REASONING ‘Therefore’, ‘Thus’, ‘Consequently’,
‘As a result’, ‘As a consequence’,
‘From here, we can infer’

ENTAILMENT ‘Specifically’, ‘Precisely’, ‘In particu-
lar’, ‘Particularly’, ‘That is’, ‘In other
words’

Table 2: Linking phrases used to extract sentence pairs
and their corresponding classes.

our REASONING class. In Table 1, we can see an
example where the authors mention that they use a
multi-reference corpus for evaluation in the second
sentence and provide the reason behind it in the
first sentence.

3.1.3 ENTAILMENT

Our ENTAILMENT class includes the sentence pairs
where one sentence generalizes, specifies or has an
equivalent meaning with the other sentence. An
example from this class can be seen in Table 1.
In the example, the second sentence is specify-
ing the proposed direction mentioned in the first
sentence making the pair suitable for our ENTAIL-
MENT class.

3.1.4 NEUTRAL

The NEUTRAL class includes the sentence pairs
which are semantically independent. We can see
an example from this class in Table 1. Here, the
first sentence discusses the span of the literature
of a particular topic, whereas the second sentence
mentions the challenges of handling abstract words
in certain tasks. Therefore, the sentences are se-
mantically independent of each other.

3.2 Training Set Creation

We construct our training set from scientific papers
on NLP and computational linguistics available
in the ACL Anthology, published between 2000
and 2019 (Bird et al., 2008; Radev, Muthukrishnan,
and Qazvinian, 2009). For extracting textual data
from the PDF papers, we use GROBID2 which is
a popular tool for parsing PDF files. We employ
the following distant supervision technique on the
extracted text to select and label the sentence pairs.

We create a list of linking phrases which are
indicative of the semantic relationship between the

2github.com/kermitt2/grobid

sentence they occur in and the respective previous
sentence. We then group these linking phrases
into three classes based on the type of relationship
indicated by each of them. The linking phrases
and their assigned class can be seen in Table 2.
We select the sentences which start with any of
these phrases from each paper and include them
in our dataset as hypotheses or second sentences;
we include their respective preceding sentences
as the premises or first sentences. Each sentence
pair is labeled based on the class assigned to the
linking phrase present in the second sentence, e.g.,
if the second sentence starts with “In contrast”, the
sentence pair is labeled as CONTRASTING. After
assigning the labels, we delete the linking phrases
from the second sentence of each pair to ensure
that the models cannot get any clues of the ground
truth labels just by looking at them. We also pair
a large number of randomly selected sentences for
our NEUTRAL class using three approaches:

• BOTHRAND: Two completely random sen-
tences which do not contain any linking
phrases are extracted (both from the same pa-
per) and are paired together.

• FIRSTRAND: First sentence is random; sec-
ond sentence is selected randomly from the
other three classes (both from the same paper).

• SECONDRAND: Second sentence is random;
first sentence is selected randomly from the
other three classes (both from the same paper).

Our choice for including the last two approaches
above was to make the dataset more challenging.

3.3 Benchmark Evaluation Sets Creation

To create our development and test sets, we start
by extracting and labeling sentence pairs using the
same distant supervision approach described in the
previous section from the papers published in 2020
which are available in the ACL anthology. We then
manually annotate a subset of these sentence pairs
in order to make SCINLI a suitable benchmark for
evaluation. The annotation process is completed in
two steps, as described below.

First, we manually clean the data by filtering
out the examples which contain too many math-
ematical terms and by completing the sentences
that are broken due to erroneous PDF extraction by
looking at the papers they are from. The second
step of the annotation process is conducted in an
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#Examples #Words ‘S’ parser

Dataset Train Dev Test Prem. Hyp. Prem. Hyp. Overlap Agrmt.

