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Abstract

High-quality phrase representations are essen-
tial to finding topics and related terms in doc-
uments (a.k.a. topic mining). Existing phrase
representation learning methods either simply
combine unigram representations in a context-
free manner or rely on extensive annotations
to learn context-aware knowledge. In this
paper, we propose UCTOPIC, a novel unsu-
pervised contrastive learning framework for
context-aware phrase representations and topic
mining. UCTOPIC is pretrained in a large
scale to distinguish if the contexts of two
phrase mentions have the same semantics. The
key to pretraining is positive pair construction
from our phrase-oriented assumptions. How-
ever, we find traditional in-batch negatives
cause performance decay when finetuning on
a dataset with small topic numbers. Hence, we
propose cluster-assisted contrastive learning
(CCL) which largely reduces noisy negatives
by selecting negatives from clusters and fur-
ther improves phrase representations for top-
ics accordingly. UCTOPIC outperforms the
state-of-the-art phrase representation model by
38.2% NMI in average on four entity cluster-
ing tasks. Comprehensive evaluation on topic
mining shows that UCTOPIC can extract co-
herent and diverse topical phrases.

1 Introduction

Topic modeling discovers abstract ’topics’ in a
collection of documents. A topic is typically
modeled as a distribution over terms. High-
quality phrase representations help topic mod-
els understand phrase semantics in order to find
well-separated topics and extract coherent phrases.
Some phrase representation methods (Wang et al.,
2021; Yu and Dredze, 2015; Zhou et al., 2017)
learn context-free representations by unigram em-
bedding combination. Context-free representations
tend to extract similar phrases mentions (e.g. “great
food” and “good food”, see Section 4.3). Context-
aware methods such as DensePhrase (Lee et al.,
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①: The semantics of phrases are determined by their context.②: Phrases that have the same mentions have the same semantics.
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Figure 1: Two assumptions used in UCTOPIC to pro-
duce positive pairs for contrastive learning.

2021) and LUKE (Yamada et al., 2020) need super-
vision from task-specific datasets or distant anno-
tations with knowledge bases. Manual or distant
supervision limits the ability to represent out-of-
vocabulary phrases especially for domain-specific
datasets. Recently, contrastive learning has shown
effectiveness for unsupervised representation learn-
ing in visual (Chen et al., 2020) and textual (Gao
et al., 2021) domains.

In this work, we seek to advance state-of-the-
art phrase representation methods and demonstrate
that a contrastive objective can be extremely effec-
tive at learning phrase semantics in sentences. We
present UCTOPIC, an Unsupervised Contrastive
learning framework for phrase representations and
TOPIC mining, which can produce superior phrase
embeddings and have topic-specific finetuning for
topic mining. To conduct contrastive learning for
phrase representations, we first seek to produce con-
trastive pairs. Existing data augmentation methods
for natural language processing (NLP) such as back
translation (Xie et al., 2020), synonym replace-
ment (Zhang et al., 2015) and text mix up (Zhang
et al., 2018) are not designed for phrase-oriented
noise, and thus cannot produce training pairs for
phrase representation learning. In UCTOPIC, we
propose two assumptions about phrase semantics
to obtain contrastive pairs:

1. The phrase semantics are determined by their
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context.
2. Phrases that have the same mentions have the

same semantics.
As shown in Figure 1, given two sentences that con-
tain the same phrase mentions (e.g., United States),
we can mask the phrase mentions and the phrase
semantics should stay the same based on assump-
tion (1). Then, the phrase semantics from the two
sentences are same as each other given assump-
tion (2). Therefore, we can use the two masked
sentences as positive pairs in contrastive learning.
The intuition behind the two assumptions is that
we expect the phrase representations from different
sentences describing the same phrase should group
together in the latent space. Masking the phrase
mentions forces the model to learn representations
from context which prevents overfitting and repre-
sentation collapse (Gao et al., 2021). Based on the
two assumptions, our context-aware phrase repre-
sentations can be pre-trained on a large corpus via
a contrastive objective without supervision.

