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Abstract

The introduction of immensely large causal
language models (CLMs) has rejuvenated the
interest in open-ended text generation. How-
ever, controlling the generative process for
these Transformer-based models is at large
an unsolved problem. Earlier work has ex-
plored either plug-and-play decoding strate-
gies or more powerful but blunt approaches
such as prompting. There hence currently ex-
ists a trade-off between fine-grained control
and the capability for more expressive high-
level instructions. To alleviate this trade-off,
we propose an encoder-decoder architecture
that enables intermediate text prompts at ar-
bitrary time steps. We propose a resource-
efficient method for converting a pre-trained
CLM into this architecture and demonstrate its
potential in various experiments, including the
novel task of contextualized word inclusion.
Our method provides strong results in multi-
ple experimental settings, proving itself to be
both expressive and versatile.1

1 Introduction

A causal language model (CLM) is a language
model trained using a simple next-token predic-
tion objective. Current CLMs are typically based
on the Transformer architecture (Vaswani et al.,
2017), which has resulted in unprecedented text
generation capabilities (Radford et al., 2018a,b;
Brown et al., 2020). Even so, the generation pro-
cess of a CLM is difficult to control, as one is
forced to gradually decode the next-step predic-
tion one token at a time. This inhibits the applica-
bility of CLMs when one intends for the generated
text to fulfill certain criteria, and not only be a lin-
guistically sound continuation in a given context.

Being able to control the text generation process
is crucial for many real-world applications. As a
straightforward example, we may want to control

1Code and models: https://Github.com/
FreddeFrallan/Non-Residual-Prompting

the generated text to counter the many biases that
modern CLMs have been shown to possess (Bor-
dia and Bowman, 2019). However, most applica-
tions require a greater degree of control, as one
often wishes to steer the text generation in a spe-
cific direction, such as generating a story to a given
plot (Li et al., 2013; Yao et al., 2019; Riedl, 2021),
or sticking to a certain topic (Keskar et al., 2019).
Some areas require stringent and fine-grained con-
trol, as the many data-to-text tasks (Gardent et al.,
2017; Leppänen et al., 2017; Koncel-Kedziorski
et al., 2019), which necessitates that the generated
text mediates very specific information and facts.

Due to this apparent need for controllable text
generation, recent work (see Section 2.1) has ex-
plored different methods to steer and constrain the
generation process of a CLM. There are mainly
two lines of research in this area. The more tra-
ditional approach focuses on fine-grained control
and how to steer the generation process at arbitrary
points, while still adhering to the current context.
This is often achieved by independently modify-
ing the predicted vocabulary distribution at each
decoding step. However, this decouples the CLM
from the control method, prohibiting the CLM’s
ability to plan accordingly and thus severely limits
the type of control that can be formulated.

The second approach instead opts for more ex-
pressive and high-level control, letting the CLM
itself interpret and incorporate the instruction into
the text generation. This is often done via ei-
ther a fine-tuning objective or, as is currently com-
mon, by formulating the instruction as a textual
context (referred to as prompting). Although ex-
pressive, these approaches are less effective than
the previous ones in controlling generation at spe-
cific points. This is due to the prompt’s influ-
ence being negatively correlated with the distance
from the prompt to the next predicted token (Zou
et al., 2021), making prompting difficult for non-
adjacent text.
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In an attempt to bridge the gap between fine-
grained control and the expressiveness of prompts,
we propose an architecture that permits long-
distance and independent prompting throughout
the generation process. This architecture has an
encoder-decoder setup, where the encoder influ-
ences the decoder via a novel non-residual atten-
tion schema. Along with theoretical arguments
for the benefits of this architecture, we provide a
resource-efficient self-supervised method for con-
verting a pre-trained CLM into this setup.

In addition to evaluating on the original Com-
monGen dataset (Lin et al., 2020), we propose
a new contextualized version of CommonGen,
called Contextualized CommonGen (C2GEN) and
evaluate relevant methods on it. This new dataset
extends the task to generating a sentence which in-
cludes a given set of words, while simultaneously
adhering to a given context. We find that no previ-
ous solution is capable of handling this task, either
barely including 50% of the target words, or not
generating text of satisfactory quality.
Our Contributions: (1) An encoder-decoder ar-
chitecture based on a novel attention module
which enables prompting at arbitrary time steps.
(2) A resource-efficient method, which requires
no labeled data, for converting a pre-trained CLM
into this architecture. (3) The introduction of the
contextualized word inclusion task, through the
C2GEN dataset. (4) Extensive testing of related
baselines and our proposed method, via both auto-
matic and human evaluation.

2 Related Work

2.1 Controllable Text Generation

This section briefly introduces the related work for
constrained text generation. A detailed description
of each method, their strengths and weaknesses,
and how they are configured to form our baselines
is available in Appendix D.

Decoding strategies operate directly on the
CLM’s predicted vocabulary distribution at each
time step, and are hence often model-agnostic.
Dathathri et al. (2020) propose Plug-and-Play-
Language-Models (PPLM), which adjust the dis-
tribution in accordance with the gradients of an ex-
ternal discriminator model. Pascual et al. (2021)
introduce Keyword2Text, which steers the CLM
to include target words by directly increasing their
sampling probability, along with their GloVe (Pen-
nington et al., 2014) neighbours.

Training objectives can be set up to grant
generative control, such as CTRL (Keskar et al.,
2019), which incorporates control codes for tex-
tual genre. KG-BART (Liu et al., 2021) uti-
lizes a common sense knowledge graph and fine-
tunes BART (Lewis et al., 2020) towards word
inclusion. GDC (Khalifa et al., 2021) fine-
tunes towards arbitrary discriminator signals us-
ing Reinforcement Learning. POINTER (Zhang
et al., 2020) tackles word inclusion with a non-
autoregressive approach, injecting words around
the target words until a sentence is formed. Tai-
lor (Ross et al., 2021) fine-tunes a T5 (Raf-
fel et al., 2020) for fine-grained semantically-
controlled text generation, with a focus on perturb-
ing text for data augmentation.

Prompting acts within the framework of the
CLM’s pre-training task, as constraints are ex-
pressed through natural language. This approach
was popularized by the GPT models (Radford
et al., 2018b; Brown et al., 2020) and has been
shown to work for many different types of con-
straints (Reif et al., 2021; Clive et al., 2021).

2.2 Evaluation of Generated Text

There is no standardized evaluation methodology
for open-ended text generation (Howcroft et al.,
2020). The large number of possible good texts
hinders the usage of automatic text-overlap met-
rics (Papineni et al., 2002; Lin, 2004). And many
human evaluations are to vague to be properly re-
producible (Belz et al., 2020).