SNLI 550,152 10,000 10,000 14.1 8.3 74.0% 88.9% 52.97% 89.0%
MNLI 392,702 20,000 20,000 22.3 - 91.0% 98.0% - 88.7%
SICK 4,500 - 4,927 9.76 9.57 - - 64.85% 84.0%
SCITAIL 23,596 1,304 2,126 10.79 10.28 89.5% 99.1% 54.84% -%

SCINLI
xxx+CONTRASTING 25,353 500 1,000 27.41 24.50 97.3% 97.4% 31.33% 91.6%
xxx+REASONING 25,353 500 1,000 28.25 24.32 97.5% 97.7% 32.75% 74.6%
xxx+ENTAILMENT 25,353 500 1,000 27.08 28.90 96.9% 95.9% 32.98% 82.3%
xxx+NEUTRAL 25,353 500 1,000 26.76 26.02 95.3% 95.6% 23.18% 94.7%

SCINLI Overall 101,412 2,000 4,000 27.38 25.93 96.8% 96.7% 30.06% 85.8%

Table 3: Comparison of key statistics of SCINLI with other related datasets.

iterative fashion. In each iteration, we randomly
sample a balanced subset from the cleaned set of
examples created in the previous step and present
the sentence pair from each example to three expert
annotators. To avoid a performance ceiling due to
lack of context, the annotators are instructed to la-
bel each example based only on the two sentences
in each example. If the label is not clear from the
context available in the two sentences, the instruc-
tion is to label them as unclear. The label with the
majority of the votes from annotators is then cho-
sen as the gold label. No gold label is assigned to
the examples (≈ 5%) which do not have a majority
vote. The examples for which the gold label agrees
with the label assigned based on the linking phrase
are selected to be in our benchmark evaluation
set. We continue the iterations of sampling a bal-
anced set of examples and annotating them until
we have at least 1, 500 examples from each class in
the benchmark evaluation set. In total, 8, 044 sen-
tence pairs—2, 011 from each class are annotated
among which 6, 904 have an agreement between
the gold label and the label assigned based on the
linking phrase. Therefore, these 6904 examples are
selected to be in the benchmark evaluation set. The
percentage of overall agreement and the class-wise
agreement between the gold labels and the labels
assigned based on the linking phrases are reported
in the last column of Table 3. The Fleiss-k score
among the annotators is 0.62 which indicates that
the agreement among the annotators is substantial
(Landis and Koch, 1977).

We randomly select 36% of the papers in our
benchmark evaluation set to be in our development
set and the rest of the papers are assigned to the
test set. This is done based on our decision to have
at least 500 samples from each class in the devel-
opment set and 1000 samples from each class in

the test set. Splitting the dataset into train, develop-
ment and test sets at paper level instead of sentence
pair level is done to prevent any information leak-
age among the data splits caused by sentences from
one paper being in more than one split.

3.4 Data Balancing

Because of the differences in the frequency of oc-
currence of the linking phrases related to different
classes, our initial dataset was unbalanced in all
three splits. In contrast, the examples in the re-
lated datasets such as SNLI (Bowman et al., 2015)
and MNLI (Williams, Nangia, and Bowman, 2018)
are almost equally distributed across their classes.
Therefore, for a fair comparison, we balance our
dataset by downsampling the top three most fre-
quent classes to the size of the least frequent class
in each split. We can see the number of examples
in each class of our SCINLI dataset in Table 3.

3.5 Data Statistics
A comparison of key statistics of SCINLI with four
related datasets is also shown in Table 3.

Dataset Size Although the total size of our
dataset is smaller than SNLI and MNLI, SCINLI
is still large enough to train and evaluate deep learn-
ing based NLI models.

Sentence Lengths From Table 3, we can see that
the average number of words in both premise and
hypothesis is higher in SCINLI compared with the
other datasets. This reflects the fact that sentences
used in scientific articles tend to be longer than the
sentences used in everyday language.

Sentence Parses Similar to the related datasets,
we parse the sentences in SCINLI by using the
Stanford PCFG Parser (3.5.2) (Klein and Manning,
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Dataset F1 Acc

SICK 63.54 64.86
SNLI 80.61 80.74
MNLI Dev
xxx-Matched 65.39 65.70
xxx-Mismatched 64.75 65.01
SCITAIL 71.18 72.29
SCINLI 60.98 61.38

Table 4: The Macro F1 (%) and Accuracy (%) of the
BiLSTM model on different datasets.

2003). We can see that≈ 97% of both first and sec-
ond sentences have parses with an ‘S’ root which
is higher than the sentences in SNLI and very com-
petitive with the other datasets. This illustrates that
most of our sentences are syntactically complete.