For large-scale pre-training, we follow previous
works (Chen et al., 2017; Henderson et al., 2017;
Gao et al., 2021) and adopt in-batch negatives for
training. However, we find in-batch negatives un-
dermine the representation performance as finetun-
ing (see Table 1). Because the number of topics
is usually small in the finetuning dataset, exam-
ples in the same batch are likely to have the same
topic. Hence, we cannot use in-batch negatives for
data-specific finetuning. To solve this problem, we
propose cluster-assisted contrastive learning (CCL)
which leverages clustering results as pseudo-labels
and sample negatives from highly confident exam-
ples in clusters. Cluster-assisted negative sampling
has two advantages: (1) reducing potential posi-
tives from negative sampling compared to in-batch
negatives; (2) the clusters are viewed as topics in
documents, thus, cluster-assisted contrastive learn-
ing is a topic-specific finetuning process which
pushes away instances from different topics in the
latent space.

Based on the two assumptions and cluster-
assisted negative sampling introduced in this paper,
we pre-train phrase representations on a large-scale
dataset and then finetune on a specific dataset for
topic mining in an unsupervised way. In our ex-
periments, we select LUKE (Yamada et al., 2020)
as our backbone phrase representation model and
pre-train it on Wikipedia 1 English corpus. To

1https://dumps.wikimedia.org/

evaluate the quality of phrase representations, we
conduct entity clustering on four datasets and find
that pre-trained UCTOPIC achieves 53.1% (NMI)
improvement compared to LUKE. After learning
data-specific features with CCL, UCTOPIC outper-
forms LUKE by 73.2% (NMI) in average. We per-
form topical phrase mining on three datasets and
comprehensive evaluation indicates UCTOPIC ex-
tracts coherent and diverse topical phrases. Overall,
our contributions are three-fold:
• We propose UCTOPIC which produces supe-

rior phrase representations by unsupervised con-
trastive learning based on positive pairs from our
phrase-oriented assumptions.

• To finetune on topic mining datasets, we propose
a cluster-assisted negative sampling method for
contrastive learning. This method reduces false
negative instances caused by in-batch negatives
and further improves phrase representations for
topics accordingly.

• We conduct extensive experiments on entity type
clustering and topic mining. Objective metrics
and a user study show that UCTOPIC can largely
improve the phrase representations, then extracts
more coherent and diverse topical phrases than
existing topic mining methods.

2 Background

In this section, we introduce background knowl-
edge about contrastive learning and our phrase en-
coder LUKE (Yamada et al., 2020).

2.1 Contrastive Learning

Contrastive learning aims to learn effective repre-
sentations by pulling semantically close neighbors
together and pushing apart non-neighbors in the
latent space (Hadsell et al., 2006). Assume that we
have a contrastive instance {x, x+, x−1 , . . . , x

−
N−1}

including one positive andN−1 negative instances
and their representations {h,h+,h−1 , . . . ,h

−
N−1}

from the encoder, we follow the contrastive learn-
ing framework (Sohn, 2016; Chen et al., 2020; Gao
et al., 2021) and take cross-entropy as our objective
function:

l = − log
esim(h,h+)/τ

esim(h,h+)/τ +
∑N−1

i=1 esim(h,h−i )/τ

(1)
where τ is a temperature hyperparameter and
sim(h1,h2) is the cosine similarity h>1 h2

‖h1‖·‖h2‖ .
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E Encoder Positive instance (produced by 2 hypotheses) Negative instance

He lived on the east coast 
of the [MASK] [MASK].

How much does it cost to 
fly to the [MASK] [MASK]?

[MASK] drove to Boston 
for a meeting.

He was employed at the 
[MASK] [MASK].

E

United States

Allie

United Way

(a) Pre-training with in-batch negatives (b) Finetuning with cluster-assist negatives

E

The first printed edition 
appeared in [MASK].

His brother Robert was 
senior sheriff of [MASK].

London

James Gunn

Apple

[MASK] is an American 
film director, actor.

[MASK] is an edible fruit 
produced by a tree.

Figure 2: (a) Pre-training UCTopic on a large-scale dataset with positive instances from our two assumptions
and in-batch negatives. (b) Finetuning UCTopic on a topic mining dataset with positive instances from our two
assumptions and negatives from clustering.

2.2 Phrase Encoder

In this paper, our phrase encoder E is transformer-
based model LUKE (Yamada et al., 2020). LUKE
is a pre-trained language model that can directly
output the representations of tokens and spans in
sentences. Our phrase instance x = (s, [l, r]) in-
cludes a sentence s and a character-level span [l, r]
(l and r are left and right boundaries of a phrase).
E encodes the phrase x and output the phrase rep-
resentation h = E(x) = E(s, [l, r]). Although
LUKE can output span representations directly, we
will show that span representations from LUKE are
not able to represent phrases well (see Section 4.2).
Different from LUKE, which is trained by predict-
ing entities, UCTOPIC is trained by contrastive
learning on phrase contexts. Hence, the phrase pre-
sentations from UCTOPIC are context-aware and
robust to different domains.

