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Abstract

Hierarchical text classification is a challeng-
ing subtask of multi-label classification due to
its complex label hierarchy. Existing meth-
ods encode text and label hierarchy separately
and mix their representations for classification,
where the hierarchy remains unchanged for
all input text. Instead of modeling them sep-
arately, in this work, we propose Hierarchy-
guided Contrastive Learning (HGCLR) to di-
rectly embed the hierarchy into a text en-
coder. During training, HGCLR constructs
positive samples for input text under the guid-
ance of the label hierarchy. By pulling to-
gether the input text and its positive sample,
the text encoder can learn to generate the
hierarchy-aware text representation indepen-
dently. Therefore, after training, the HGCLR
enhanced text encoder can dispense with the
redundant hierarchy. Extensive experiments
on three benchmark datasets verify the effec-
tiveness of HGCLR.

1 Introduction

Hierarchical Text Classification (HTC) aims to cat-
egorize text into a set of labels that are organized
in a structured hierarchy (Silla and Freitas, 2011).
The taxonomic hierarchy is commonly modeled as
a tree or a directed acyclic graph, in which each
node is a label to be classified. As a subtask of
multi-label classification, the key challenge of HTC
is how to model the large-scale, imbalanced, and
structured label hierarchy (Mao et al., 2019).

The existing methods of HTC have variously in-
troduced hierarchical information. Among recent
researches, the state-of-the-art models encode text
and label hierarchy separately and aggregate two
representations before being classified by a mixed
feature (Zhou et al., 2020; Deng et al., 2021). As de-
noted in the left part of Figure 1, their main goal is
to sufficiently interact between text and structure to
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Figure 1: Two ways of introducing hierarchy informa-
tion. (a) Previous work model text and labels separately
and find a mixed representation. (b) Our method incor-
porating hierarchy information into text encoder for a
hierarchy-aware text representation.

achieve a mixed representation (Chen et al., 2021),
which is highly useful for classification (Chen et al.,
2020a). However, since the label hierarchy remains
unchanged for all text inputs, the graph encoder
provides exactly the same representation regardless
of the input. Therefore, the text representation in-
teracts with constant hierarchy representation and
thus the interaction seems redundant and less effec-
tive. Alternatively, we attempt to inject the constant
hierarchy representation into the text encoder. So
that after being fully trained, a hierarchy-aware
text representation can be acquired without the con-
stant label feature. As in the right part of Figure
1, instead of modeling text and labels separately,
migrating label hierarchy into text encoding may
benefit HTC by a proper representation learning
method.

To this end, we adopt contrastive learning for
the hierarchy-aware representation. Contrastive
learning, which aims to concentrate positive sam-
ples and push apart negative samples, has been
considered as effective in constructing meaningful
representations (Kim et al., 2021). Previous work
on contrastive learning illustrates that it is critical
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to building challenging samples (Alzantot et al.,
2018; Wang et al., 2021b; Tan et al., 2020; Wu
et al., 2020). For multi-label classification, we at-
tempt to construct high-quality positive examples.
Existing methods for positive example generation
includes data augmentation (Meng et al., 2021; Wu
et al., 2020), dropout (Gao et al., 2021), and adver-
sarial attack (Wang et al., 2021b; Pan et al., 2021).
These techniques are either unsupervised or task-
unspecific: the generation of positive samples has
no relation with the HTC task and thus are incom-
petent to acquire hierarchy-aware representations.
As mentioned, we argue that both the ground-truth
label as well as the taxonomic hierarchy should be
considered for the HTC task.

To construct positive samples which are both
label-guided and hierarchy-involved, our approach
is motivated by a preliminary observation. Notice
that when we classify text into a certain category,
most words or tokens are not important. For in-
stance, when a paragraph of news report about a
lately sports match is classified as “basketball”,
few keywords like “NBA” or “backboard” have
large impacts while the game result has less in-
fluence. So, given a sequence and its labels, a
shorten sequence that only keeps few keywords
should maintain the labels. In fact, this idea is
similar to adversarial attack, which aims to find
“important tokens” which affect classification most
(Zhang et al., 2020). The difference is that ad-
versarial attack tries to modify “important tokens”
to fool the model, whereas our approach modifies
“unimportant tokens” to keep the classification re-
sult unchanged.