Token Overlap We report the average percent-
age of tokens occurring in hypotheses which over-
lap with the tokens in their premises (Table 3). We
observe that the overlap percentage in SCINLI is
much lower compared to the other datasets. There-
fore, our dataset has low surface-level lexical pat-
terns revealing the relationship between sentences.

4 SCINLI Evaluation
We evaluate our dataset by performing three sets of
experiments. First, we aim to understand the diffi-
culty level of SCINLI compared to related datasets
(§4.1). Second, we investigate a lexicalized clas-
sifier to test whether simple similarity based fea-
tures can capture the particularities of our rela-
tions and potentially perform well on our dataset
(§4.2). Third, we experiment with traditional ma-
chine learning models, neural network models and
transformer based pre-trained language models to
establish strong baselines (§4.3).

4.1 SCINLI vs. Related Datasets
To evaluate the difficulty of SCINLI, we compare
the performance of a BiLSTM (Hochreiter and
Schmidhuber, 1997) based classifier on our dataset
and four related datasets: SICK, SNLI, MNLI
and SCITAIL. The architecture for this model is
similar to the BiLSTM model used by Williams,
Nangia, and Bowman (2018). Precisely, the sen-
tence level representations S1 and S2 are derived
by sending the embedding vectors of the words in
each of the sentences in a pair through two sep-
arate BiLSTM layers and averaging their hidden
states. The context vector Sc is calculated using
the following equation:

Sc = [S1, S2, S1 � S2, S1 − S2] (1)

Here, the square brackets denote a concatenation
operation of vectors and � and − are element-wise
multiplication and subtraction operators, respec-
tively. Sc is sent through a linear layer with Relu
activation which is followed by a softmax layer to
obtain the final output class.

Implementation details We pre-process the in-
put sentences by tokenizing and stemming them
using the NLTK tokenizer3 and Porter stemmer,4

respectively. Any stemmed token which occurs less
than two times in the training set is replaced with
an [UNK] token. We use 300D Glove embeddings
(Pennington, Socher, and Manning, 2014) to rep-
resent the tokens which are allowed to be updated
during training. The hidden size for the BiLSTM
models is 300. The batch size is set at 64 and the
models are trained for 30 epochs where we opti-
mize a cross-entropy loss using Adam optimizer
(Kingma and Ba, 2014) with an initial learning
rate of 0.001. We employ early stopping with a
patience size 10 where the Macro F1 score of the
development set is used as the stopping criteria.
Since SICK does not have a development split, we
randomly select 10% of its training examples to
be used as the development set. Similarly, since
MNLI does not have a publicly available test split,
we consider its development split as the test split
and we randomly select ≈ 10, 000 samples from
the training set to be used as the development set.

We can see the performance of this model on
different datasets in Table 4. We find the following:

SCINLI is more challenging than other related
datasets. The BiLSTM model shows a much
lower performance for SCINLI compared with the
other datasets. These results indicate that the task
our dataset presents is more challenging compared
to other datasets. As we have seen in Table 3, there
is a substantial amount of discrepancy in sentence
lengths between SCINLI and the other datasets.
The longer sentences in our dataset make it harder
for the models to retain long distance dependencies,
which result in lower performance. Furthermore,
our dataset has low surface-level lexical cues and
exhibits complex linguistic patterns that require a
model to be less reliant on lexical cues but instead
learn deep hidden semantics from text.

3https://www.nltk.org/api/nltk.
tokenize.html

4https://www.nltk.org/howto/stem.html
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SICK SciNLI

Features F1 Acc F1 Acc

UNIGRAMS 33.32 51.39 40.96 41.28
BIGRAMS 33.02 50.90 32.04 32.57
UNIGRAM & BIGRAM 34.52 49.69 39.35 39.52
FEATURES 1-3 66.68 71.86 35.75 38.15
ALL FEATURES 66.22 72.03 47.01 47.78

Table 5: The Macro F1 (%) and Accuracies (%) of the
lexicalized classifier on SICK and SCINLI.