3 UCTopic

UCTOPIC is an unsupervised contrastive learn-
ing method for phrase representations and topic
mining. Our goal is to learn a phrase encoder as
well as topic representations, so we can represent
phrases effectively for general settings and find top-
ics from documents in an unsupervised way. In
this section, we introduce UCTOPIC from two as-
pects: (1) constructing positive pairs for phrases;
(2) cluster-assisted contrastive learning.

3.1 Positive Instances

One critical problem in constrastive learning is
to how to construct positive pairs (x, x+). Pre-
vious works (Wu et al., 2020; Meng et al., 2021)
apply augmentation techniques such as word dele-

tion, reordering, and paraphrasing. However, these
methods are not suitable for phrase representation
learning. In this paper, we utilize the proposed
assumptions introduced in Section 1 to construct
positive instances for contrastive learning.

Consider an example to understand our posi-
tive instance generation process: In Figure 2 (a),
phrase United States appears in two differ-
ent sentences “He lived on the east coast of the
United States” and “How much does it cost to fly to
the United States”. We expect the phrase (United
States) representations from the two sentences
to be similar to reflect phrase semantics. To en-
courage the model to learn phrase semantics from
context and prevent the model from comparing
phrase mentions in contrastive learning, we mask
the phrase mentions with [MASK] token. The two
masked sentences are used as positive instances. To
decrease the inconsistency caused by masking be-
tween training and evaluation, in a positive pair, we
keep one phrase mention unchanged in probability
p.

Formally, suppose we have phrase instance x =
(s, [l, r]) and its positive instance x+ = (s′, [l′, r′])
where s denotes the sentence and [l, r] are left and
right boundaries of a phrase in s, we obtain the
phrase representations h and h+ by encoder E and
apply in-batch negatives for pre-training. The train-
ing objective of UCTOPIC becomes:

l = − log
esim(h,h+)/τ∑N
i=1 e

sim(h,hi)/τ
, (2)

for a mini-batch of N instances, where hi is an
instance in a batch.
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3.2 Cluster-Assisted Contrastive Learning

We find that contrastive learning with in-batch neg-
atives on small datasets can undermine the phrase
representations (see Section 4.2). Different from
pre-training on a large corpus, in-batch negatives
usually contain instances that have similar seman-
tics as positives. For example, one document has
three topics and our batch size is 32. Thus, some
instances in one batch are from the same topic but
in-batch method views these instances as negatives
with each other. In this case, contrastive learning
has noisy training signals and then results in de-
creasing performance.

To reduce the noise in negatives while optimiz-
ing phrase representations according to topics in
documents, we propose cluster-assisted contrastive
learning (CCL). The basic idea is to utilize prior
knowledge from pre-trained representations and
clustering to reduce the noise existing in the neg-
atives. Specifically, we first find the topics in
documents with a clustering algorithm based on
pre-trained phrase representations from UCTOPIC.
The centroids of clusters are considered as topic
representations for phrases. After computing the
cosine distance between phrase instances and cen-
troids, we select t percent of instances that are close
to centroids and assign pseudo labels to them. Then,
the label of a phrase mention pm 2 is determined by
the majority vote of instances {xm0 , xm1 , . . . , xmn }
that contain pm, where n is the number of sen-
tences assigned pseudo labels. In this way, we get
some prior knowledge of phrase mentions for the
following contrastive learning. See Figure 2 (b);
three phrase mentions (London, James Gunn
and Apple) which belong to three different clus-
ters are labeled by different topic categories.

Suppose we have a topic set C in our docu-
ments, with phrases and their pseudo labels, we
construct positive pairs (xci , x

+
ci) by method intro-

duced in Section 3.1 for topic ci where ci ∈ C.
To have contrastive instances, we randomly select
phrases pmcj and instances xmcj from topic cj as neg-
ative instances x−cj in contrastive learning, where
cj ∈ C∧cj 6= ci. As shown in Figure 2 (b), we con-
struct positive pairs for phrase London, and use
two phrases James Gunn and Apple from the
other two clusters to randomly select negative in-
stances. With pseudo labels, our method can avoid
instances that have similar semantics as London.

2phrase mentions are extracted from sentence s, i.e., pm =
s[l : r]

The training objective of finetuning is:

l = − log
esim(hci ,h

+
ci
)/τ

esim(hci ,h
+
ci
)/τ +

∑
cj∈C e

sim(hci ,h
−
cj
)/τ
.