To remedy this, van der Lee et al. (2019) pro-
pose guidelines for human studies, and Gehrmann
et al. (2021) argue that textual quality cannot be
described through a single metric. Informed by
these arguments, we report relevant metrics for
various situations, without necessarily claiming
one method to be superior in all aspects.

3 Model Architecture

We propose to steer a CLM’s generative direction
by introducing a separate “encoder” for prompt in-
structions, which we refer to as the prompt model.
The prompt model interprets textual prompts and
produces positional invariant key-values, which
the CLM can attend to via the novel non-residual
attention schema (Section 3.1). The positional in-
variance ensures that the instruction is equally ap-
plicable at any time step, and is achieved by an
additional shift of its key-values (Section 3.2).
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Figure 1: Illustration of the non-residual attention during multiple time steps. The textual hidden states are shown
in green, the non-residual statesin yellow, and the prompt model’s states in red. During the first time step both
CLM streams self-attend to the input word I, but the non-residual stream also attends to the prompt model’s hidden
states for the instruction Very Happy. At the second time step, Love is input and both streams attend to the previous
textual hidden states, and the non-residual stream again also attends to the prompt model’s instruction.

3.1 Non-Residual Attention

To allow independent prompts at different time
steps we compute two distinct streams of informa-
tion for the CLM. We refer to these as the textual
and non-residual streams. The textual stream ig-
nores the prompt model completely, and is iden-
tical to the normal self-attention of the CLM. The
non-residual stream is responsible for the predic-
tion at each time step, and instead attends to both
the previous steps of the textual stream, and key-
values from the prompt model. This is depicted in
Figure 1 and formalized in Equation 1.

Concretely, at time-step n the textual stream
self-attends to the current time step and the
previous textual key-values KV i<n

T . The non-
residual stream self-attends to the current time
step, the previous textual key-values KV i<n

T , and
the prompt model’s key-values KVP . Finally, the
next step prediction P (wn+1) is computed from
the non-residual stream.

Applying the prompt SP to every time step in
the text SCLM = {w1, w2, ..., wn} thus results in:

KVP = PromptModel(SP )

KV n
T = CLM(wn | KV i<n

T )

P (wn+1) = CLM(wn |KVp, KV i<n
T )

(1)

Non-residual key-values are hence never attended
to by either streams from subsequent time steps.
A prompt instruction at time step n can therefore
only influence future decoding steps via the sam-
pled token at time step n, and not through its key-
values. This non-residual property of each prompt
assures that the hidden state of the CLM does not
deteriorate over time. Appendix C.1 further moti-
vates this with an example.

Intuitively, this ensures that the residual key-
values are only affected by textual input, allowing
the CLM to operate within the limits of its pre-
training objective. Furthermore, this means that
one can apply different prompts at different time
steps, without them disrupting each other through
the CLM’s internal state.2 Further intuition on
non-residual attention is available in Appendix C.

3.2 Position Invariant Transformation
Ideally, prompt instructions should be equally ap-
plicable at any time step in the generation process.
However, the positional encoding system of Trans-
formers makes this difficult, particularly absolute
positional encodings (Vaswani et al., 2017). Over-
coming this requires a significant amount of train-
ing of the prompt model (See Appendix C.2).

To alleviate the computational burden, we pro-
pose an architectural add-on where positional
invariance is achieved by an additional set of
weights, trained after the prompt model is trained
on single sentence data. This reduces the overall
training time, and allows one to easily fine-tune
the prompt model on tasks lacking context, and
apply the positional invariant transformation after-
wards. This is depicted as step 3 an 4 in Figure 2.

The prompt model, being a CLM, uses causal
self-attention to process text and generate L sets
of key-values per time step, where L refers to the
number of layers in the model. We refer to the L
key-values at a time step i as kvi. Hence, when
the prompt model computes a prompt of length
n, it yields the sequence of key-values KV ∗

P =
{kv1, kv2, ..., kvn}.

2Ultimately, different prompts can be applied at each de-
coding step, but we imagine most use-cases will apply in-
structions on the sentence or paragraph level.
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Figure 2: Overview of the resource-efficient training procedure for creating a non-residual prompt model from a
pre-trained CLM. Dashed lines indicate frozen weights. Hence, the weights of the CLM are frozen throughout all
training steps and the prompt model’s weights are frozen in step 3. During inference, the transformation learned in
step 3 is inserted again.

The positional invariant transformation, re-
ferred to as C, consists of one parameter for each
of the CLMs key-value parameters.3 The same
transformation C is then applied by point-wise ad-
dition to the prompt model’s output at all time
steps, thus yielding the shifted key-values KVP =
{kv1 + C, kv2 + C, ..., kvn + C}.

4 Training Procedure

Given a pre-trained CLM, we propose to train
an accompanying prompt model via four distinct
phases,4 as demonstrated in Figure 2. This in-
cludes an initialization phase, two pre-training
phases, and one optional fine-tuning phase. The
weights of the CLM are never updated in any of
the training phases.

As popularized by Raffel et al. (2020), all train-
ing, independent of task, is formulated within
the framework of teacher-forced causal language
modeling (Williams and Zipser, 1989). The goal
is to maximize the likelihood of generating text S
given prompt P , in accordance with Equation 1.

4.1 Initialization

Prior to any training, the prompt model is cre-
ated by cloning the pre-trained CLM into a sep-
arate new model. The CLM and prompt mod-
els hence start with an identical set of weights.
This results in an efficient starting point, since
the CLM is trained to communicate with itself via
self-attention, and thus also the CLM and prompt
model.

3The size of C hence depends on the model’s number of
layers, number of heads and its hidden size.

4This does not include the pre-training of the original
CLM model.

4.2 Pre-training

Pre-training is divided into two distinct phases,
both relying on the text generation task of word
inclusion with a target sentence length. In the first
phase, the prompt model is trained to influence the
CLM using only single sentence data, without any
position invariant transformation. In the second
phase only the position invariant transformation
is learnt, by training on data with longer context.
This is illustrated in Figure 3.

For both phases, training data is generated by
sampling [A,B] unique target words for each sen-
tence S = {w1, w2, ..., wn}, and incorporating
them and the sentence length n into prompt P .
The second phase utilizes sequences of multiple
sentences, where each sentence is given its own
prompt. During this phase, each prompt is com-
puted independently, and the CLM attends only to
the relevant prompt for each sentence.