4.2 Lexical Similarity vs. Semantic
Relationship

To verify that the examples in our dataset cannot
be classified based only on syntactic and lexical
similarities, we explore a simple lexicalized clas-
sifier similar to (Bowman et al., 2015). We train a
classifier using different combinations of the fol-
lowing features: (1) the second sentence’s BLEU
(Papineni et al., 2002) score with respect to the first
sentence with an n-gram range of 1 to 4; (2) the
difference in length between the two sentences in
a pair; (3) overlap of all words, just nouns, verbs,
adjectives, or adverbs - both the actual number and
the percentage over possible overlaps; and (4) un-
igrams and bigrams from the second sentence as
indicator features. We compare the performance of
these models on our dataset and the SICK dataset
because given the small size of SICK, this is espe-
cially suitable for this kind of models. The results
can be seen in Table 5. We observe the following:

Semantic understanding is required to perform
well on SCINLI. The lexicalized model fails to
achieve satisfactory results on SCINLI even when
all features are combined. Both Macro F1 and
accuracy are much lower for our dataset than SICK.
This means that without actually understanding the
content in the sentences in SCINLI, a model cannot
successfully predict their relationship.

4.3 SCINLI Baselines

To establish baselines on our dataset, we consider
three types of models: a traditional machine learn-
ing model, neural network models, and pre-trained
language models.

Traditional Machine Learning Model We con-
sider the lexicalized classifier using all four features
described in §4.2 as a baseline on our dataset.

Neural Network Models We experiment with
three neural models to get the sentence level rep-
resentations for each sentence in a pair: (a) BiL-

STM - word embeddings are sent through a BiL-
STM layer and the hidden states are averaged; (b)
CBOW - word embedding vectors are summed; (c)
CNN - 64 convolution filters of widths [3, 5, 9]
on the word embeddings are applied, the outputs
of which are mean pooled to get a single vector
representation from the filters of each of the three
widths. These three vectors are then concatenated
to get the sentence level representation.

For all three models, the sentence level represen-
tations are combined as in Eq. 1. The obtained
representations are first sent through a linear layer
with Relu activation followed by softmax for clas-
sification (i.e., project them with a weight matrix
W ∈ Rd×4). The hyperparameters and other im-
plementation details are the same as for the BiL-
STM model described in §4.1.

Pre-trained Language Models We fine-tune
four transformer based pre-trained language mod-
els: (a) BERT (Devlin et al., 2019) - pre-trained by
masked language modeling (MLM) on BookCor-
pus (Zhu et al., 2015) and Wikipedia; (b) SciBERT
(Beltagy, Lo, and Cohan, 2019) - a variant of BERT
pre-trained with a similar procedure but exclusively
on scientific text; (c) RoBERTa (Liu et al., 2019b) -
an extension of BERT which was pre-trained using
dynamic masked language modeling, i.e., unlike
BERT, different words were masked in each epoch
during training. It was also trained for a longer
period of time on a larger amount of text compared
with BERT; and (d) XLNet (Yang et al., 2019) -
pre-trained with a “Permutation Language Mod-
eling” objective instead of MLM. We employ the
base variants of each of these models using the hug-
gingface transformers library. The input sequence
for these models is derived by concatenating the
two sentences in a pair with a [SEP] token in be-
tween. The [CLS] token is then projected with a
weight matrix W ∈ Rd×4 by sending it as the input
to a softmax layer to get the output class. We fine-
tune each transformer based model for 5 epochs
where we minimize the cross-entropy loss using
Adam optimizer (Kingma and Ba, 2014) with an
initial learning rate of 2e− 5. Early stopping with
a patience size 2 is employed.

The experiments are run on a single Tesla V10
GPU. The transformer based models took approx-
imately four hours to train and the traditional ma-
chine learning and neural network models were
trained in less than one hour. We run each experi-
ment three times with different random seeds and
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CONTRASTING REASONING ENTAILMENT NEUTRAL Macro F1 Acc

Lexicalized 50.28± 0.00 37.18± 0.00 44.82± 0.00 55.77± 0.00 47.01± 0.00 47.78± 0.00
CBOW 54.62± 2.17 50.54± 1.75 52.33± 3.42 49.25± 0.18 51.68± 0.48 51.78± 0.53