Under such observation, we construct posi-
tive samples as pairs of input sequences and
theirs shorten counterparts, and propose Hierarchy-
Guided Contrastive Learning (HGCLR) for HTC.
In order to locate keywords under given labels,
we directly calculate the attention weight of each
token embedding on each label, and tokens with
weight above a threshold are considered important
to according label. We use a graph encoder to
encode label hierarchy and output label features.
Unlike previous studies with GCN or GAT, we
modify a Graphormer (Ying et al., 2021) as our
graph encoder. Graphormer encodes graphs by
Transformer blocks and outperforms other graph
encoders on several graph-related tasks. It models
the graph from multiple dimensions, which can be
customized easily for HTC task.

The main contribution of our work can be sum-
marized as follows:

• We propose Hierarchy-Guided Contrastive
Learning (HGCLR) to obtain hierarchy-aware
text representation for HTC. To our knowl-
edge, this is the first work that adopts con-
trastive learning on HTC.

• For contrastive learning, we construct positive
samples by a novel approach guided by label
hierarchy. The model employs a modified
Graphormer, which is a new state-of-the-art
graph encoder.

• Experiments demonstrate that the pro-
posed model achieves improvements on
three datasets. Our code is available at
https://github.com/wzh9969/contrastive-htc.

2 Related Work

2.1 Hierarchical Text Classification

Existing work for HTC could be categorized into
local and global approaches based on their ways
of treating the label hierarchy (Zhou et al., 2020).
Local approaches build classifiers for each node or
level while the global ones build only one classifier
for the entire graph. Banerjee et al. (2019) builds
one classifier per label and transfers parameters of
the parent model for child models. Wehrmann et al.
(2018) proposes a hybrid model combining local
and global optimizations. Shimura et al. (2018)
applies CNN to utilize the data in the upper levels
to contribute categorization in the lower levels.

The early global approaches neglect the hierar-
chical structure of labels and view the problem as a
flat multi-label classification (Johnson and Zhang,
2015). Later on, some work tries to coalesce the la-
bel structure by recursive regularization (Gopal and
Yang, 2013), reinforcement learning (Mao et al.,
2019), capsule network (Peng et al., 2019), and
meta-learning (Wu et al., 2019). Although such
methods can capture the hierarchical information,
recent researches demonstrate that encoding the
holistic label structure directly by a structure en-
coder can further improve performance. Zhou et al.
(2020) designs a structure encoder that integrates
the label prior hierarchy knowledge to learn label
representations. Chen et al. (2020a) embeds word
and label hierarchies jointly in the hyperbolic space.
Zhang et al. (2021) extracts text features according
to different hierarchy levels. Deng et al. (2021)
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introduces information maximization to constrain
label representation learning. Zhao et al. (2021)
designs a self-adaption fusion strategy to extract
features from text and label. Chen et al. (2021)
views the problem as semantic matching and tries
BERT as text encoder. Wang et al. (2021a) pro-
poses a cognitive structure learning model for HTC.
Similar to other work, they model text and label
separately.

2.2 Contrastive Learning

Contrastive learning is originally proposed in Com-
puter Vision (CV) as a weak-supervised represen-
tation learning method. Works such as MoCo (He
et al., 2020) and SimCLR (Chen et al., 2020b) have
bridged the gap between self-supervised learning
and supervised learning on multiple CV datasets.
A key component for applying contrastive learn-
ing on NLP is how to build positive pairs (Pan
et al., 2021). Data augmentation techniques such
as back-translation (Fang et al., 2020), word or
span permutation (Wu et al., 2020), and random
masking (Meng et al., 2021) can generate pair of
data with similar meanings. Gao et al. (2021) uses
different dropout masks on the same data to gener-
ate positive pairs. Kim et al. (2021) utilizes BERT
representation by a fixed copy of BERT. These
methods do not rely on downstream tasks while
some researchers leverage supervised information
for better performance on text classification. Wang
et al. (2021b) constructs both positive and nega-
tive pairs especially for sentimental classification
by word replacement. Pan et al. (2021) proposes
to regularize Transformer-based encoders for text
classification tasks by FGSM (Goodfellow et al.,
2014), an adversarial attack method based on gra-
dient. Though methods above are designed for
classification, the construction of positive samples
hardly relies on their categories, neglecting the con-
nection and diversity between different labels. For
HTC, the taxonomic hierarchy models the relation
between labels, which we believe can help positive
sample generation.