Details regarding the corpus and sampling
schema used in our experiments are available in
Appendix A, and details regarding our randomized
prompt template is available in Appendix A.3.

4.3 Fine-tuning

Finally, one can optionally fine-tune the prompt
model towards another task or dataset. This is
done by temporarily removing the positional in-
variant transformation, and tuning only the prompt
model. The positional invariant transformation is
then re-inserted afterwards, shifting the now fine-
tuned prompt model’s key-values.

This fine-tuning schema circumvents the prob-
lem that many NLP tasks and labeled datasets
are formulated without any accompanying con-
text. One can therefore utilize single sentence
datasets, and still apply the prompt model at ar-
bitrary time steps.
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Figure 3: Detailed illustration of the two pre-training phases (Step 2 and 3 in Figure 2). Color indicates which
prompt each generation step is affected by.

5 Contextualized CommonGen Dataset
(C2GEN)

CommonGen (Lin et al., 2020) is a dataset for the
constrained text generation task of word inclusion.
The objective of the task is to generate text that
includes a given set of target words and adhering
to common sense. Each sample includes 3-5 target
words, taken from various image-caption datasets.

The samples in CommonGen are however all
formulated without any accompanying context.
We argue that this task formulation is too narrow,
and that it needlessly incentivizes researchers to
focus on methods that do not support context. This
is orthogonal to our belief that many application
areas necessitates the consideration of surround-
ing context. Therefore, to complement Common-
Gen, we provide an extended test set where an ad-
ditional context is provided for each set of target
words. The task is therefore reformulated to both
generate commonsensical text which includes the
given words, and also have the generated text ad-
here to the given context.

Each context is formulated as three sentences,
created by human annotators from Mechanical
Turk (www.mturk.com), as exemplified in Ta-
ble 1. The annotators were tasked to create three
sentences, so that a subsequent sentence would be
likely to include the target words. Details regard-
ing the creation process of C2GEN, and its statis-
tical properties are available in Appendix F.

Jane was excited when the teacher announced
it was career week. Jane signed her dad up
to visit the classroom. On the appointed day,
Jane’s dad showed up dressed in his work gear.

Table 1: Example context from C2GEN, where the tar-
get words for the subsequent sentence are: duty, fire-
man, firetruck, front and talk.

6 Word Inclusion Experiments

We separate word inclusion into two different set-
tings. In the first, the model is tasked to generate
exactly 32 tokens. Requiring the model to both
satisfy the word inclusion objective, and continue
generating contextually relevant text. This allows
methods that do not grant sentence level control to
participate, such as PPLM and Keyword2Text.

In the second setting, the model is only tasked
to create a single sentence, elevating the require-
ment of continued text generation. This setting is
suitable for methods specifically trained towards
creating a single common sense sentence, such as
KG-BART and POINTER.

For both of these settings, we run experiments
on both CommonGen and C2GEN. Since exper-
iments on the contextualized C2GEN require the
model to adhere to a context regardless of whether
the objective is to generate a single sentence or a
free text, KG-BART and POINTER are excluded
from these experiments all together.

6.1 Model Configurations

Using our proposed method we train a non-
residual prompt model to accompany a pre-trained
GPT-2 Large model. This setup is referred to
as NRP during experiments, and training details
can be found in Appendix A. In order to demon-
strate how more sophisticated decoding strategies
can be incorporated, we also combine NRP with a
slightly modified version of Keyword2Text. De-
tails for this incorporation can be found in Ap-
pendix B.3.

The inference utilizes a beam size of 4, and any
additional parameters were set according to a held-
out validation set (See Appendix B). All baseline
implementations are taken from their respective
code repositories, and if possible the official pre-
trained model (See Appendix D).
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Free Text (32 Tokens) Single Sentence

Cov ↑ Ppl ↓ Self-Bleu ↓ Sense ↑ Cov ↑ Ppl ↓ Self-Bleu ↓ Sense ↑ Len

GPT-2 Large + Prompt 72.2 15.7 56.5 68.5 70.9 47.8 48.3 68.1 13.6

PPLM 13.3 17.2 21.6 77.9
Keyword2Text 84.5 32.9 13.9 49.0

POINTER 98.0 51.9 27.7 48.6 27.2
KG-BART 97.2 37.0 33.0 82.4 15.3

Our Contributions

NRP 98.4 14.1 36.1 69.3 93.0 24.0 28.4 72.3 20.3
NRP + Keyword2Text 99.5 14.0 40.4 68.2 95.1 24.0 29.0 71.8 20.5

Table 2: Results for the Word Inclusion experiments on CommonGen.

Free Text (32 Tokens) Single Sentence

Cov ↑ Ppl ↓ Self-Bleu ↓ Sense ↑ Ctx ↑ Cov ↑ Ppl ↓ Self-Bleu ↓ Sense ↑ Ctx ↑ Len

GPT-2 Large + Prompt 57.0 12.5 31.7 81.2 76 56.6 24.9 31.7 88.0 74.3 13.6
PPLM 19.1 12.5 15.2 70.8 75.9
Keyword2Text 93.9 18.0 15.4 56.5 76.4

Our Contributions

NRP 96.9 10.0 31.3 69.3 75.8 81.0 12.3 22.5 81.1 81.2 15.5
NRP + Keyword2Text 98.6 9.5 32.1 71.0 76.8 82.1 12.5 22.9 80.1 82.7 15.5

Table 3: Results for the Word Inclusion experiments on the C2GEN dataset.

6.2 Evaluation Metrics

In accordance with the guidelines described in
Section 2.2, we provide both quantitative and qual-
itative evaluation. The qualitative examples in Ta-
ble 4 are intended to convey the overall style for
each algorithm, and more qualitative examples are
available in Appendix G.

Quantitative metrics are easily comparable, but
may be less suited to convey the overall style. Our
quantitative metrics are described in detail in Ap-
pendix E, and briefly below:

Word Inclusion Coverage (Cov): The percent-
age of target words that are included in the gen-
erated text. Both target and generated words are
lemmatized, alleviating the need to match the ex-
act form of the target word.

Perplexity (Ppl): The mean perplexity of the
generated text calculated with GPT-2 XL. Al-
though lower perplexity often indicates better lan-
guage fluency, degenerate repetitions tend to result
in low perplexity as well. Therefore, one should
not rely on perplexity alone, but in combination
with other metrics and qualitative analysis. Nev-
ertheless, it is a metric that yields a hint of lan-
guage fluency that does not require human evalu-
ation. In the presence of contexts, as is the case
with C2GEN, the perplexity is conditioned on the
context and typically results in significantly lower
perplexity values.