CNN 63.73± 1.59 58.86± 1.17 62.66± 0.76 56.40± 0.97 60.41± 0.86 60.53± 0.85
BiLSTM 63.93± 0.53 57.32± 2.05 64.01± 0.56 59.25± 0.60 61.12± 0.15 61.32± 0.08

BERT 77.46± 0.30 71.74± 0.82 75.09± 0.13 76.47± 1.70 75.19± 0.35 75.17± 0.39
SciBERT 80.30± 0.60 74.18± 0.33 75.90± 1.47 79.76± 0.25 77.53∗ ± 0.49 77.52∗ ± 0.49

RoBERTa 81.18± 0.77 74.22± 0.81 77.99± 0.52 78.86± 0.61 78.06∗ ± 0.39 78.12∗ ± 0.33
XLNet 81.53± 0.30 75.95± 0.94 77.63± 0.38 77.63± 0.68 78.18∗ ± 0.06 78.23∗ ± 0.12

Table 6: The Macro F1 scores (%) and accuracies (%) of our baseline models on SCINLI along with individual
F1 scores on four classes. Here, an asterisk indicates that there is a statistically significant difference between the
models in the third block of the table and BERT according to a paired T-test with α = 0.05. The three models in
the third block shows statistically indistinguishable results. The best Macro F1 and accuracy are in bold.

report the average and standard deviation of the F1
scores for each of the four classes, their Macro av-
erage and overall accuracy in Table 6. Our findings
are discussed below.

Transformer based models consistently outper-
form the traditional models The transformer
based models have a very high performance gap
with the traditional lexicalized and neural models.
Their better performance can be attributed to their
superior design for capturing the language seman-
tics and their pre-training on large amounts of texts.

More sophisticated pre-training methods lead
to better performance RoBERTa and XLNet
are created by addressing different limitations of
BERT. Both of these models show a better perfor-
mance than BERT on our dataset. Therefore, the
progress made in these two models for better NLU
capability is reflected by the results on SCINLI.
This proves that SCINLI can be used as an addi-
tional resource for tracking the progress of NLU.

Pre-training on domain specific text helps to im-
prove classification performance The results
show that SciBERT consistently outperforms
BERT on SCINLI. This is because unlike BERT,
SciBERT was pre-trained exclusively on scientific
text. Hence, it has a better capability to under-
stand the text in the scientific domain. We see that
RoBERTa and XLNet show slightly better perfor-
mances than SciBERT despite being pre-trained
on non-scientific text, just like BERT. However,
it should be noted that these differences in per-
formance are not statistically significant. More-
over, both RoBERTa and XLNet were created by
modifying the training procedure of BERT to fur-
ther improve the performance, whereas SciBERT
is just a plain BERT model pre-trained on scien-
tific text. Even without any modifications to the

SCINLI

Model F1 Acc

BERT xxxBOTH SENTENCES 75.36 75.37
xxxONLY 2nd SENTENCE 54.56 55.40

SciBERT xxxBOTH SENTENCES 77.66 77.60
xxxONLY 2nd SENTENCE 58.16 58.80

Table 7: Performance comparison on SCINLI when
both sentences are concatenated vs. when only second
sentence is used as the input.

training procedure, SciBERT is able to perform
similarly to these models proving the advantage of
pre-training on domain specific text and suitability
of our dataset for evaluating scientific NLI models.

5 Analysis

Research has shown that some stylistic and annota-
tion artifacts are present (only in the hypotheses) in
NLI datasets created using crowdsource annotators
(Gururangan et al., 2018). To verify that the models
do not learn similar spurious patterns in our dataset
and predict the labels without understanding the
semantic relation between the sentences, we start
our analysis by experimenting with only the second
sentence as the input to BERT and SciBERT mod-
els. Next, to intuitively understand the errors made
by the models, we perform a qualitative analysis
of the predictions made by the SciBERT model
on 100 randomly selected examples from our test
set. Finally, we show that the NEUTRAL examples
extracted with FIRSTRAND and SECONDRAND

approaches are harder to classify than the examples
extracted with BOTHRAND.