3 Problem Definition

Given a input text x = {x1, x2, ..., xn}, Hierar-
chical Text Classification (HTC) aims to predict a
subset y of label set Y , where n is the length of the
input sequence and k is the size of set Y . The can-
didate labels yi ∈ Y are predefined and organized
as a Directed Acyclic Graph (DAG) G = (Y,E),

where node set Y are labels and edge set E denotes
their hierarchy. For simplicity, we do not distin-
guish a label with its node in the hierarchy so that
yi is both a label and a node. Since a non-root label
of HTC has one and only one father, the taxonomic
hierarchy can be converted to a tree-like hierarchy.
The subset y corresponds to one or more paths in
G: for any non-root label yj ∈ y, a father node
(label) of yj is in the subset y.

4 Methodology

In this section, we will describe the proposed HG-
CLR in detail. Figure 2 shows the overall architec-
ture of the model.

4.1 Text Encoder
Our approach needs a strong text encoder for hier-
archy injection, so we choose BERT (Devlin et al.,
2019) as the text encoder. Given an input token
sequence:

x = {[CLS], x1, x2, ..., xn−2, [SEP]} (1)

where [CLS] and [SEP] are two special tokens in-
dicating the beginning and the end of the sequence,
the input is fed into BERT. For convenience, we
denote the length of the sequence as n. The text en-
coder outputs hidden representation for each token:

H = BERT(x) (2)

where H ∈ Rn×dh and dh is the hidden size. We
use the hidden state of the first token ([CLS]) for
representing the whole sequence hx = h[CLS].

4.2 Graph Encoder
We model the label hierarchy with a customized
Graphormer (Ying et al., 2021). Graphormer
models graphs on the base of Transformer layer
(Vaswani et al., 2017) with spatial encoding and
edge encoding, so it can leverage the most powerful
sequential modeling network in the graph domain.
We organize the original feature for node yi as the
sum of label embedding and its name embedding:

fi = label_emb(yi) + name_emb(yi). (3)

Label embedding is a learnable embedding that
takes a label as input and outputs a vector with size
dh. Name embedding takes the advantage of the
name of the label, which we believe contains fruit-
ful information as a summary of the entire class.
We use the average of BERT token embedding of
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Figure 2: An overview of HGCLR under a batch of 3. HGCLR adopts a contrastive learning framework to reg-
ularize BERT representations. We construct positive samples by masking unimportant tokens under the guidance
of hierarchy and labels. By pulling together and pushing apart representations, the hierarchy information can be
injected into the BERT encoder.

the label as its name embedding, which also has
a size of dh. Unlike previous work which only
adopts names on initialization, we share embedding
weights across text and labels to make label fea-
tures more instructive. With all node features stack
as a matrix F ∈ Rk×dh , a standard self-attention
layer can then be used for feature migration.

To leverage the structural information, spatial
encoding and edge encoding modify the Query-
Key product matrix AG in the self-attention layer:

AGij =
(fiW

G
Q )(fjW

G
K )T

√
dh

+ cij + bφ(yi,yj) (4)

where cij = 1
D

∑D
n=1wen and D = φ(yi, yj).

The first term in Equation 4 is the standard scale-
dot attention, and query and key are projected by
WG
Q ∈ Rdh×dh and WG

K ∈ Rdh×dh . cij is the
edge encoding and φ(yi, yj) denotes the distance
between two nodes yi and yj . Since the graph
is a tree in our problem, for node yi and yj , one
and only one path (e1, e2, ..., eD) can be found be-
tween them in the underlying graph G′ so that cij
denotes the edge information between two nodes
and wei ∈ R1 is a learnable weight for each edge.
bφ(yi,yj) is the spatial encoding, which measures
the connectivity between two nodes. It is a learn-
able scalar indexed by φ(yi, yj).

The graph-involved attention weight matrix AG

is then followed by Softmax, multiplying with
value matrix and residual connection & layer nor-

malization to calculate the self-attention,

L = LayerNorm(softmax(AG)V + F) (5)

We use L as the label feature for the next step.
The Graphormer we use is a variant of the self-
attention layer, for more details on the full structure
of Graphormer, please refer to the original paper.