Self-BLEU-5 (Self-Bleu): Average BLEU-5
overlap between all generated texts. A lower score
is desired as this indicates syntactic diversity.

Common Sense (Sense): The average score on
how well the generated text adheres to common
sense, according to human evaluators.

Contextual Relevancy (Ctx): The average
score on how well the generated text fits the given
context, according to human evaluators. For more
information about the human evaluation process,
see Appendix E.3.

6.3 Quantitative Results

We wish to highlight that NRP, Keyword2Text,
and the prompted GPT-2 all control the same un-
derlying CLM model. Differences between these
approaches are hence a result of the method, not
the model. Unfortunately, all quantitative metrics
(including human metrics) are intrinsically corre-
lated with sentence length, making comparisons of
single sentences non-trivial (See Appendix E).

First, we note that it is only the NRP ap-
proaches, and arguably GPT-2, that supports all
four experiments. In general we find that the in-
corporation of Keyword2Text with NRP increases
the coverage slightly, but at the cost of a slightly
higher self-Bleu. Hence, for brevity, we refer to
both of them as NRP throughout the remainder of
this section.
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NRP

The scooter riders wear a T-shirt that says ”I Ride” on the back.

The player presses a button on the scanner to place the card in his or her inventory.

KG-BART

A man is riding a scooter and wearing a shirt.

A woman presses a button on a scanner and places a card on the scanner.

POINTER

you can ride: the scooter, a t t shirt, and then you have to wear a jacket.

by pressing a button, or pressing a card, the reader will place a button, and then press of the card into a scanner screen.

Table 4: Two independently generated sentences for NRP, KG-BART, and POINTER. The target words for the
first sentence are ride, scooter, shirt, wear, and the target words for the second sentence are press, card, place,
button, scanner.

In the CommonGen Free Text setting (Table
2), NRP achieves the best coverage rate by a
large margin, and also the best perplexity. No-
ticeably, NRP outperform GPT-2 in all metrics,
besides common sense where they are virtually
equal. Interestingly, GPT-2’s coverage is virtu-
ally the same as its free text counterpart, indicat-
ing that it quickly forgets the intended instruction.
Keyword2Text generates the lowest self-Bleu, but
has both the worst perplexity and common sense
score. PPLM performs the best on common sense
but instead fails the task completely, as demon-
strated by its poor coverage.

In the CommonGen Single Sentence setting
(Table 2), NRP fall slightly behind the special-
ized sentence methods in terms of coverage, but
has a noticeably higher coverage than GPT-2.
POINTER has the best coverage and self-Bleu,
but also the worst common sense and dramatically
worst perplexity. KG-BART has as expected the
best common sense score, while staying fairly bal-
anced on all other metrics. Again, NRP and GPT-2
show similar common sense scores.

For C2GEN Free Text (Table 3), NRP performs
the best on coverage and perplexity. All meth-
ods perform nearly identical on the context score.
Both PPLM and Keyword2Text perform better
than they did on CommonGen, but Keyword2Text
is still worst on perplexity and common sense, and
PPLM still performs the worst on coverage. As ex-
pected, GPT-2 performs poorly on contextualized
word inclusion, demonstrated by its low coverage.
This indicates that GPT-2 acts more as a regular
CLM, ignoring the instruction prompt, which ex-
plains its high common sense score.

Finally, NRP performs significantly better on
coverage, perplexity, self-Bleu and context with
Single Sentences on C2GEN (Table 3). GPT-2 per-
forms better on common sense, which is likely due
to it focusing less on the word inclusion objective.
Again, GPT-2 achieves a similar coverage as its
Free Text counterpart.

6.4 Qualitative Results

As demonstrated in Table 4, NRP and GPT-2
tend to generate more linguistically complicated
sentences, with more flow, compared to that of
KG-BART. While stylistic complexity is arguably
something desirable, it has the drawback that it in-
creases the chance of generating text that breaks
common sense. Our inspection also confirms that
POINTER generates long sentences with weird
formulations, that often break common sense and
being syntactically incorrect.

Examples of generated texts from all methods
are available in Appendix G. Keyword2Text often
inserts multiple line breaks, and sometimes gets
stuck repeating a word. The differences between
NRP, PPLM and GPT-2 are more subtle, the major
distinction being that PPLM comes off as slightly
more fluid in its formulations.

7 Sentence Length Experiments

The inclusion of sentence length in the pre-
training objective (Section 4.2), gives an addi-
tional level of generative control over the linguistic
style. As demonstrated in Table 5, the model in-
corporates and plans using the prompted sentence
length, and changes the wording and content ac-
cordingly.
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LP LG Target Words Generated Sentence

6 6 drink, sit, table, wine The wine-drinkers sit on the table.

12 11 drink, sit, table, wine The guests sit at a table and drink wine or beer.

18 16 drink, sit, table, wine The guests sit at a table and drink wine, while the hostess sits on the floor.

8 8 amazing, trump, politics,
victory

The Trump victory was an amazing victory in politics.

14 14 amazing, trump, politics,
victory

The Trump victory was an ”amazing” and ”incredible” victory for Ameri-
can politics, he said.

20 25 amazing, trump, politics,
victory

The Trump victory in the 2016 presidential election was an amazing vic-
tory for American politics as a whole, but it wasn’t just about Donald J.

Table 5: Examples of generated sentences for different prompted sentence lengths, using the pre-trained word
inclusion model. Lp is the prompted length and LG shows the resulting generation length.

We note that the model tends to prioritize tex-
tual quality over strictly sticking to the exact
number of words. To measure this discrepancy,
we generate sentences for all CommonGen val-
idation samples for different prompted sentence
lengths. Figure 4 shows the results from this ex-
periment, displaying the expected offset for differ-
ent prompted sentence lengths.

The mean offset is always above 0 and below
1, meaning the CLM can be expected to gener-
ate a slightly longer sentence than intended. The
standard deviation increases both as the prompted
length approaches long, and short sentences. This
matches the sentence distribution of the pre-
training dataset, as demonstrated in Table 6 found
in Appendix A.

8 Discussion and Future Work

We opted to demonstrate our architecture’s ca-
pabilities on the task of word inclusion, since
quantitative comparisons on this task are relatively
straight-forward, compared to most other open-
ended text generation tasks. While experimental
results indicate the versatility of our approach, it
is important to note that the method conceptually
generalizes to a much wider range of tasks.