Spuriosity Analysis A comparison between the
only second sentence models and the models with
both sentences concatenated as the input can be
seen in Table 7. Clearly, as we can see from the
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First Sentence Second Sentence True Label Predicted Label
Multiple studies of BERT concluded that
it is considerably overparametrized.

it is possible to ablate elements of its
architecture without loss in performance
or even with slight gains (Kovaleva et
al., 2019;Michel et al., 2019;Voita et al.,
2019).

ENTAILMENT CONTRASTING

Upon further investigation, we find that
experiments which use probabilities with
image based features have an inter-
quartile range of 0.05 and 0.1 for EBG
and BLOG respectively whereas for ex-
periments using probabilities with bin-
ning based features, this range is 0.32 for
both datasets.

inter-quartile range for experiments us-
ing ranks with image based features
is 0.08 and 0.05 for EBG and BLOG
whereas for experiments using ranks
with binning based features, this range is
0.49 and 0.42 respectively.

CONTRASTING NEUTRAL

Table 8: Examples of errors made by SciBERT on SCINLI.
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Figure 1: Extraction approach vs. accuracy of SciB-
ERT on the NEUTRAL pairs of SCINLI test set.

table, there is a substantial amount of performance
decrease when only the second sentence is used as
input. Therefore, in order to perform at the optimal
level, both sentences are required for the models to
make the correct inference by learning the semantic
relation between them.

Qualitative Error Analysis We find that a ma-
jor reason behind the wrong predictions is a lack
of domain specific knowledge. For example, in
the first sentence pair in Table 8, without the do-
main knowledge that the number of parameters in a
model affects the performance, one will not be able
to make the correct inference. We also find that
the model is prone to making mistakes for longer
sentences. This issue is exemplified by the second
sentence pair in Table 8.

Neutral Class Performance Analysis We can
see a plot of the accuracy shown by SciBERT on
NEUTRAL pairs of our test set extracted with differ-
ent approaches in Figure 1. Indeed, the examples
in which one sentence comes from one of the other
three classes are harder to classify.

6 Conclusion & Future Directions

In this paper, we introduced SCINLI, the first nat-
ural language inference dataset on scientific text
created with our novel data annotation method. We
manually annotated a large number of examples to
create our benchmark test and development sets.
Our experiments suggest that SCINLI is harder to
classify than existing NLI datasets and deep se-
mantic understanding is necessary for a model to
perform well. We establish strong baselines and
show that our dataset can be used as a challenging
benchmark to evaluate the progress of NLU models.
In the future, we will leverage knowledge bases to
improve the models’ ability to understand scientific
text. We make our code and the SCINLI dataset
available to further research in scientific NLI.

Acknowledgements

This research is supported by NSF CAREER award
1802358 and NSF CRI award 1823292 to Cornelia
Caragea. Any opinions, findings, and conclusions
expressed here are those of the authors and do
not necessarily reflect the views of NSF. We thank
AWS for computing resources. We also thank our
anonymous reviewers for their constructive feed-
back, which helped improve our paper.

References
Beltagy, I.; Lo, K.; and Cohan, A. 2019. SciBERT: A

Pretrained Language Model for Scientific Text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), 3615–3620.
Hong Kong, China: Association for Computational
Linguistics.

Bird, S.; Dale, R.; Dorr, B. J.; Gibson, B.; Joseph,

7407



M. T.; Kan, M.-Y.; Lee, D.; Powley, B.; Radev,
D. R.; and Tan, Y. F. 2008. The ACL Anthol-
ogy Reference Corpus: A Reference Dataset for
Bibliographic Research in Computational Linguis-
tics. In Proc. of the 6th International Conference
on Language Resources and Evaluation Conference
(LREC’08), 1755–1759.

Bowman, S. R.; Angeli, G.; Potts, C.; and Manning,
C. D. 2015. A large annotated corpus for learn-
ing natural language inference. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, 632–642. Lisbon, Portu-
gal: Association for Computational Linguistics.

Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; and
Bordes, A. 2017. Supervised learning of universal
sentence representations from natural language infer-
ence data. arXiv preprint arXiv:1705.02364.

Dagan, I.; Glickman, O.; and Magnini, B. 2005. The
PASCAL recognising textual entailment challenge.
In Machine Learning Challenges Workshop, 177–
190. Springer.