4.3 Positive Sample Generation
As mentioned, the goal for the positive sample gen-
eration is to keep a fraction of tokens while retain-
ing the labels. Given a token sequence as Equation
1, the token embedding of BERT is defined as:

{e1, e2, ..., en} = BERT_emb(x) (6)

The scale-dot attention weight between token
embedding and label feature is first calculated to
determine the importance of a token on a label,

qi = eiWQ, kj = ljWK , Aij =
qik

T
j√
dh

(7)

The query and key are token embeddings and la-
bel features respectively, and WQ ∈ Rdh×dh and
WK ∈ Rdh×dh are two weight matrices. Thus, for
a certain xi, its probability of belonging to label yj
can be normalized by a Softmax function.

Next, given a label yj , we can sample key tokens
from that distribution and form a positive sample
x̂. To make the sampling differentiable, we replace
the Softmax function with Gumbel-Softmax (Jang
et al., 2016) to simulate the sampling operation:

Pij = gumbel_softmax(Ai1, Ai2, ..., Aik)j (8)
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Notice that a token can impact more than one label,
so we do not discretize the probability as one-hot
vectors in this step. Instead, we keep tokens for
positive examples if their probabilities of being
sampled exceed a certain threshold γ, which can
also control the fraction of tokens to be retrained.
For multi-label classification, we simply add the
probabilities of all ground-truth labels and obtain
the probability of a token xi regarding its ground-
truth label set y as:

Pi =
∑
j∈y

Pij (9)

Finally, the positive sample x̂ is constructed as:

x̂ = {xi if Pi > γ else 0} (10)

where 0 is a special token that has an embedding
of all zeros so that key tokens can keep their po-
sitions. The select operation is not differentiable,
so we implement it differently to make sure the
whole model can be trained end-to-end. Details are
illustrated in Appendix A.

The positive sample is fed to the same BERT as
the original one,

Ĥ = BERT(x̂) (11)

and get a sequence representation ĥx with the first
token before being classified. We assume the pos-
itive sample should retain the labels, so we use
classification loss of the positive sample as a guid-
ance of the graph encoder and the positive sample
generation.

4.4 Contrastive Learning Module
Intuitively, given a pair of token sequences and their
positive counterpart, their encoded sentence-level
representation should be as similar to each other as
possible. Meanwhile, examples not from the same
pair should be farther away in the representation
space.

Concretely, with a batch of N hidden state of
positive pairs (hi, ĥi), we add a non-linear layer on
top of them:

ci =W2ReLU(W1hi)

ĉi =W2ReLU(W1ĥi)
(12)

where W1 ∈ Rdh×dh , W2 ∈ Rdh×dh . For each
example, there are 2(N − 1) negative pairs, i.e., all
the remaining examples in the batch are negative

examples. Thus, for a batch of 2N examples Z =
{z ∈ {ci} ∪ {ĉi}}, we compute the NT-Xent loss
(Chen et al., 2020b) for zm as:

Lconm = − log
exp(sim(zm, µ(zm))/τ)∑2N
i=1,i 6=m exp(sim(zm, zi)/τ)

(13)
where sim is the cosine similarity function as
sim(u, v) = u · v/‖u‖‖v‖ and µ is a matching
function as:

µ(zm) =

{
ci, if zm = ĉi
ĉi, if zm = ci

(14)

τ is a temperature hyperparameter.
The total contrastive loss is the mean loss of all

examples:

Lcon =
1

2N

2N∑
m=1

Lconm (15)

4.5 Classification and Objective Function
Following previous work (Zhou et al., 2020), we
flatten the hierarchy for multi-label classification.
The hidden feature is fed into a linear layer, and a
sigmoid function is used for calculating the proba-
bility. The probability of text i on label j is:

pij = sigmoid(Wchi + bc)j (16)

where WC ∈ Rk×dh and bc ∈ Rk are weights and
bias. For multi-label classification, we use a binary
cross-entropy loss function for text i on label j,

LCij = −yij log(pij)−(1−yij) log(1−pij) (17)

LC =

N∑
i=1

k∑
j=1

LCij (18)

where yij is the ground truth. The classification
loss of the constructed positive examples L̂C can be
calculated similarly by Equation 16 and Equation
18 with ĥi substituting for hi.

The final loss function is the combination of
classification loss of original data, classification
loss of the constructed positive samples, and the
contrastive learning loss:

L = LC + L̂C + λLcon (19)

where λ is a hyperparameter controlling the weight
of contrastive loss.