(3)
As for the masking strategy in pre-training, we
conduct masking for all training instances but keep
x+ci and x−cj unchanged in probability p.

To infer the topic y of phrase instance x, we
compute the cosine similarity between phrase rep-
resentation h and topic representations h̃ci , ci ∈ C.
The nearest neighbor topic of x is used as phrase
topic. Formally,

y = argmaxci∈C(sim(h, h̃ci)) (4)

4 Experiments

In this section, we evaluate the effectiveness of
UCTOPIC pre-training by contrastive learning. We
start with entity clustering to compare the phrase
representations from different methods. For topic
modeling, we evaluate the topical phrases from
three aspects and compare UCTOPIC to other topic
modeling baselines.

4.1 Implementation Details

To generate the training corpus, we use English
Wikipedia 3 and extract text with hyper links as
phrases. Phrases have the same entity ids from
Wikidata 4 or have the same mentions are consid-
ered as the same phrases (i.e., phrases have the
same semantics). We enumerate all sentence pairs
containing the same phrase as positive pairs in con-
trastive learning. After processing, the pre-training
dataset has 11.6 million sentences and 108.8 mil-
lion training instances.

For pre-training, we start from a pretrained
LUKE-BASE model (Yamada et al., 2020). We
follow previous works (Gao et al., 2021; Soares
et al., 2019) and two losses are used concurrently:
the masked language model loss and the contrastive
learning loss with in-batch negatives. Our pre-
training learning rate is 5e-5, batch size is 100 and
our model is optimized by AdamW in 1 epoch.
The probability p of keeping phrase mentions un-
changed is 0.5 and the temperature τ in the con-
trastive loss is set to 0.05.

3https://en.wikipedia.org/
4https://www.wikidata.org/
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4.2 Entity Clustering

To test the performance of phrase representations
under objective tasks and metrics, we first apply
UCTOPIC on entity clustering and compare to
other representation learning methods.
Datasets. We conduct entity clustering on four
datasets with annotated entities and their semantic
categories are from general, review and biomed-
ical domains: (1) CoNLL2003 (Sang and Meul-
der, 2003) consists of 20,744 sentences extracted
from Reuters news articles. We use Person, Lo-
cation, and Organization entities in our experi-
ments.5 (2) BC5CDR (Li et al., 2016) is the BioCre-
ative V CDR task corpus. It contains 18,307 sen-
tences from PubMed articles, with 15,953 chem-
ical and 13,318 disease entities. (3) MIT Movie
(MIT-M) (Liu et al., 2013) contains 12,218 sen-
tences with Title and Person entities. (4) W-NUT
2017 (Derczynski et al., 2017) focuses on identi-
fying unusual entities in the context of emerging
discussions and contains 5,690 sentences and six
kinds of entities 6.
Finetuning Setup. The learning rate for finetun-
ing is 1e-5. We select t (percent of instances)
from {5, 10, 20, 50}. The probability p of keep-
ing phrase mentions unchanged and temperature τ
in contrastive loss are the same as in pre-training
settings. We apply K-Means to get pseudo labels
for all experiments. Because UCTOPIC is an un-
supervised method, we use all data to finetune and
evaluate. All results for finetuning are the best
results during training process. We follow previ-
ous clustering works (Xu et al., 2017; Zhang et al.,
2021) and adopt Accuracy (ACC) and Normalized
Mutual Information (NMI) to evaluate different
approaches.
Compared Baseline Methods. To demonstrate
the effectiveness of our pre-training method and
finetuning with cluster-assisted contrastive learning
(CCL), we compare baseline methods from two
aspects:
(1) Pre-trained token or phrase representations:

• Glove (Pennington et al., 2014). Pre-trained
word embeddings on 6B tokens and dimen-
sion is 300. We use averaging word embed-
dings as the representations of phrases.

5We do not evaluate on the Misc category because it does
not represent a single semantic category.

6corporation, creative work, group, location, person, prod-
uct

• BERT (Devlin et al., 2019). Obtains phrase
representations by averaging token represen-
tations (BERT-Ave.) or following CGEx-
pan (Zhang et al., 2020) to substitute phrases
with the [MASK] token, and use [MASK]
representations as phrase embeddings (BERT-
MASK).

• LUKE (Yamada et al., 2020). Use as back-
bone model to show the effectiveness of our
contrastive learning for pre-training and fine-
tuning.