Dagan, I.; Glickman, O.; and Magnini, B. 2006.
The PASCAL Recognising Textual Entailment Chal-
lenge. In Quiñonero-Candela, J.; Dagan, I.;
Magnini, B.; and d’Alché Buc, F., eds., Machine
Learning Challenges. Evaluating Predictive Uncer-
tainty, Visual Object Classification, and Recognis-
ing Tectual Entailment, 177–190. Berlin, Heidel-
berg: Springer Berlin Heidelberg. ISBN 978-3-540-
33428-6.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova,
K. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), 4171–4186. Min-
neapolis, Minnesota: Association for Computational
Linguistics.

Do, Q.; Chan, Y. S.; and Roth, D. 2011. Minimally
Supervised Event Causality Identification. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, 294–303. Ed-
inburgh, Scotland, UK.: Association for Computa-
tional Linguistics.

Dunietz, J.; Levin, L.; and Carbonell, J. 2017. The
BECauSE Corpus 2.0: Annotating Causality and
Overlapping Relations. In Proceedings of the 11th
Linguistic Annotation Workshop, 95–104. Valencia,
Spain: Association for Computational Linguistics.

Gururangan, S.; Swayamdipta, S.; Levy, O.; Schwartz,
R.; Bowman, S.; and Smith, N. A. 2018. Annota-
tion Artifacts in Natural Language Inference Data.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), 107–112. New Orleans,

Louisiana: Association for Computational Linguis-
tics.

Hall, D.; Jurafsky, D.; and Manning, C. D. 2008.
Studying the history of ideas using topic models. In
Proceedings of the conference on empirical methods
in natural language processing, 363–371. Associa-
tion for Computational Linguistics.

Hobbs, J. R. 1978. Why is discourse coherent. Techni-
cal report, SRI INTERNATIONAL MENLO PARK
CA.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-
term memory. Neural computation, 9(8): 1735–
1780.

Jernite, Y.; Bowman, S. R.; and Sontag, D. 2017.
Discourse-based objectives for fast unsupervised
sentence representation learning. arXiv preprint
arXiv:1705.00557.

Khot, T.; Sabharwal, A.; and Clark, P. 2018. SciTaiL:
A Textual Entailment Dataset from Science Ques-
tion Answering. In AAAI, volume 17, 41–42.

Kingma, D. P.; and Ba, J. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Klein, D.; and Manning, C. D. 2003. Accurate Unlex-
icalized Parsing. In Proceedings of the 41st Annual
Meeting of the Association for Computational Lin-
guistics, 423–430. Sapporo, Japan: Association for
Computational Linguistics.

Kuhn, T. S. 2012. The structure of scientific revolu-
tions. University of Chicago press.

Landis, J. R.; and Koch, G. G. 1977. The measurement
of observer agreement for categorical data. biomet-
rics, 159–174.

Li, Z.; Ding, X.; Liu, T.; Hu, J. E.; and Van Durme, B.
2020. Guided Generation of Cause and Effect. In
Bessiere, C., ed., Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intel-
ligence, IJCAI-20, 3629–3636. International Joint
Conferences on Artificial Intelligence Organization.
Main track.

Liu, X.; He, P.; Chen, W.; and Gao, J. 2019a. Multi-
Task Deep Neural Networks for Natural Language
Understanding. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, 4487–4496. Florence, Italy: Association
for Computational Linguistics.

Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen,
D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; and
Stoyanov, V. 2019b. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

Luukkonen, T. 1992. Is scientists’ publishing be-
haviour rewardseeking? Scientometrics, 24: 297–
319.

7408



Marelli, M.; Menini, S.; Baroni, M.; Bentivogli, L.;
Bernardi, R.; and Zamparelli, R. 2014. A SICK cure
for the evaluation of compositional distributional se-
mantic models. In Proceedings of the Ninth Inter-
national Conference on Language Resources and
Evaluation (LREC’14), 216–223. Reykjavik, Ice-
land: European Language Resources Association
(ELRA).

Mintz, M.; Bills, S.; Snow, R.; and Jurafsky, D. 2009.
Distant supervision for relation extraction without
labeled data. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, 1003–1011. Sun-
tec, Singapore: Association for Computational Lin-
guistics.