Our non-residual architecture enables the use
of prompt instructions at arbitrary time steps, but
is not limited to word inclusion. We hence en-
courage future work to pursue the incorporation of
multi-task prompt learning, as being able to apply
flexible prompts with precision would be a big step
forward in the many areas striving to use CLMs.
Indeed, we consider the ability to control the text
generation process while considering context cru-
cial for any tool intended for human editors.

Admittedly, our training method for realizing
our encoder-decoder architecture has largely been
dictated by a lack of resources. We conceptually
prefer the more straight-forward training approach
of training the prompt model directly on long con-
text data, and removing the positional invariant
transformation. Future work could thus increase
computational resources and investigate the possi-
bility of different positional encoding schemes.

Finally, we stress that nothing in our approach
has focused explicitly on common sense. It is
hence expected that methods that do, like KG-
BART, perform better on this metric. Future work
could thus investigate the use of a prompt model to
control a CLM fine-tuned towards common sense,
or fine-tune a prompt model using common sense
data. Results on CommonGen and C2GEN dataset
still leave ample room for improvements.

Figure 4: Offset of generated sentence length from
prompted sentence length, on the CommonGen valida-
tion set. The curve shows the mean offset and the filled
area shows the standard deviation.
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9 Conclusion

This paper has introduced the concept of non-
residual attention and demonstrated how it can be
used to control a generative text model. Addition-
ally, our work pinpoints the lack of open-ended
controllable text generation tasks that require the
model to also account for a given context. We set
out to remedy this by introducing the humanly cre-
ated C2GEN dataset, introducing the task of con-
textualized word inclusion.

Experimental results on C2GEN and Com-
monGen, clearly demonstrates that using a non-
residual prompt model increases generative con-
trol over a CLM. Compared to other methods, our
approach stands out as the most versatile, consis-
tently performing well across all tested situations.
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Figure 5: Overview of the random prompt generation template. The left section illustrates the template formula for
a single example. The right section demonstrates a full prompt with the target sentence length ”16”, and the target
words: Helmet, Motorcycle, Ride and Road. In this case the inclusion phrase was selected to be ”words and text
should include”, the separator sign ”:”, the delimiter ”,”, and the end sign ”.”

.
A Training Details

A.1 Training Data

Both pre-training phases (step 2 and 3 in Fig-
ure 2) are based upon texts from Wikipedia. For
the first pre-training phase, we only consider sen-
tences where the number of tokens fulfills: 5 ≤
Ntokens ≤ 32. The length of the sentences re-
maining after this filtering are depicted in Figure
6. In the second pre-training phase, subsequent
sentences are packed up until the combined token
length reaches 128 tokens. The prompt model is
then trained to instruct the CLM for each of the
packed sentences made up of 5 ≤ Ntokens ≤ 32
tokens. In both phases the number of tokens are
given via the GPT-2 Tokenizer (Radford et al.,
2018b).

Throughout both pre-training phases we sam-
ple [A = 3, B = 6] unique words for each valid
sentence, removing the probability of sampling
stop words. If a sentence lacks 3 unique non-
stop words it is removed from the first pre-training
phase, and ignored during the second.

The reason for limiting the training corpus to
sentences with a maximum of 32 tokens is to
keep the computational burden low, in particu-
lar the maximum memory consumption. This is
less of a problem in the second pre-training phase,
where only the positional invariant transformation
is trained, hence removing the need to store an op-
timizer state for the prompt model’s parameters.

A.2 Training Settings

Both pre-training phases use the same set of hy-
perparameters. The batch size is set to 1280 sam-
ples. The maximum learning rate is set to 10−4,
following a linear warm up schedule for the first
500 update steps.

The training is performed with early stopping in
regards to coverage, on a hold-out validation set.

For the first pre-training phase, where the prompt
model is trained towards single sentence data, this
is done with the CommonGen validation set. In
the second phase, a custom validation set created
by sequences of Wikipedia sentences is used.

A.3 Randomized Prompt Template

In accordance to the popularized prompt paradigm
of (Brown et al., 2020) we start each prompt
with a couple of examples, followed by the ac-
tual instruction. To increase generalization during
the pre-training we procedurally generate prompts
where both the included examples and the overall
formatting is randomized.

Each prompt includes three examples which are
uniformly sampled from a set of 50,000 sentences,
which have been randomly selected and set aside
from the pre-training dataset. The format is gen-
erated by joining the examples, target words and
target sentence length, with a set of randomly se-
lected combination tokens. These tokens are ran-
domly selected from a fixed list of candidates. An
example of a randomly generated prompt is avail-
able in Figure 5.

Figure 6: Distribution of sentence length in number of
words for the filtered Wikipedia training data.
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B Inference Details

B.1 Experiment Configurations

All non-residual prompt models utilize a repeti-
tion penalty of 1.25 and beam size of 4. For tasks
without context they all start with the word ”The”.
The prompted sentence length for each model is
set via hyperparameter search on a held-out vali-
dation set. For CommonGen we use the provided
validation set, and for the C2GEN dataset we use a
portion of the pre-training dataset (Appendix A.1).
The selected sentence lengths for each model and
setting are available in Table 6.

B.2 Prompting Schema

All word inclusion experiments utilize the same
simple inference schema. For each sample a sin-
gle prompt instruction is generated, including all
of the target words and sentence length. The CLM
is then allowed to attend to this instruction us-
ing non-residual attention, until all target words
have been generated. After this the CLM contin-
ues entirely using the textual stream, and is there-
after identical to the original CLM. In the free text
setting, this means that if the CLM ends a sen-
tence without having included all target words, the
prompt instruction is still enabled. An example of
this is illustrated in Figure 7.

We recognize that one could investigate a more
fine-grained and adaptive approach. For example,
one could easily alter the prompt instruction to
only cover words that are yet to be included, or ex-
tend the target sentence length if not all words are
included towards the end. We heavily encourage
future work to investigate such approaches. The
reason for our simpler approach is to lend more fo-
cus to the overall architectural contribution. This
also demonstrates how one can easily steer the
generation through high level instructions.

B.3 Keyword2Text Incorporation

To test the intuition of aiding the prompt model’s
high-level planning with direct decoding strate-

Model Name Free Text Sentence

NRP 10 15
NRP + Keyword2Text 10 15

Table 6: The prompted sentence lengths for both non-
residual prompt models, for both the Free Text and Sin-
gle Sentence setting.