During testing, we only use the text encoder for
classification and the model degenerates to a BERT
encoder with a classification head.
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Dataset |Y | Depth Avg(|yi|) Train Dev Test

WOS 141 2 2.0 30,070 7,518 9,397
NYT 166 8 7.6 23,345 5,834 7,292

RCV1-V2 103 4 3.24 20,833 2,316 781,265

Table 1: Data Statistics. |Y | is the number of classes.
Depth is the maximum level of hierarchy. Avg(|yi|) is
the average number of classes per sample.

5 Experiments

5.1 Experiment Setup

Datasets and Evaluation Metrics We experi-
ment on Web-of-Science (WOS) (Kowsari et al.,
2017), NYTimes (NYT) (Sandhaus, 2008), and
RCV1-V2 (Lewis et al., 2004) datasets for com-
parison and analysis. WOS contains abstracts of
published papers from Web of Science while NYT
and RCV1-V2 are both news categorization cor-
pora. We follow the data processing of previous
work (Zhou et al., 2020). WOS is for single-path
HTC while NYT and RCV1-V2 include multi-path
taxonomic labels. The statistic details are illus-
trated in Table 1. Similar to previous work, We
measure the experimental results with Macro-F1
and Micro-F1.

Implement Details For text encoder, we use
bert-base-uncased from Transformers
(Wolf et al., 2020) as the base architecture. Notice
that we denote the attention layer in Eq. 4 and
Eq. 7 as single-head attentions but they can be
extended to multi-head attentions as the original
Transformer block. For Graphormer, we set the
attention head to 8 and feature size dh to 768. The
batch size is set to 12. The optimizer is Adam with
a learning rate of 3e− 5. We implement our model
in PyTorch and train end-to-end. We train the
model with train set and evaluate on development
set after every epoch, and stop training if the
Macro-F1 does not increase for 6 epochs. The
threshold γ is set to 0.02 on WOS and 0.005 on
NYT and RCV1-V2. The loss weight λ is set to
0.1 on WOS and RCV1-V2 and 0.3 on NYT. γ
and λ are selected by grid search on development
set. The temperature of contrastive module is fixed
to 1 since we have achieved promising results with
this default setting in preliminary experiments.

Baselines We select a few recent work as base-
lines. HiAGM (Zhou et al., 2020), HTCInfoMax
(Deng et al., 2021), and HiMatch (Chen et al., 2021)
are a branch of work that propose fusion strategies

for mixed text-hierarchy representation. HiAGM
applies soft attention over text feature and label fea-
ture for the mixed feature. HTCInfoMax improves
HiAGM by regularizing the label representation
with a prior distribution. HiMatch matches text
representation with label representation in a joint
embedding space and uses joint representation for
classification. HiMatch is the state-of-the-art be-
fore our work. All approaches except HiMatch
adopt TextRCNN (Lai et al., 2015) as text encoder
so that we implement them with BERT for a fair
comparison.

5.2 Experimental Results
Main results are shown in Table 2. Instead of
modeling text and labels separately, our model can
make more use of the strong text encoder by mi-
grating hierarchy information directly into BERT
encoder. On WOS, the proposed HGCLR can
achieve 1.5% and 2.1% improvement on Micro-
F1 and Macro-F1 respectively comparing to BERT
and is better than HiMatch even if its base model
has far better performance.

BERT was trained on news corpus so that the
base model already has decent performance on
NYT and RCV1-V2, outperforming post-pretrain
models by a large amount. On NYT, our approach
observes a 2.3% boost on Macro-F1 comparing to
BERT while sightly increases on Micro-F1 and out-
perform previous methods on both measurements.

On RCV1-V2, all baselines hardly improve
Micro-F1 and only influence Macro-F1 compar-
ing to BERT. HTCInfoMax experiences a decrease
because its constraint on text representation may
contradict with BERT on this dataset. HiMatch
behaves extremely well on RCV1-V2 with Macro-
F1 as measurement while our approach achieves
state-of-the-art on Micro-F1. Besides the potential
implement difference on BERT encoder, RCV1-V2
dataset provides no label name, which invalids our
name embedding for label representation. Base-
lines like HiAGM and HiMatch only initialize labl
embedding with their names so that this flaw has
less impact. We will discuss more on name embed-
ding in next section.