Nie, A.; Bennett, E.; and Goodman, N. 2019. Dis-
Sent: Learning Sentence Representations from Ex-
plicit Discourse Relations. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, 4497–4510. Florence, Italy: As-
sociation for Computational Linguistics.

Nie, Y.; Williams, A.; Dinan, E.; Bansal, M.; We-
ston, J.; and Kiela, D. 2020. Adversarial NLI: A
New Benchmark for Natural Language Understand-
ing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
4885–4901. Online: Association for Computational
Linguistics.

Oh, J.-H.; Torisawa, K.; Hashimoto, C.; Sano, M.;
De Saeger, S.; and Ohtake, K. 2013. Why-Question
Answering using Intra- and Inter-Sentential Causal
Relations. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), 1733–1743. Sofia, Bul-
garia: Association for Computational Linguistics.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J.
2002. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th an-
nual meeting of the Association for Computational
Linguistics, 311–318.

Pennington, J.; Socher, R.; and Manning, C. D. 2014.
GloVe: Global Vectors for Word Representation. In
Empirical Methods in Natural Language Processing
(EMNLP), 1532–1543.

Prasad, R.; Dinesh, N.; Lee, A.; Miltsakaki, E.;
Robaldo, L.; Joshi, A.; and Webber, B. 2008. The
Penn Discourse TreeBank 2.0. In Proceedings of
the Sixth International Conference on Language Re-
sources and Evaluation (LREC’08). Marrakech, Mo-
rocco: European Language Resources Association
(ELRA).

Pruksachatkun, Y.; Phang, J.; Liu, H.; Htut, P. M.;
Zhang, X.; Pang, R. Y.; Vania, C.; Kann, K.; and
Bowman, S. R. 2020. Intermediate-Task Transfer
Learning with Pretrained Language Models: When
and Why Does It Work? In Proceedings of the

58th Annual Meeting of the Association for Com-
putational Linguistics, 5231–5247. Online: Associa-
tion for Computational Linguistics.

Radev, D. R.; Muthukrishnan, P.; and Qazvinian, V.
2009. The ACL Anthology Network. In Proceed-
ings of the 2009 Workshop on Text and Citation Anal-
ysis for Scholarly Digital Libraries (NLPIR4DL),
54–61. Suntec City, Singapore: Association for
Computational Linguistics.

Radinsky, K.; Davidovich, S.; and Markovitch, S. 2012.
Learning causality for news events prediction. In
Proceedings of the 21st international conference on
World Wide Web, 909–918.

Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.;
Michael, J.; Hill, F.; Levy, O.; and Bowman, S.
2019. Superglue: A stickier benchmark for general-
purpose language understanding systems. In Ad-
vances in Neural Information Processing Systems,
3266–3280.

Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.;
and Bowman, S. 2018. GLUE: A Multi-Task Bench-
mark and Analysis Platform for Natural Language
Understanding. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, 353–355. Brussels, Bel-
gium: Association for Computational Linguistics.

Webber, B.; Knott, A.; Stone, M.; and Joshi, A. 1999.
Discourse relations: A structural and presupposi-
tional account using lexicalised TAG. In Proceed-
ings of the 37th Annual Meeting of the Association
for Computational Linguistics, 41–48.

Williams, A.; Nangia, N.; and Bowman, S. 2018. A
Broad-Coverage Challenge Corpus for Sentence Un-
derstanding through Inference. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), 1112–1122. Association for Computational
Linguistics.

Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdi-
nov, R. R.; and Le, Q. V. 2019. Xlnet: Generalized
autoregressive pretraining for language understand-
ing. In Advances in neural information processing
systems, 5753–5763.

Zellers, R.; Bisk, Y.; Schwartz, R.; and Choi, Y.
2018. SWAG: A Large-Scale Adversarial Dataset
for Grounded Commonsense Inference. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, 93–104. Brussels,
Belgium: Association for Computational Linguis-
tics.

Zhu, Y.; Kiros, R.; Zemel, R.; Salakhutdinov, R.; Urta-
sun, R.; Torralba, A.; and Fidler, S. 2015. Aligning
books and movies: Towards story-like visual expla-
nations by watching movies and reading books. In
Proceedings of the IEEE international conference on
computer vision, 19–27.

7409