Figure 7: An example of how NRP’s Inference Prompt-
ing falls back to regular CLM generation when the tar-
get words have been successfully included.

gies we supply a slightly modified version of Key-
word2Text (Pascual et al., 2021), that we find to
work better. This modified version is heavily in-
spired by the Max Only and No Guarantee version
of Keyword2Text, as we only increase the proba-
bility of the target words and by not forcing them
to appear. The major difference is that we not
only increase the sampling probability for the tar-
get words, but also their different lemmas. Word
lemmas are extracted from the target words via the
use of Spacy (Honnibal et al., 2020).

The sampling probability modifier is applied
in the same fashion as the repetition penalty of
(Keskar et al., 2019), where a multiplier is ap-
plied on the logits values of the CLM. Target word
that has been included have all of its lemmas ef-
fectively assigned a sampling probability of zero.
Identical to the prompting schema described in
Appendix B.2, this additional decoding strategy is
deactivated once all the target words are included.

The sampling probability modifier for a non-
included target word is given by Equation 2, where
α depicts the maximum increase, and λ the inclu-
sion factor dictating the shape of the exponentially
increasing modifier curve. T depicts the fraction
of completion for the generative process, in re-
gards to the maximum number of generation steps.
Hence, T is always within the range [0, 1].

1 + α
eλT

eλ
(2)

All experiments in this paper utilize the same
set of parameters, where α = 0.5 and λ = 5.5.
We note that increasing α has the expected effect
of increasing overall coverage, but we found this
to be at a non-acceptable loss of textual quality.
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Figure 8: Illustration of the residual prompt effect that can happen in a Casual Language Model. The curved arrow
indicates where the CLM should attend to the second instruction, but it is also affected by the first instruction.

C Architectural Motivation

C.1 Residual vs Non-Residual Prompts

As explained in Section 3.1, the non-residual at-
tention hinders an instruction at time step n to in-
fluence future time steps via its key-values. If one
instead applies prompts directly to the CLM’s tex-
tual stream, it allows the prompt to have a linger-
ing effect on future decoding steps, where it might
not be desired. This is demonstrated in Figure 8,
where the second instruction is the exact opposite
of the first. To what extent this effect actually oc-
curs in large CLMs is left for future work.

C.2 Positional Invariant Transformation

The positional invariant transformation allows us
to both reduce the maximum memory consump-
tion during pre-training and cope with the abso-
lute positional encoding system of GPT-2. Since
we only train the positional invariant transforma-
tion during the second pre-training phase, the need
to store an optimizer state for the prompt model’s
parameters is alleviated, in turn allowing us to in-
crease the target sequence length without having
to increase the computational memory load.6

If one is not limited by computational resources,
an intuitive alternative approach to is to actively
change the positional encoding of the prompt
model, to match the current generation step for
the CLM. Unfortunately, we find that shifting the

6In our case, we were unable to train the prompt model
with longer contexts, due to memory constraints.

prompt model’s absolute encodings is problematic
in its own way, since this detrimentally impacts
the pre-trained CLM’s textual abilities. As demon-
strated in Table 7, simply shifting the positional
input encoding with a single step completely ruins
the CLM’s generative process.

We hypothesize that this positional frailty is due
to the pre-training objective of GPT-2, which po-
sitionally encodes each input sequence from 0 and
onward. These results lead us to speculate that
directly converting a CLM with an absolute en-
coding system into a positional invariant prompt
model forces one to discard a significant portion
of the information achieved during the CLM’s pre-
training, hence severely reducing the benefits of
bootstrapping from a pre-trained CLM. Thus, we
estimate that such an approach entails both higher
maximum memory consumption and also longer
training time.

C.3 Results Without Positional Invariant
Transformation

The main results displayed in Section 6, are cen-
tered around an NRA model which includes a po-
sitional invariant transformation. To demonstrate
the utility of this transformation we provide results
from the same NRA model without this transfor-
mation. As demonstrated in Table 8, this causes
the generative process to completely collapse as
soon as context is added. Hence, we did not per-
form any further human evaluation.

Positional Encoding Generated Text Continuation

[0, 1, 2, 3, 4, 5, 6, 7, 8] ”and she was walking along the path when she saw. . .”
[1, 2, 3, 4, 5, 6, 7, 8, 9] ”was was was was was was was was was was. . .”
[8, 9, 10, 11, 12, 13, 14, 15, 16] ”, , , , , , , , , . . .”

Table 7: Generated text sequences continuing from the text ”Emily was out walking in the park,” encoded with
different absolute positional encoding sequences. The model used is GPT-2 Large with a beam size of 1.
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Free Text (32 Tokens) Single Sentence

Cov ↑ Ppl ↓ Self-Bleu ↓ Cov ↑ Ppl ↓ Self-Bleu ↓
CommonGen (No Context)

NRP 98.4 14.1 36.1 93.0 24.0 28.4
NRP - No Trans 95.6 19.2 38.2 92.68 30.4 26.0

C2GEN (With Context)

NRP 96.9 10.0 31.3 81.0 12.3 22.5
NRP - No Trans 6.2 39796 38.4 1.6 41905 33.5

Table 8: Results for the Word Inclusion experiments on CommonGen.

C.4 Cross-Attention vs Non-Residual
Attention

In a traditional encoder-decoder architecture the
encoder fully processes the input data before any
information is passed to the decoder. Admittedly,
this makes intuitive sense, but it also entails that
the decoder cannot do any computations before
the encoder is completely finished. However, us-
ing a non-residual attention (or just regular self-
attention) encoder, allows the encoder and decoder
to execute in parallel, effectively increasing the
theoretical inference speed by a factor of 2.
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D Extended Related Work

D.1 Decoding Strategies
PPLM incorporates an attribute model (bag of
words) in order to steer its CLM. The gradi-
ents from the attribute model push the activations
within the CLM, increasing the probability of gen-
erating the target words. In CommonGen, the con-
cept sets include only a few target words, while
PPLM typically have been used with larger bags
of words. This could potentially explain its poor
coverage in our experiments. Furthermore, PPLM
uses a GPT-2 Medium language model while NRP
and Keyword2Text are based on the GPT-2 Large.
We relied on the example BoW settings provided
on the official GitHub page,7 and the target gener-
ation length was modified to 32 tokens.

PPLM incorporates a target generation length,
but has no explicit sentence level control. It is thus
omitted from all sentence-level experiments.

Keyword2Text directly increases the sampling
probability of words semantically similar to the
target words. It also provides a guarantee for word
inclusion, enabling hard-constrained text genera-
tion. However, Keyword2Text is based on word
stemming, while the coverage metric relies on
lemmatization. This is likely the reason why Key-
word2Text does not achieve 100% coverage in our
experiments. We used the example ROC Story set-
tings provided on the official GitHub page,8 and
changed the generation length to 32 tokens.