• DensePhrase (Lee et al., 2021). Pre-trained
phrase representation learning in a supervised
way for question answering problem. We use
a pre-trained model released from the authors
to get phrase representations.

• Phrase-BERT (Wang et al., 2021). Context-
agnostic phrase representations from pretrain-
ing. We use a pre-trained model from the au-
thors and get representations by phrase men-
tions.

• Ours w/o CCL. Pre-trained phrase represen-
tations of UCTOPIC without cluster-assisted
contrastive finetuning.

(2) Fine-tuning methods based on pre-trained rep-
resentations of UCTOPIC.

• Classifier. We use pseudo labels as supervi-
sion to train a MLP layer and obtain a classi-
fier of phrase categories.

• In-Batch Contrastive Learning. Same as
contrastive learning for pre-training which
uses in-batch negatives.

• Autoencoder. Widely used in previous neural
topic and aspect extraction models (He et al.,
2017; Iyyer et al., 2016; Tulkens and van Cra-
nenburgh, 2020). We follow ABAE (He et al.,
2017) to implement our autoencoder model
for phrases.

Experimental Results. We report evaluation re-
sults of entity clustering in Table 1. Overall,
UCTOPIC achieves the best results on all datasets
and metrics. Specifically, UCTOPIC improves the
state-of-the-art method (Phrase-BERT) by 38.2%
NMI in average, and outperforms our backbone
model (LUKE) by 73.2% NMI.
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Datasets CoNLL2003 BC5CDR MIT-M W-NUT2017

Metrics ACC NMI ACC NMI ACC NMI ACC NMI

Pre-trained Representations

Glove 0.528 0.166 0.587 0.026 0.880 0.434 0.368 0.188
BERT-Ave. 0.421 0.021 0.857 0.489 0.826 0.371 0.270 0.034

BERT-Mask 0.430 0.022 0.551 0.001 0.587 0.001 0.279 0.020
LUKE 0.590 0.281 0.794 0.411 0.831 0.432 0.434 0.205

DensePhrase 0.603 0.172 0.936 0.657 0.716 0.293 0.413 0.214
Phrase-BERT 0.643 0.297 0.918 0.617 0.916 0.575 0.452 0.241

Ours w/o CCL 0.704 0.464 0.977 0.846 0.845 0.439 0.509 0.287

Finetuning on Pre-trained UCTOPIC Representations

Ours w/ Class. 0.703 0.458 0.972 0.827 0.738 0.323 0.482 0.283
Ours w/ In-B. 0.706 0.470 0.974 0.834 0.748 0.334 0.454 0.301
Ours w/ Auto. 0.717 0.492 0.979 0.857 0.858 0.458 0.402 0.282

UCTOPIC 0.743 0.495 0.981 0.865 0.942 0.661 0.521 0.314

Table 1: Performance of entity clustering on four datasets from different domains. Class. represents using a
classifier on pseudo labels. Auto. represents Autoencoder. The best results among all methods are bolded and
the best results of pre-trained representations are underlined. In-B. represents contrastive learning with in-batch
negatives.

When we compare different pre-trained represen-
tations, we find that our method (Ours w/o CCL)
outperforms the other baselines on three datasets
except MIT-M. There are two reasons: (1) All
words in MIT-M dataset are lower case which is
inconsistent with our pretraining dataset. The in-
consistency between training and test causes per-
formance to decay. (2) Sentences from MIT-M are
usually short (10.16 words in average) compared
to other datasets (e.g., 17.9 words in W-NUT2017).
Hence, UCTOPIC can obtain limited contextual
information with short sentences. However, the
performance decay caused by the two reasons can
be eliminated by our CCL finetuning on datasets
since on MIT-M UCTOPIC achieves better results
(0.661 NMI) than Phrase-BERT (0.575 NMI) after
CCL.