5.3 Analysis
The main differences between our work and pre-
vious ones are the graph encoder and contrastive
learning. To illustrate the effectiveness of these
two parts, we test our model with them replaced
or removed. We report the results on the develop-
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Model
WOS NYT RCV1-V2

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Hierarchy-Aware Models

TextRCNN (Zhou et al., 2020) 83.55 76.99 70.83 56.18 81.57 59.25
HiAGM (Zhou et al., 2020) 85.82 80.28 74.97 60.83 83.96 63.35

HTCInfoMax (Deng et al., 2021) 85.58 80.05 - - 83.51 62.71
HiMatch (Chen et al., 2021) 86.20 80.53 - - 84.73 64.11

Pretrained Language Models

BERT (Our implement) 85.63 79.07 78.24 65.62 85.65 67.02
BERT (Chen et al., 2021) 86.26 80.58 - - 86.26 67.35

BERT+HiAGM (Our implement) 86.04 80.19 78.64 66.76 85.58 67.93
BERT+HTCInfoMax (Our implement) 86.30 79.97 78.75 67.31 85.53 67.09

BERT+HiMatch (Chen et al., 2021) 86.70 81.06 - - 86.33 68.66
HGCLR 87.11 81.20 78.86 67.96 86.49 68.31

Table 2: Experimental results of our proposed model on several datasets. For a fair comparison, we implement
some baseline with BERT encoder. We cannot reproduce the BERT results reported in Chen et al. (2021) so that
we also report the results of our version of BERT.

Ablation Models Micro-F1 Macro-F1

BERT 85.75 79.36

HGCLR 87.46 81.52
-r.p. GCN 87.06 80.63
-r.p. GAT 87.18 81.45
-r.m. graph encoder 86.67 80.11
-r.m. contrastive loss 86.72 80.97

Table 3: Performance when replace or remove some
components of HGCLR on the development set of
WOS. r.p. stands for replace and r.m. stands for remove.
We remove the contrastive loss by setting λ = 0.

ment set of WOS for illustration. We first replace
Graphormer with GCN and GAT (r.p. GCN and
r.p. GAT), results are in Table 3. We find that
Graphormer outperforms both graph encoders on
this task. GAT also involves the attention mecha-
nism but a node can only attend to its neighbors.
Graphormer adopts global attention where each
node can attend to all others in the graph, which
is proven empirically more effective on this task.
When the graph encoder is removed entirely (-r.m.
graph encoder), the results drop significantly, show-
ing the necessity of incorporating graph encoder
for HTC task.

The model without contrastive loss is similar to
a pure data augmentation approach, where positive
examples stand as augment data. As the last row
of Table 3, on development set, both the positive
pair generation strategy and the contrastive learn-

(a) (b)

Figure 3: T-SNE visualization of the label representa-
tions on WOS dataset. Dots with same color are labels
with a same father. (a) BERT model. (b) Our approach.

ing framework have contributions to the model.
Our data generation strategy is effective even with-
out contrastive learning, improving BERT encoder
by around 1% on two measurements. Contrastive
learning can further boost performance by regular-
izing text representation.

We further analyze the effect of incorporating
label hierarchy, the Graphormer, and the positive
samples generation strategy in detail.

5.3.1 Effect of Hierarchy

Our approach attempts to incorporating hierarchy
into the text representation, which is fed into a lin-
ear layer for probabilities as in Equation 16. The
weight matrix WC can be viewed as label represen-
tations and we plot theirs T-SNE projections under
default configuration. Since a label and its father
should be classified simultaneously, the represen-
tation of a label and its father should be similar.
Thus, if the hierarchy is injected into the text repre-
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Variants of Graphormer Micro-F1 Macro-F1

Base architecture 87.46 81.52
-w/o name embedding 86.40 80.40
-w/o spatial encoding 86.88 80.42
-w/o edge encoding 87.25 80.54

Table 4: Performance with variants of Graphormer on
development set of WOS. We remove name embed-
ding, spatial encoding, and edge encoding respectively.
“w/o” stands for “without”.

Generation Strategy Micro-F1 Macro-F1

Hierarchy-guided 87.46 81.52
Dropout 86.94 79.91
Random masking 87.19 81.16
Adversarial attack 86.67 80.24

Table 5: Impact of different positive example gen-
eration techniques on the development set of WOS.
Hierarchy-guided is the proposed method. We control
the valid tokens in positive samples roughly the same
for random methods. We select FGSM as the attack
algorithm following Pan et al. (2021).

sentation, labels with the same father should have
more similar representation to each other than those
with a different father. As illustrated in Figure 3,
label representations of BERT are scattered while
label representations of our approach are clustered,
which demonstrates that our text encoder can learn
a hierarchy-aware representation.