Keyword2Text incorporates a target generation
length, but yields no explicit sentence level con-
trol. It is thus omitted from all sentence-level ex-
periments.

D.2 Training Strategies
CTRL incorporates genre-specific control codes
in its CLM pre-training objective. In this way, the
model learns to adapt its generation to fit the tar-
get domain and genre. There is not any straight-
forward way of incorporating the word inclusion
objective in this pre-training framework. Hence,
we did not deem CTRL a suitable baseline for our
experiments.

KG-BART augments a sequence-to-sequence
model (BART) with knowledge graphs to enhance
its common sense reasoning abilities. It specifi-
cally fine-tunes BART on the CommonGen train-
ing data, which consists solely of single sentences.

7https://github.com/uber-research/PPLM
8https://github.com/dapascual/K2T

This results in the model generating short and suc-
cinct sentences, but not being capable of contin-
ued text generation. Hence, KG-BART is omit-
ted from the Free Text generation tasks. More-
over, KG-BART is designed to take a concept
set as input, and not any additional context. It
was hence removed from all experiments on the
C2GEN dataset.

We relied on the official scripts for fine-tuning
and inference.9 During inference KG-BART uti-
lizes a beam search with beam size of 5, along with
an n-gram-based repetition constraint.

GDC controls the text generation of a pre-
trained CLM by fine-tuning towards point-wise
and distributional constraints with policy gradient.
Additionally, GDC incorporates a KL-Divergence
loss, to keep the fine-tuned model similar to the
initial CLM. However, this fine-tuning process
is extraordinarily expensive requiring roughly 72
hours to tune a GPT-2 Small model towards a sin-
gle word. Furthermore, it lacks a setting for gen-
eral word inclusion and is thus excluded from our
experiments.

POINTER solves the word inclusion task in
a non-autoregressive manner, iteratively injecting
words around the target words. The target words
are thus all included prior to the generation pro-
cess. POINTER can therefore only fail on the cov-
erage task if it combines a target word with an-
other word. It is designed to generate single sen-
tences, and cannot handle contexts without signif-
icant modifications. We used the standard decod-
ing script provided on the official GitHub page10

but changed the separator to ”, ”.

D.3 GPT Prompting
The currently most popular approach to steering
CLM’s is via what is called prompting. In this
approach the desired instruction is formulated as
a textual context, from which the CLM contin-
ues. Following the popular paradigm of few-shot
prompting, each prompt starts with a number of
examples of the word inclusion task. We found
that careful tinkering of the prompt layout and the
included examples had significant impact on the
performance. The final prompt used for the var-
ious experiments are available in Appendix H. A
beam size of 4 was used during inference for all
experiments.

9https://github.com/yeliu918/KG-BART
10https://github.com/dreasysnail/POINTER
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E Evaluation Metrics

E.1 String Matching as Evaluation Metrics

The current default way of evaluating Common-
Gen results is to compare the generated sen-
tence with a few label sentences, using standard-
ized string matching metrics such as BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), CIDER (Vedantam et al., 2015), and SPICE
(Anderson et al., 2016). While we see the value
of such metrics in tasks like machine translation,
where there is a constrained number of acceptable
text formulations, we intuitively disagree of the
usage of these metrics for CommonGen. Control-
lable text generation with word inclusion allows
for vast amounts of creativity, something we be-
lieve is easily lost when one is tasked to stay sim-
ilar to a few label sentences. It is easy to imagine
how this evaluation system could unjustifiably pe-
nalize creative texts, although they adhere to com-
monsense. For this reason, we did not evaluate on
string matching, and did not collect any label sen-
tences for C2GEN.

E.2 Automatic Metrics

Word Inclusion Coverage is calculated using
pattern matching of lemmatized versions of the
generated texts (Lin et al., 2020). To avoide
the obvious flaw of comparing lemmatized out-
put with non-lemmatized input, we also lemma-
tize the input words. To further increase the cover-
age fairness we include all word lemmas using the
python packages lemminflect (Jascob, 2019) and
Spacy. The correlation between coverage and se-
quence length varies between models, but longer
sequences often provide more space to include the
target words.

Perplexity is calculated for the generated token
sequence X = (xc, xc+1, ..., xc+n−1), where c de-
picts the context length. This means, that for the
C2GEN dataset the perplexity is conditioned on
the context, while c = 0 for the original Common-
Gen. Perplexity is strongly correlated with sen-
tence length, meaning that both longer context and
longer generated texts decreases perplexity. All
our perplexity calculations utlize GPT-2XL, and
follows the formula below.

exp

{
− 1

n

c+n−1∑
i=c

log pθ (xi | x<i)

}

Self-BLEU-5 (Zhu et al., 2018) evaluates the
syntactic diversity of a given set of texts. It is
defined as the average BLEU-5 (Papineni et al.,
2002) between all text pairs in the given set. Due
to BLEU measuring the ratio of overlap, longer
sequences tend to yield lower Self-BLEU scores,
as it is less likely that two long texts completely
overlap.

E.3 Human Evaluation Metrics
For each experimental setting, 100 generated texts
are sampled from each algorithm. These samples
are evaluated by humans on common sense, and in
the case of C2GEN, also contextual relevance (see
definitions below). Using Amazons Mechanical
Turk, each sample received 5 unique native En-
glish judges for both common sense and contex-
tual relevance. Meaning that samples in C2GEN

were evaluated first by 5 judges on common sense,
then independently judged by 5 potentially other
judges on contextual relevance.

For both metrics, the annotators were tasked
to answer either ”Yes”, ”Partly”, or ”No”, as
demonstrated in Figure 9. These responses were
then mapped to the scalar values ’1’, ’0.5’ or ’0’,
which resulted in an inter-annotator agreement of
0.51, and a Fleiss’ κ of 0.115 (Celikyilmaz et al.,
2020). A detailed depiction of the annotations for
CommonGen is available in Table 9.

Common Sense is calculated as the overall av-
erage of all human annotators for the selected 100
samples. The final reported scores in Table 2 and
Table 3 are hence each the average of 500 an-
notations. To ensure that common sense is sep-
arated from contextual relevancy, only the gen-
erated text is displayed to the human annotators.
Meaning that for C2GEN, the common sense an-
notators cannot consider the context in which the
text has been generated.