On the other hand, compared to other finetun-
ing methods, our CCL finetuning can further im-
prove the pre-trained phrase representations by cap-
turing data-specific features. The improvement
is up to 50% NMI on the MIT-M dataset. Ours
w/ Class. performs worse than our pre-trained
UCTOPIC in most cases which indicates that
pseudo labels from clustering are noisy and can-
not directly be used as supervision for represen-
tation learning. Ours w/ In-B. is similar as Ours
w/ Class. which verifies our motivation on using
CCL instead of in-batch negatives. An autoencoder
can improve pre-trained representations on three
datasets but the margins are limited and the per-
formance even drops on W-NUT2017. Compared

Model UCTopic LUKE

Metric ACC NMI ACC NMI

Context+Mention 0.44 0.29 0.39 0.21

Mention 0.32
(-27%)

0.15
(-48%)

0.28
(-28%)

0.10
(-52%)

Context 0.43
(-3%)

0.16
(-44%)

0.27
(-31%)

0.07
(-67%)

Table 2: Ablation study on the input of phrase instances
of W-NUT 2017. UCTOPIC here is pre-trained rep-
resentations without CCL finetuning. Percentages in
brackets are changes compared to Context+Mention.

to other finetuning methods, our CCL finetuning
consistently improves pre-trained phrase represen-
tations on different domains.
Context or Mentions. To investigate the source of
UCTOPIC phrase semantics (i.e., phrase mentions
or context), we conduct an ablation study on the
type of input and compare UCTOPIC to LUKE. To
eliminate the influence of repeated phrase mentions
on clustering results, we use only one phrase in-
stance (i.e., sentence and position of a phrase) for
each phrase mention. As shown in Table 2, there
are three types of inputs: (1) Context+Mention:
The same input as experiments in Table 1 includ-
ing the whole sentence that contains the phrase.
(2) Mention: Use only phrase mentions as inputs
of the two models. (3) Context: We mask the
phrase mentions in sentences and models can only
get information from the context. We can see
that UCTOPIC gets more information from con-
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text (0.43 ACC, 0.16 NMI) than mentions (0.32
ACC, 0.15 NMI). Compared to LUKE, UCTOPIC

is more robust to phrase mentions (when predicting
on only context, UCTOPIC −3% ACC and −44%
NMI vs. LUKE −31% ACC and −67% NMI).

4.3 Topical Phrase Mining

In this section, we apply UCTOPIC on topical
phrase mining and conduct human evaluation to
show our model outperforms previous topic model
baselines.
Experiment Setup. To find topical phrases in doc-
uments, we first extract noun phrases by spaCy 7

noun chunks and remove single pronoun words.
Before CCL finetuning, we obtain the number of
topics for each dataset by computing the Silhouette
Coefficient (Rousseeuw, 1987).

Specifically, we randomly sample 10K phrases
from the dataset and apply K-Means clustering on
pre-trained UCTOPIC phrase representations with
different numbers of cluster. We compute Silhou-
ette Coefficient scores for different topic numbers;
the number with the largest score will be used as
the topic number in a dataset. Then, we con-
duct CCL on the dataset with the same settings
as described in Section 4.2. Finally, after obtain-
ing topic distribution zx ∈ R|C| for a phrase in-
stance x in a sentence, we get context-agnostic
phrase topics by using averaged topic distribution
zpm = 1

n

∑
1≤i≤n zxmi , where phrase instances

{xmi } in different sentences have the same phrase
mention pm. The topic of a phrase mention has the
highest probability in zpm .
Dataset. We conduct topical phrase mining on
three datasets from news, review and computer
science domains.

• Gest. We collect restaurant reviews from
Google Local8 and use 100K reviews con-
taining 143,969 sentences for topical phrase
mining.

• KP20k (Meng et al., 2017) is a collection of
titles and abstracts from computer science pa-
pers. 500K sentences are used in our experi-
ments.

• KPTimes (Gallina et al., 2019) includes news
articles from the New York Times from 2006
to 2017 and 10K news articles from the Japan

7https://spacy.io/
8https://www.google.com/maps

Datasets Gest KP20k KPTimes

# of topics 22 10 16

Table 3: The numbers of topics in three datasets.

GEST KP20k KPTimes0.0

0.1
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UCTopic PNTM TopMine Phrase-LDA

Figure 3: Results of phrase intrusion task.

Times. We use 500K sentences for topical
phrase mining.

The number of topics determined by Silhouette
Coefficient is shown in Table 3.
Compared Baseline Methods. We compare
UCTOPIC against three topic baselines:

• Phrase-LDA (Mimno, 2015). LDA model
incorporates phrases by simply converting
phrases into unigrams (e.g., “city view” to
“city_view”).

• TopMine (El-Kishky et al., 2014). A scal-
able pipeline that partitions a document into
phrases, then uses phrases as constraints to
ensure all words are placed under the same
topic.

• PNTM (Wang et al., 2021). A topic model
with Phrase-BERT by using an autoencoder
that reconstructs a document representation.
The model is viewed as the state-of-the-art
topic model.