5.3.2 Effect of Graphormer
As for the components of the Graphormer, we vali-
date the utility of name embedding, spatial encod-
ing, and edge encoding. As in Table 4, all three
components contribute to embedding the graph.
Edge encoding is the least useful among these three
components. Edge encoding is supposed to model
the edge features provided by the graph, but the
hierarchy of HTC has no such information so that
the effect of edge encoding is not fully embodied
in this task. Name embedding contributes most
among components. Previous work only initialize
embedding weights with label name but we treat it
as a part of input features. As a result, neglecting
name embedding observes the largest drop, which
may explain the poor performance on RCV1-V2.

5.3.3 Effect of Positive Example Generation
To further illustrate the effect of our data genera-
tion approach, we compare it with a few generation
strategies. Dropout (Gao et al., 2021) uses no pos-

(a) A high degree of uncertainty associated with the emission 

inventory for China tends to degrade the performance of 

chemical transport models in predicting PM2.5 

concentrations especially on a daily basis. In this study a 

novel machine learning algorithm, Geographically -

Weighted Gradient Boosting Machine (GW-GBM), was 

developed by improving GBM through building spatial 

smoothing kernels to weigh the loss function...

Tags: CS, Machine Learning

(b) Posterior reversible encephalopathy syndrome (PRES) is 

a reversible clinical and neuroradiological syndrome which 

may appear at any age and characterized by headache, 

altered consciousness, seizures, and cortical blindness... 

Tags: Medical,  Headache

Figure 4: Two fragments of the generated positive ex-
amples. Tokens in red are kept for positive examples.
We omit a few unrelated tokens (such as a, the, or
comma) for clarity.

itive sample generation techniques but contrasts
on the randomness of the Dropout function using
two identical models. Random masking (Meng
et al., 2021) is similar to our approach except the
remained tokens are randomly selected. Adver-
sarial attack (Pan et al., 2021) generates positive
examples by an attack on gradients.

As in Table 5, a duplication of the model as
positive examples is effective but performs poorly.
Instead of dropping information at neuron level,
random masking drops entire tokens and boosts
Macro-F1 by over 1%, indicating the necessity of
building hard enough contrastive examples. The ad-
versarial attack can build hard-enough samples by
gradient ascending and disturbance in the embed-
ding space. But the disturbance is not regularized
by hierarchy or labels so that it is less effective
since there is no guarantee that the adversarial ex-
amples remain the label. Our approach guided the
example construction by both the hierarchy and the
labels, which accommodates with HTC most and
achieves the best performance.

In Figure 4, we select two cases to further il-
lustrate the effect of labels on positive samples
generation. In the first case, word machine strongly
indicates this passage belongs to Machine Learn-
ing so that it is kept for positive examples. In the
second case, syndrome is related to Medical and
PRES occurs several times among Headache. Be-
cause of the randomness of sampling, our approach
cannot construct an example with all keywords.
For instance, learning in case one or headache in
case two is omitted in this trial, which adds more
difficulties for contrastive examples.
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6 Conclusion

In this paper, we present Hierarchy-guided Con-
trastive Learning (HGCLR) for hierarchy text clas-
sification. We adopt contrastive learning for mi-
grating taxonomy hierarchy information into BERT
encoding. To this end, we construct positive exam-
ples for contrastive learning under the guidance of
a graph encoder, which learns label features from
taxonomy hierarchy. We modify Graphormer, a
state-of-the-art graph encoder, for better graph un-
derstanding. Comparing to previous approaches,
our approach empirically achieves consistent im-
provements on two distinct datasets and compara-
ble results on another one. All of the components
we designed are proven to be effective.
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A Trick for Token Selection

To make sure Pi in Equation 10 can acquire gradi-
ents, we choose to modify token embedding instead
of the token itself. As in Equation 6, ei is the to-
ken embedding of xi and can have gradient. The
positive counterpart of ei is denoted as:

êi = ei((Pi +Detach(1− Pi)) if Pi > γ else 0),
(20)

where Detach is a function that ignores the gra-
dient of its input. Numerically, êi is either ei or
0 depending on the threshold γ, which serves the
same purpose as Equation 10. As for gradient,

∂êi
∂Pi

= ei if Pi > γ else 0, (21)

which makes Pi can be updated by back-
propagation.
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