Contextual Relevance (CTX) is calculated as
an average identically to the common sense score.
The only difference is that the annotators are
tasked to consider how well the generated texts ad-
heres to the given context, without considering if
it makes sense or not.
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Figure 9: An example of a human intelligent task on MTurk. The evaluator is instructed to classify the level of
common sense of a generated sentence.

CommonGen Free Text (32 Tokens) Single Sentence

Sense Ctx Sense Ctx

GPT-2 Large + Prompt 0.001/0.411 - 0.356/0.653 -

PPLM -0.024/0.493 - - -
Keyword2Text 0.021/0.358 - - -

POINTER - - 0.230/0.50 -
KG-BART - - 0.237/0.698 -

NRP 0.076/0.422 - 0.142/0.575 -
NRP + Keyword2Text 0.087/0.452 - 0.102/0.548 -

C2GEN

GPT-2 Large + Prompt -0.003/0.552 -0.007/0.465 0.312/0.802 0.257/0.445
PPLM 0.023/0.493 0.018/0.477 - -
Keyword2Text -0.025/0.442 -0.021/0.463 - -

NRP 0.049/0.438 -0.033/0.449 0.2073/0.693 -0.040.537
NRP + Keyword2Text 0.039/0.445 -0.029/0.462 0.219/0.688 -0.033/0.566

Table 9: The IAA of the human evaluation experiments. Each cell contains the Fleiss’ κ and percent agreement,
respectively.
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Cov ↑ Ppl ↓ Self-Bleu ↓

GPT-2 Large Free Text (32 Tokens) 4.6 7.3 43.2
GPT-2 Large Single Sentence 3.8 7.5 37.9

Table 10: The results on the C2GEN dataset with the GPT-2 Large model prompted with the context only, i.e. no
prompted instruction on the target words. This provides a simple baseline on how likely the target words are to
appear naturally, when the model only focuses on generating a natural continuation of the context.

F Dataset C2GEN

The C2GEN dataset is mainly constructed in ac-
cordance with the data in the CommonGen test
set. However, minor modifications were made to
the distribution of the number of word targets per
sample. The CommonGen test set only consists of
samples with 4 or 5 target words, while the train-
ing and validation data includes samples with only
3 target words. After careful reading we found
no argument for this, and speculate that it is pur-
posefully intended to make the task more difficult.
Artificially increasing task difficulty by skewing
the test set away from the intended training data is
however not something which we intuitively agree
with.

To remedy this discrepancy, certain words
were removed from samples in the CommonGen
test set, resulting in all set sizes being equally
represented. This results in a more similar
and fair distribution between C2GEN, and the
CommonGen train and dev split. The filtering of
words from the CommonGen test set did however
result in a small number of samples being iden-
tical. These samples were deduplicated, which
resulted in C2GEN being slightly smaller than the
CommonGen test set. However, as can be seen in
Table 11, this discrepancy is insignificant.

To ensure the quality of the data generation,
only native English speakers with a recorded high
acceptance were allowed to participate. Finally,
all contexts were manually verified, and fixed in
terms of typos or poor quality.

The context lengths of the collected dataset are
visualized in Figure 10. The perplexity and the
Self-Blue metrics of the texts are available in Table
11. To evaluate the probability of the target words
appearing naturally in a textual continuation, we
use GPT-2 to generate text without the given target
words and report on the coverage in Table 10.

Statistic CommonGen C2GEN

# Concept-Sets 1,497 1,483
- Size = 3 - 494
- Size = 4 747 496
- Size = 5 750 493

# Unique Concepts 1,248 1,122
# Unique Concept-Pairs 8,777 6,835
# Unique Concept-Triples 9,920 6,959

% Unseen Concepts 8.97% 7.75%
% Unseen Concept-Pairs 100.00% 100.00%
% Unseen Concept-Triples 100.00% 100.00%

C2GEN

Average context-sentence length 43.92 ± 10.32
Perplexity (GPT-2 XL) 21.93
Self-Bleu 16.63

Table 11: A statistical comparison between the original
CommonGen test dataset and the C2GEN dataset.

Figure 10: Distribution over number of words in the
context of the C2GEN.
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G Qualitative Examples

NRP

1 The players sit in front of a microphone, with the guitar and drums on one side of them.

2 The most common use of the tool is to remove a piece of metal or plastic from an object, such as a door knob.

3 The dog walks on a leash, and the owner can walk their pet on the sidewalk or in front of their home.

GPT2-Large

1 The guitar was on the front of the sofa.

2 The piece of metal was used in the tool.

3 The dog was walking on the sidewalk.

POINTER

1 he is shown sitting in front of a stage, playing his guitar, and standing behind a microphone on the one where he had
to sit in the back.

2 , also known as a metal plate or, is a piece of metal, a sharp tool, that can be removed with the use of other tools.

3 this allows a dog that has been on a leash to be lowered onto the sidewalk, or to walk along the sidewalk.

KG-BART

1 A man with a guitar sits in front of a microphone and plays his guitar.

2 A man uses a tool to remove a piece of metal from a metal piece of wood.

3 A dog walks on a leash on a sidewalk.

PPLM

1 The new year is just around the corner, and with it comes a plethora of new releases and albums, but this year’s lineup is
the most impressive we’ve

2 The United States is one of only a few industrialized democracies which allow its citizens to buy and use drugs on behalf
of their patients, and to provide them with a

3 The ”Boomer” and ”Boomer-Bom” are two words that mean very different things. When you say something to a person
that

Keyword2Text

1 Right front corner of the guitar.\n\n\nSituation: You are holding a microphone in one hand while playing a gui-
tar.\n\n\nReason for selecting the

2 Metal Gear Solid V: The Phantom Pain use a tool called Metal Gear Solid V Tools to piece together the main storyline.
Metal Gear Solid V: The Phantom Pain

3 Ad leash for dogs\n\n\nDog walkers and dog walkers with sidewalk dog kennels\n\n\nThose of you that own or
rent commercial dog

Table 12: Generated texts for 3 samples of the CommonGen Test set for the different methods. The inclusion
words for the samples are the following; 1: [front, guitar, microphone, sit], 2: [metal, piece, tool, use], 3: [dog,
leash, sidewalk, walk], highlighted in blue, red, and green respectively. For models that are evaluated on both
Free Text and Single Sentence, the sentence variant is shown.
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H GPT Prompt Templates

Figure 11: Prompt template used with GPT2-Large for sentence-level CommonGen text generation.

Figure 12: Prompt template used with GPT2-Large for 32 Token CommonGen text generation.

Figure 13: Prompt template used with GPT2-Large for C2Gen text generation.
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