We do not include topic models such as LDA (Blei
et al., 2003), PD-LDA (Lindsey et al., 2012),
TNG (Wang et al., 2007), KERT (Danilevsky et al.,
2014) as baselines, because these models are com-
pared in TopMine and PNTM. For Phrase-LDA
and PNTM, we use the same phrase list produced
by UCTOPIC. TopMine uses phrases produced by
itself.
Topical Phrase Evaluation. We evaluate the qual-
ity of topical phrases from three aspects: (1) topical
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UCTOPIC PNTM TopMine P-LDA

Gest 20 18 20 11
KP20k 10 9 9 4

Table 4: Number of coherent topics on Gest and
KP20k.
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Figure 4: Results of top n precision.

separation; (2) phrase coherence; (3) phrase infor-
mativeness and diversity.

To evaluate topical separation, we perform the
phrase intrusion task following previous work (El-
Kishky et al., 2014; Chang et al., 2009). The phrase
intrusion task involves a set of questions asking hu-
mans to discover the ‘intruder’ phrase from other
phrases. In our experiments, each question has 6
phrases and 5 of them are randomly sampled from
the top 50 phrases of one topic and the remaining
phrase is randomly chosen from another topic (top
50 phrases). Annotators are asked to select the in-
truder phrase. We sample 50 questions for each
method and each dataset (600 questions in total)
and shuffle all questions. Because these questions
are sampled independently, we asked 4 annotators
to answer these questions and each annotator an-
swers 150 questions on average. Results of the
task evaluate how well the phrases are separated
by topics. The evaluation results are shown in Fig-
ure 3. UCTOPIC outperforms other baselines on
three datasets, which means our model can find
well-separated topics in documents.

To evaluate phrase coherence in one topic, we
follow ABAE (He et al., 2017) and ask annotators
to evaluate if the top 50 phrases from one topic
are coherent (i.e., most phrases represent the same
topic). 3 annotators evaluate four models on Gest
and KP20k datasets. Numbers of coherent topics
are shown in Table 4. We can see that UCTOPIC,
PNTM and TopMine can recognize similar num-
bers of coherent topics, but the numbers of Phrase-
LDA are less than the other three models. For a
coherent topic, each of the top phrases will be la-

Datasets Gest KP20k

Metrics tf-idf word-div. tf-idf word-div.

TopMine 0.5379 0.6101 0.2551 0.7288
PNTM 0.5152 0.5744 0.3383 0.6803
UCTopic 0.5186 0.7486 0.3311 0.7600

Table 5: Informativeness (tf-idf) and diversity (word-
div.) of extracted topical phrases.

beled as correct if the phrase reflects the related
topic. Same as ABAE, we adopt precision@n to
evaluate the results. Figure 4 shows the results; we
can see that UCTOPIC substantially outperforms
other models. UCTOPIC can maintain high pre-
cision with a large n when the precision of other
models decreases.

Finally, to evaluate phrase informativeness and
diversity, we use tf-idf and word diversity (word-
div.) to evaluate the top topical phrases. Basi-
cally, informative phrases cannot be very common
phrases in a corpus (e.g., “good food” in Gest)
and we use tf-idf to evaluate the “importance” of
a phrase. To eliminate the influence of phrase
length, we use averaged word tf-idf in a phrase
as the phrase tf-idf. Specifically, tf-idf(p, d) =
1
m

∑
1≤i≤m tf-idf(wpi ), where d denotes the docu-

ment and p is the phrase. In our experiments, a
document is a sentence in a review.

In addition, we hope that our phrases are diverse
enough in a topic instead of expressing the same
meaning (e.g., “good food” and “great food”). To
evaluate the diversity of the top phrases, we cal-
culate the ratio of distinct words among all words.
Formally, given a list of phrases [p1, p2, . . . , pn],
we tokenize the phrases into a word list w =
[wp11 , w

p1
2 , . . . , w

pn
m ]; w′ is the set of unique words

in w. The word diversity is computed by |w
′|
|w| .

We only evaluate coherent topics labeled in phrase
coherence; the coherent topic numbers of Phrase-
LDA are smaller than others, hence we evaluate the
other three models.

We compute the tf-idf and word-div. on the top
10 phrases and use the averaged value on topics as
final scores. Results are shown in table 5. PNTM
and UCTOPIC achieve similar tf-idf scores, be-
cause the two methods use the same phrase lists
extracted from spaCy. UCTOPIC extracts the most
diverse phrases in a topic, because our phrase rep-
resentations are more context-aware. In contrast,
since PNTM gets representations dependent on
phrase mentions, the phrases from PNTM contain
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Gest KP20k

Drinks Dishes Programming

UCTOPIC PNTM UCTOPIC PNTM TopMine UCTOPIC TopMine

lager drinks cauliflower fried rice great burger mac cheese markup language software development
whisky bar drink chicken tortilla soup great elk burger ice cream scripting language software engineering
vodka just drink chicken burrito great hamburger potato salad language construct machine learning
whiskey alcohol fried calamari good burger french toast java library object oriented
rum liquor roast beef sandwich good hamburger chicken sandwich programming structure open source
own beer booze grill chicken sandwich awesome steak cream cheese xml syntax design process
ale drink order buffalo chicken sandwich burger joint fried chicken module language design implementation
craft cocktail ok drink pull pork sandwich woody ’s bbq fried rice programming framework programming language
booze alcoholic beverage chicken biscuit excellent burger french fries object-oriented language source code
tap beer beverage tortilla soup beef burger bread pudding python module support vector machine

Table 6: Top topical phrases on Gest and KP20k and the minimum phrase frequency is 3.

the same words and hence are less diverse.
Case Study. We compare top phrases from
UCTOPIC, PNTM and TopMine in Section 4.3.
From examples, we can see the phrases are con-
sistent with our user study and diversity evalua-
tion. Although the phrases from PNTM are co-
herent, the diversity of phrases is less than others
(e.g., “drinks”, “bar drink”, “just drink” from Gest)
because context-agnostic representations let similar
phrase mentions group together. The phrases from
TopMine are diverse but are not coherent in some
cases (e.g., “machine learning” and “support vector
machine” in the programming topic). In contrast,
UCTOPIC can extract coherent and diverse topical
phrases from documents.

5 Related Work

Many attempts have been made to extract topical
phrases via LDA (Blei et al., 2003). Wallach (2006)
incorporated a bigram language model into LDA
by a hierarchical dirichlet generative probabilistic
model to share the topic across each word within
a bigram. TNG (Wang et al., 2007) applied addi-
tional latent variables and word-specific multino-
mials to model bi-grams and combined bi-grams
to form n-gram phrases. PD-LDA (Lindsey et al.,
2012) used a hierarchical Pitman-Yor process to
share the same topic among all words in a given
n-gram. Danilevsky et al. (2014) ranked the resul-
tant phrases based on four heuristic metrics. TOP-
Mine (El-Kishky et al., 2014) proposed to restrict
all constituent terms within a phrase to share the
same latent topic and assign a phrase to the topic of
its constituent words. Compared to previous topic
mining methods, UCTOPIC builds on the success
of pre-trained language models and unsupervised
contrastive learning on a large-scale dataset. There-
fore, UCTOPIC provides high-quality pre-trained
phrase representations and state-of-the-art finetun-

ing for topic mining.
Early works in phrase representation build upon

a composition function that combines component
word embeddings together into simple phrase em-
bedding. Yu and Dredze (2015) implemented the
function by rule-based composition over word vec-
tors. Zhou et al. (2017) applied a pair-wise GRU
model and datasets such as PPDB (Pavlick et al.,
2015) to learn phrase representations. Phrase-
BERT (Wang et al., 2021) composed token em-
beddings from BERT and pretrained on positive
instances produced by GPT-2-based diverse para-
phrasing model (Krishna et al., 2020). Lee et al.
(2021) learned phrase representations from the su-
pervision of reading comprehension tasks and ap-
plied representations on open-domain QA. Other
works learned phrase embeddings for specific tasks
such as semantic parsing (Socher et al., 2011) and
machine translation (Bing et al., 2015). In this
paper, we present unsupervised contrastive learn-
ing method for pre-training phrase representations
of general purposes and for finetuning to topic-
specific phrase representations.

6 Conclusion

In this paper, we propose UCTOPIC, a contrastive
learning framework that can effectively learn
phrase representations without supervision. To fine-
tune on topic mining datasets, we propose cluster-
assisted contrastive learning which reduces noise
by selecting negatives from clusters. During fine-
tuning, our phrase representations are optimized for
topics in the document hence the representations
are further improved. We conduct comprehensive
experiments on entity clustering and topical phrase
mining. Results show that UCTOPIC largely im-
proves phrase representations. Objective metrics
and a user study indicate UCTOPIC can extract
coherent and diverse topical phrases.
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